The Java Syntactic Extender (JSE)

Jonathan Bachrach

Artificial Intelligence Laboratory
Massachussetts Institute of Technology

Cambridge, MA 02139

jrb@ai.mit.edu

ABSTRACT

The ability to extend a language with new syntactic forms
is a powerful tool. A sufficiently flexible macro system al-
lows programmers to build from a common base towards
a language designed specifically for their problem domain.
However, macro facilities that are integrated, capable, and
at the same time simple enough to be widely used have been
limited to the Lisp family of languages to date. In this pa-
per we introduce a macro facility, called the Java Syntactic
Extender (JSE), with the superior power and ease of use of
Lisp macro systems, but for Java, a language with a more
conventional algebraic syntax. The design is based on the
Dylan macro system, but exploits Java’s compilation model
to offer a full procedural macro engine. In other words, syn-
tax expanders may be implemented in, and so use all the
facilities of, the full Java language.

1. INTRODUCTION

A macro defines a syntactic extension to some core language
and allows users to define the meaning of one construct in
terms of other constructs. These declarations are called
macro definitions and their uses are called macro calls.

Macros provide the power of abstraction where functional
abstraction won’t suffice, affording: clarity, concision, and
implementation hiding. As an example consider a Java loop
syntactic extension called forEach whose use would look
like:

forEach(Task elt in tasks)
elt.stop();

and whose expansion would be:

Iterator i = tasks.iterator();
while (i.hasNext()) {
Task elt = (Task)i.next();
elt.stop();

Keith Playford
Functional Objects, Inc.
86 Chandler Street
Somerville, MA 02144

keith@functionalobjects.com

The use of forEach is more succinct than its expansion and
hides implementation details that if changed would be diffi-
cult to update without syntactic abstraction.

Macros provide brevity which empowers users to do the right
thing in situations that would otherwise be too taxing. Con-
sider Sun’s standard JavaTest framework which is very te-
dious from the point of view of test authoring. For example,
it’s very verbose to write robust tests and tests involving ex-
ceptions just go on and on. Furthermore, extra code must
be written in order to be able to tell from a test log exactly
where a failure occurred. In fact, because it’s so long-winded
to test for unexpected exceptions on a check-by-check basis
like the first case, people don’t tend to bother, causing test
suites to bomb out at the first such failure. As an alternative
consider a check macro whose uses would look like:

check foo.equals(bar);

check foo.equals(bar) throws NullPointerException;

and whose expansions would be respectively:

try {
logCheck("foo.equals(bar)");
checkAssertion(foo.equals(bar));
} catch (Throwable t) {
unexpectedThrowFailure(t);

};

try {
logCheck("foo.equals(bar) throws NullPointerException");
foo.equals(bar);
noThrowFailure();
} catch (NullPointerException e) {
checkPassed();
} catch (Throwable t) {
incorrectThrowFailure(t);

};

This macro makes the job of writing test suites much eas-
ier and encourages the test suite author to do the proper
bookkeeping.

It is sometimes clumsy in Java to define data declaratively,
because of the lack of optional arguments and restrictions
about where array initializers can appear. For example,
when defining a Lisp-style list object, it is very convenient
to have a list function that would create a list with elements
the same as the arguments. For example, it would be con-
venient to do:



f(list(x, y, 2));

where f is called on a list with elements x, y, and z. More
generally, allowing users to define a declarative syntax for
defining data makes inputting, manipulating, and maintain-
ing data much more manageable (see [15] for another exam-

ple).

Macros also provide an effective vehicle for planned growth
of a language (see [3]). In Guy Steele’s OOPSLA-98 invited
talk entitled, “Growing a Language” [11], he says “From now
on, a main goal in designing a language should be to plan
for growth.” A large part of Lisp’s success and longevity can
be linked to its powerful macro facility, which, for example,
allowed it to easily incorporate both Object-Oriented and
Logic programming paradigms.

Beyond merely providing syntactic extension, allowing ar-
bitrary computation during the construction of replacement
phrases and more generally having syntax expanders gener-
ate and interoperate with Java code has a number of bene-
fits:

e The analysis and rewriting possible in a syntax ex-
pander is no longer constrained by a limited pattern
matching and substitution language.

e The pattern matching and rewrite rule engine does
not have to be as complex and capable as it would
otherwise have to be, since standard Java control and
iteration constructs can be used along with it.

e [t is possible to package and re-use syntax expansion
utilities in the same way as any other useful Java code.

e Elements of the pattern matching engine are open to
programmer extension.

1.1 Overview

First, we describe a library which provides a code representa-
tion, called skeleton syntax tree (SST), source-level pattern
matching and code construction utilities, and source code
1/0. Next, we present parsing in the face of syntactic exten-
sion. Then, we discuss how the syntax expander mechanism
can be layered on top of the previous building blocks and
we discuss the syntactic extension execution model. Next,
we discuss how our system ensures that variable references
copied from a macro call and from a macro definition mean
the same thing in an expansion. Then we discuss source
level debugging in the face of macros. From there we dis-
cuss related syntactic extension systems. Next, we describe
the current JSE implementation. Finally, we propose future
directions.

2. SST AND FRAGMENTS

The fragments library provides a collection of classes suit-
able for representing fragments of source code in what we
call a skeleton syntaz tree (SST) form. Skeleton syntax trees
may be constructed and pulled apart manually using the
exported interface of these classes. Source level tools are
provided for easier parsing and construction. I/O facilities
permit the reading and writing of a textual representation
of SST’s.

A simplified fragment class hierarchy is shown below:

@@

There are compound and leaf fragments to represent the
distinction between nested and atomic syntactic elements.
In general, a SST has fewer categories than a typical AST
and instead represents the basic shapes and distinctions nec-
essary for macro processing. One noteworthy compound
fragment is the macroCall which earmarks a sequence of
fragments for later macro expansion.

As an example of SST form consider the expression:

f(x, y) + glo]

and a syntactic context in which none of the identifiers in-
volved are associated with a macro category, the skeleton

syntax tree is:

S5
" e "+ g T

o

If, on the other hand, £ were associated with a macro, then

this would be the result:

MacroCall
-

Nested
ey
Identifier IPunc(ualmnl
g y




2.1 Source Level Tools for Fragments
Working with Fragment classes directly is tedious and error-
prone. Where possible, it is desirable for a programmers to
be able to work in terms of the source code shapes they are
already familiar with.

2.1.1 Code Quotes

An intuitive and accessible way of generating parameterized
code is with code quotes. These allow a programmer to write
a prototype of the form they want to generate, but with
substitutions in place of the variable parts of the code. The
evaluation of a code quote yields the skeleton form represen-
tation of code. Tokens within a code quote are substituted
as themselves, apart from ? which indicates a parameterized
insertion. A 7 followed by a name substitutes the fragment
bound to the local variable of that name (typically bound by
pattern matching). A ? followed by an expression in parens
indicates the insertion of the fragment which is the result
of evaluating the expression inside the parens. Evaluation
of these substitutions occurs in the lexical environment in
force where the code quote appears. Simple folding rules
are applied to commas to make generating lists easier. As
an example of code quotes and pattern variable evaluation
consider:

Fragment test = #{ isOn() };
Fragment then = #{ turnOff(); };
return #{ if (7test) 7then };

==>

#{ if (isOn()) turn0ff(); }

As example of code generation for code quotes, consider the
expansion of the above code snippet:

Fragment test
= Template.processTemplate
(FragmentList.fnil
.fpush(Template.substituteldentifier("isOn"))
.fpush(Template.processParens (FragmentList.fnil))
.freverse());
Fragment then
= Template.processTemplate
(FragmentList.fnil
.fpush(Template.substituteIdentifier ("turnOff"))
.fpush(Template.processParens (FragmentList.fnil))
.fpush(Template.substituteSemicolon())
.freverse());
return Template.processTemplate
(FragmentList.fnil
.fpush(Template.substituteIdentifier("if"))
.fpush(Template.processParens
(FragmentList.fnil.fpush(test)))
.fpush(then)
.freverse());

where Fragment is the most general code fragment class, and
FragmentList is a Lisp-like list object used for containing
sequences of fragments. Template objects represent code
quotes and the Template class contains a number of facilities
for their construction.

As an example of expression evaluation consider:

Fragment getter (IdentifierFragment id) {
return new IdentifierFragment
("get".concat (id.asCapitalizedString()));

Fragment name = new IdentifierFragment("width");
return #{ x.7(getter(name)) )}

==>

#{ x.getWidth() }

2.1.2 Nesting

Sometimes it is useful to be able to represent code quotes
which when evaluated yield other code quotes. These nested
code quotes can be used in situations such as macro-defining
macros (see section 6.2 and [2]).

The evaluation of pattern variables and expressions is con-
trolled through the use of multiple question marks: ?77x,
?7(£(x)), 777y. Every #{ } wrapper introduces another
level of nesting, and variables and expressions are evaluated
when the number of question marks equals the current code
quote nesting level. Otherwise the variable or expression is
left unevaluated. For example,

return #{ #{ 7x } }; =>#{ 7x }
Fragment x = #{ a }; return #{ #{ 7??7x } }; ==> #{ a }

Multiple and delayed evaluation can be achieved using a
combination of ? and ()’s. For example:

Fragment x = #{ y };
return #{ Fragment y = #{ a }; return #{ 7(?7x) }; };

==>

Fragment y = #{ a }; return #{ 7y };

Self Generating Code Quote

One amusing and instructive use of nested code quotes is in
writing self generating programs. There is a long standing
tradition of writing self generating code fragments [2], and
nested code quotes can be used to express elegant solutions.
Alan Bawden [2] presents a beautiful quasiquote solution
written by Michael McMahon:

(let ((let ’“(let ((let ’,let)) ,let)))
“(let ((let ’,let)) ,let))

Following the same general format, a code quote solution

would look like the following:
Fragment f = #{ #{ Fragment f = #{ 77f }; 7f; }; };
#{ Fragment f = #{ 77f }; 7f; };

We present the following stand-alone self generating Java
program, because the usual self-generating goal is to write
a complete stand-alone self generating program.

class selfish {
static public void main (String args([]) {
Fragment f
= #{ #{ class selfish {
static public void main (String args[]) {
Fragment £ = #{ 77f }; 7f.pprint();
}rr ks
#{ class selfish {
static public void main (String args[]) {
Fragment f = #{ ?7f }; ?f.pprint();
} } }.pprintQ);
} 3



For comparison’s sake, Klil Neori’s stand-alone self generat-
ing Java program [14] is a typical Java solution:

class P{public static void main(String args[]){
String a="class P{public static void main
(String args[]){String a=;System.out.println
(a.substring(0,56)+((char)0x22)+a+((char)0x22)+a
.substring(56));}}"; System.out.println(a
.substring(0,56)+((char)0x22)+a+((char)0x22)+a
.substring(56));}}

where this is meant to be all on one line.

Although this isn’t a typical Java application, we can still see
how poorly suited vanilla Java is for manipulating program
representations.

2.1.3 Pattern Matching

An intuitive and accessible way of expressing a parser is with
patterns. This allows a programmer to write out the gen-
eral shape of the expected input, but with pattern bindings
in place of the variable parts of the code. The source-level
parsing tools provided in the fragment library take this ap-
proach.

The primary parsing tool offered is syntaxSwitch (which is
the moral equivalent of Lisp’s destructure-bind). It im-
plements pattern matching based on a simplified version of
Dylan’s constraint-directed rewrite rule system. It is like
Java’s switch statement and looks as follows:

syntaxSwitch (7:expression) { ?rules:* }

where rules look like:

case 7pattern:codeQuote : ?7:statement

with each pattern looking like the construct to be matched.
Patterns are augmented by pattern variables which match
and lexically bind to appropriate parts of the construct. As
an example consider:

Fragment input = #{ when (isOn()) turnOff(); };
syntaxSwitch (input) {
case #{ when (7test:expression) 7body:statement }:
return #{ if (7test) 7body };
}

==>

#{ if (isOn()) turnOff(); }

where the pattern variable 7test binds to isOn() and ?body
binds to turn0ff() ;.

The evaluation of a syntaxSwitch statement proceeds as
follows. The input expression must evaluate to a valid frag-
ment. During evaluation, this expression is tested against
each rule’s pattern in turn. If one of the patterns matches,
its pattern variables are bound to local variables of the same
name and the corresponding right hand side statement is run
in the context of those bindings. If multiple patterns match,
then the rule corresponding to the first pattern to match is
chosen. No provision is made to flag rule ambiguities. If no

patterns are found to match, then a SyntaxMatchFailure
exception is thrown.

Pattern variables are denoted with ? prefixing their names.
Each pattern variable has a required constraint that restricts
the syntactic type of fragments that it matches (e.g., name,
expression, body). A constraint is denoted with a colon
separated suffix (e.g., ?class:name). A variable name de-
faults to the given constraint name (e.g., ?:type is the same
as ?type:type). A wildcard constraint (*) matches any-
thing and an ellipsis (. ..) is an abbreviation for a wildcard
constrained pattern variable.

Pattern matching on a particular pattern proceeds from left
to right. It employs a shortest first priority for wildcard
variables. A simple backup and retry algorithm is used to
try to find a match by binding the wildcard to more and
more tokens. A largest first priority is used for matching
non-wildcard variables with a similar backup and retry algo-
rithm. Patterns match if and only if all of their subpatterns
match. Non-pattern variable tokens appearing in a pattern
match only the same token in the input. Simple folding rules
are applied to commas to make matching lists easier.

To illustrate one possible code generation strategy for the
simplest usage of syntaxSwitch, consider the following min-
imally cleaned up version of the generated code for the
syntaxSwitch example from the above example:

Fragment __expO = input;
try {
FragmentList __el

SequenceFragment test
SequenceFragment body

__exp0.getInsideFragments();
null;
null;

__el.matchName ("when");
__fs2.matchParens();

__tmp3.getInside();

__ns4.matchConstraint ("expression");

new SequenceFragment (__tmp7.getBefore());
__tmp7.getAfter();

FragmentList __fs2
SplitList __tmp3
FragmentList __ns4
SplitList __tmp7
test
FragmentList __fs6
__fs6.matchEmpty();
FragmentList __fs5
SplitList __tmp9
body
FragmentList __fs8
__fs8.matchEmpty();
return Template.processTemplate
(FragmentList.fnil
.fpush(Template.substituteIdentifier("if"))
.fpush(Template.processParens
(FragmentList.fnil.fpush(test)))
.fpush (body)
.freverse());
catch (SyntaxMatchFailure __e10) {
throw new SyntaxMatchFailure();

__tmp3.getAfter();

__fs5.matchConstraint ("statement") ;

new SequenceFragment (__tmp9.getBefore());
_tmp9.getAfter();

[

where the code for creating test has been omitted. The ba-
sic strategy is to allocate all pattern variables up front and
then step across the input matching against the pattern fill-
ing in pattern variables as the match proceeds. SplitList
objects are used for pattern matching functions that need
to return both the matching continuation point (getAfter)
and the fragments matched (getInside). Failures are han-
dled with Java’s exception mechanism and potentially raised
inside each pattern matcher utility. In the case of multiple
syntaxSwitch rules, subsequent rules would be emitted in



a nested fashion inside nested catch code bodies. Wildcard
pattern matching is handled with a try/catch inside a loop
implementing the shortest first match policy.

2.1.4 Built-in Constraint Types

Several useful constraints corresponding to oft-used Java
grammar terminals and non-terminals are provided as a
starting point for users. The name constraint matches a sin-
gle Java identifier. The type constraint matches a single
well-formed type declaration. The expression constraint
matches a single well-formed expression. The statement
constraint matches either a single { } block or a single semi-
colon terminated statement. In situations where the { }’s
are mandatory, it is necessary to put a { } in the pattern so
that it matches literally and to use the body constraint. The
body constraint matches zero-or-more semicolon-terminated
statements. Finally, the switchBody constraint matches a
sequence of zero or more switch statement clauses.

2.1.5 User-defined Constraint Types

Beyond the builtin contraints, a mechanism is provided for
users to define their own constraints. When a constraint
is found in a pattern, the constraint implementation is re-
solved by looking up a class with the constraint name suf-
fixed with SyntaxConstraint. By making a class imple-
menting SyntaxConstraint available on the CLASSPATH and
following the naming convention described above, program-
mers can introduce their own constraints. For example,
the provided statement constraint is resolved to the class
statementSyntaxConstraint. A canonical instance of a
constraint class is consulted during pattern matching. For
example, its admissibility predicate (implemented as a con-
straint class’s isAdmissable method) is called during pat-
tern matching with decreasing numbers of input fragments
such that the constrained pattern variable matches the max-
imal number of input fragments.

A constraint definition itself minimally consists of a name to
be used in pattern variable declarations and an admissibility
predicate that takes a list of fragments and returns true if it
matches exactly. A mechanism is also provided for making
available Java grammar nonterminals as constraints.

3. PARSING AND SYNTAX EXPANSION

Now that we have a representation for code, and we have
source level construction and parsing tools, we are ready
to introduce syntactic extensions. First, we need to under-
stand the context under which syntactic extensions are pro-
cessed. We assume that compilation involves the following
phases:

1. Parse source code into skeletal syntax tree

2. Recursively expand macros top-down

3. Create IR

4. Optimize IR

5. Emit code

Macro processing occurs during the first two phases from
above. First, a surface parse of macro calls is performed
to get a complete representation of calls in SST form. Sec-
ond, this parsed form is handed to the macro expander for

top-down pattern matching and rewriting. Each individ-
ual macro expansion replaces a given macro call with other
constructs, which themselves can contain macro calls. This
top-down process repeats until there are no macro calls re-
maining in the program.

3.1 Call Parsing

Macro calls are limited to a few contexts and shapes cor-
responding to existing Java syntactic contexts and shapes.
Shapes serve to allow easy location of the end of a macro
before handing it to the macro expander; shapes are a way
to find “the closing bracket”.

3.1.1 Call Macros

Call macros have function call syntax:

name(...)

and can occur in expression and statement position. The
start of a function call macro is the function name and the
end is the last matching argument parenthesis. One typical
example is assert:

assert(a >= 0, "Underflow");

where an exception will be thrown unless a >= 0.

3.1.2 Statement Macros
Statement macros can occur in positions where Java state-
ments occur and have the following basic shape:

. clause clause clause etc

where the leading ellipsis stands in for zero-or-more mod-
ifiers (like public, private, or final) and a clause is one
of:

name ... terminator

where name is a clause name (with the first clause name
being the name of the macro) and terminator is either a
semicolon or a curly bracketed form. Examples of builtin
Java statements are class, interface, if, while, for, try,
do, and switch.

In order to parse a statement macro, JSE needs to know up
front all of the clause names in order to determine where
a macro ends, there being no common “end” marker. The
beginning of the macro call is the first token past the last
terminator and the end is the first terminator not followed
by an associated clause name.

For example, to do the initial parse of try, the steps are
something like:
1. Find the token try and resolve it to a syntax expander.
2. Get a list of clause words from the expander, in this
case exception and finally.
3. Read the lead clause, try { ... }, in fragment form.
4. While the next identifier is a clause word, read the
next clause.

Taking another example, class seems more complicated
than try, yet from a form shape point of view, it’s much
simpler in that it has no clauses in this sense; all structure
is internal to the lead clause, isolated within a { } block.



3.1.3 Special Cases

Java itself has a number of special cases that only work
because they are tightly integrated into the parser. Method,
field, and variable declarations in particular have no syntax
words associated with them, and are disambiguated purely
by context and construction. It’s practically impossible to
allow programmers to introduce constructs of similar status
in a modular way, and no attempt is made to address this.

4. EXECUTION MODEL

Now that we have described our syntactic representation
and our parsing model, we’re now ready to actually describe
our syntactic extension mechanism. Syntax expanders are
classes that implement the SyntaxExpander interface and
follow an associated naming convention. These classes co-
exist with the runtime Java source and class files of a pro-
gram, but are actually dynamically loaded into the compiler
or preprocessor on demand during a build.

Being implemented by classes, syntax expanders can either
be defined at top level or live inside other classes. Syntax
expanders defined at top level can be referred to unqualified.
If defined within another class, the appropriate qualification
must be used, as if referring directly to a nested static class.

The following figure depicts the way in which syntax exten-
sions are defined and then used:

Macro Defs Macro Uses
.jse Files Jjse Files
Macro Defs Macro Uses
.class Files .class Files

Macros are first defined and compiled by JSE producing
.class files containing class representions of the defined
macros. An application that uses these macros is then sub-
sequently compiled by JSE augmented by demand-loaded
class files corresponding to actually used macros. This then
results in the final application class files.

It would be possible to manually write expander classes
against the core code fragment manipulation API provided,
but the idea is that a higher level syntax form be used (see
section 4.4.1), which provides source-level pattern matching
and code generation facilities and which expands into an
appropriate class definition.

4.1 Package Scoped Syntax

Defining a top level syntax expander, then, allows new syn-
tax to be defined with the same apparent status as built-in
forms like class, interface, and while. For example, to
get forItems syntax like:

forItems (ContactCard card in database) {

// ...

w

~

Iterator _it = database.items();
while (_it.hasNext()) {
ContactCard card = (ContactCard)_it.next();
/] ...
¥

a top level class forItemsSyntaxExpander must have been
defined and made visible through the .java file’s import
declarations.

When JSE sees an identifier in a context where syntax ex-
pansion may apply, it attempts to resolve that identifier, suf-
fixed with SyntaxExpander, to a class according to the con-
taining file’s import spec and target program CLASSPATH. If
found, the class is loaded into the language processor and the
syntax following the leading name is parsed and expanded
according to its definition. If no definition is found, the
identifier is parsed as it would be in standard Java.

4.2 Class Scoped Syntax

Defining a nested syntax expander allows new class-specific
syntax to be defined without polluting the top level package
namespace. For example, to define utility syntax like the
abstraction of the open operation for a ContactDatabase
class one does the following:

ContactDatabase.withOpen
(db = "/Documents/Contacts") {
/] ...

[

-~

ContactDatabase db
= ContactDatabase.open("/Documents/Contacts") ;
try {
/...
} finally {
db.close();
}
}

where a visible nested static class of ContactDatabase must
have been defined called withOpenSyntaxExpander.

Processing is as above, except that identifier resolution only
kicks in after the prefix ContactDatabase has been seen.

4.3 Execution Model Issues

Note that the execution model described so far precludes
the use of a nested syntax definition within the code of its
enclosing class. This restriction could possibly be removed



by having JSE extract and separately compile syntax defini-
tions as they’re encountered, but it is hard to get the scop-
ing right in the resulting code without cooperation from the
compiler.

Nesting a compile-time class within a run-time class has
further potential for problems because, with a single set of
imports, compile-time and run-time dependencies are con-
flated. Most of the time it is unlikely to be a problem, but
if the enclosing class makes numerous static references, or
worse if reference is made to something that can’t be loaded
at compile-time (e.g. if cross-compiling and JNI is involved),
this could become an issue.

Finally, using a single class path for both looking up run-
time classes and compile-time macro expanders could be
generalized in order to better separate the two worlds. The
simplest fix would be to provide a separate class path and
compilation area for syntax expanders to avoid the above
mentioned problems.

4.4 Syntax Expander Classes
A syntax expander definition consists of:

e Access specifier

e Macro name

e List of clause names

e Main rule set

e Extra class declarations
whose basic structure is defined in the SyntaxExpander in-
terface and whose details are specified in a class definition
implementing the SyntaxExpander interface. For example,
the following is a class definition for the forEach syntax
expander:

public class forEachSyntaxExpander
implements SyntaxExpander {
private static String[] clauseNames = {};
public String[] getClauseNames() {
return clauseNames;
}
public Expansion expand
(Fragment fragments) throws SyntaxMatchFailure {
syntaxSwitch (fragments) {
case #{ forEach (?7:type 7elt:name in ?:expression)
?:statement }:
return #{ Iterator i = 7expression.iterator();
while (i.hasNext()) {
7elt = (7type)i.next();
?statement
'y
}r}

where clause names are accessed with getClauseNames and
the main rule is invoked with the expand method.

4.4.1 Syntactic Extension Definitions

In order to make it more convenient for defining syntactic
extension we provide a syntax expander named syntax hav-
ing the following form:

#{ 7modifiers:* syntax 7:name ?clauseNames:* {
?mainRules:switchBody
?definitions:*

}}

It permits the forEach syntactic extension to be more suc-
cinctly written as:

public syntax forEach {
case #{ forEach (7:type 7elt:name in ?:expression)
?:statement }:
return #{ Iterator i = 7expression.iterator();
while (i.hasNext()) {
7type 7elt = (7type)i.next();
7?statement

I H

5. AUTOMATIC HYGIENE

Two desirable properties of a Syntactic Extension system are
hygiene and referential transparency [17] [16] [13] [5] which
both roughly mean that variable references copied from a
macro call and from a macro definition mean the same thing
in an expansion. The mechanism attempts to avoid acciden-
tal collisions between macro bindings and program bindings
of the same name.

In order to support these properties, each template name
records its original name, lexical context, and specific macro
call context. A named value reference and a binding connect
if and only if the original name and the specific macro call
occurrences are both the same. A new hygiene context is
dynamically bound during expansion, but for more precise
control, hygiene contexts can also be manually established
and dynamically bound.

References to global bindings should mean the same thing
as they did if looked up from within the originating macro
definition. Unfortunately, this is hard to do in Java without
violating security. We choose to force users to manually
export macro uses.

Getting this to work well in the absence of compiler or lan-
guage support is hard in places in Java, and simply im-
possible in others. When implemented as a preprocessor,
avoiding shadowing local variables requires renaming and a
detailed code walk.

Ensuring that any methods or other bindings referenced by
code generated by a macro refer to the right things at a
call point is difficult in Java. Again a full code walk and
insertion of fully-qualified names is required. However, this
only works if the things referenced are accessible at the call
point: private or package access elements accessed from a
public macro at a call point outside their scope present a
problem. This was solved for inner classes in Java by hav-
ing the compiler implicitly liberalize the access declarations
of anything private used by the inner class. It’s possible
something similar could be done here, but then we’re start-
ing to substantially modify non-macro code in such a way
as could violate security boundaries.

We may have to compromise here and guarantee correct res-
olution of references, but not necessarily their accessibility.



5.1 Circumventing Hygiene

Sometimes it is necessary to circumvent hygiene in order to
permit macros to introduce variables accessible by the lexi-
cal context from which the macro was called. For example,
imagine writing an if-like macro which executes the “then”
statement when its test expression evaluates to a non-null
value. Furthermore, as a convenience, it binds a special vari-
able named it to the result of the test. The following is an
example nif usage:

nif (moby()) return it; else return false;

and the following is the definition of nif:

public syntax nif {
case #{ nif 7test:expression 7then:statement 7else:statement }:
return #{ Object 7=it = 7test;
if (?=it == null) 7else else 7then };

where 7= defeats automatic hygiene and makes the prefixed
variable available by way of variable references in the macro
call.

6. AFEW EXAMPLES

In this section we present several JSE examples.

6.1 Parallel Iteration

This example expands on the previous forEach expander
(in section 4.4.1) to include parallel iteration over multiple
collections.

public syntax forEach {

case #{ forEach (7clauses:*) 7:statement }:
Fragment inits = #{ };
Fragment preds = #{ true };
Fragment nexts = #{ };
return

#{ ?(loop(clauses, statement,
inits, preds, nexts))};

private Fragment loop
(Fragment clauses, Fragment statement,
Fragment inits, Fragment preds, Fragment nexts)
throws SyntaxMatchFailure {
syntaxSwitch (clauses) {

case #{ }:
return
#{ 7inits while (7preds) { 7nexts 7statement } };
case #{ ?7:type ?:name in 7c:expression, ... }:

Fragment newlnits

= #{ ?inits Iterator i = ?c.iterator(); };
Fragment newPreds

= #{ 7preds & i.hasNext() };
Fragment newNexts

= #{ 7nexts 7type 7name = (7type)i.next(); };
return

#{ 7(loop(..., statement,

newlnits, newPreds, newNexts)) };

The basic strategy is to create an iterator state variable for
each collection over which to iterate, to create a predicate
that determines when any one of the collections is exhausted,
and then to bind each given element name to subsequent col-
lection values. For example, the following macro call would
expand as follows:

forEach (Point el in c1, Color e2 in c2) f(el, e2);
==>

Iterator il = cl.iterator;

Iterator i2 = c2.iterator;

while (true & il.hasNext() & i2.hasNext()) {
el = (Point)il.next();
e2 = (Point)i2.next();
f(el, e2);

}

The values of the expander variables are constructed through
iterating over each forEach clause and when no more clauses
remain, returning a code quote including the final expander
variable values.

6.2 The Accessible Macro

It is recommended to create a functional interface to fields
so as to hide their implementation as fields to allow for im-
plementation changes without affecting client code. The fol-
lowing example shows how to add a functional interface to
fields using a syntax expander called accessible. The fol-
lowing is an example usage of the accessible macro:

public class RepeatRule {
public accessible Date startDate;
public accessible Date endDate;
public accessible int repeatCount = 0;

}

and the macro itself is defined as follows:

public syntax accessible {
case #{ 7mods:* accessible 7:type 7:name 7init:*; }: {
Fragment getterName
= new IdentifierFragment
("get".asCapitalizedString());
Fragment setterName
= new IdentifierFragment
("set".asCapitalizedString());
return #{
private 7type 7name 7init;
?mods 7type ?7getterName() { return ?name; }
?mods ?type ?setterName(?type newValue) {
7name = newValue;

};
} 3

Note the creation of getter and setter identifiers using an
IdentifierFragment constructor.

6.3 A Macro Defining Macro

We now present an example of a macro which defines other
macros. Suppose we find it useful to create aliases for partic-
ular methods. Instead of defining a macro for each alias, we
could simplify our task by instead defining an alias defining
macro which itself defines a macro for each alias.

syntax defineAlias {
case #{ defineAlias ?new:name = 7old:name }:
return #{
syntax 7new {
case #{ ?%new ... }:
return #{ ?70ld ... };
LB H



7. TRACING AND DEBUGGING

Without tracing and debugging mechanisms, macros can be
difficult to use. We provide a number of facilities which
make it much easier to understand macros and when they’re
not working to figure out why. JSE provides a macro expand
facility which permits it to input a string containing a macro
call and to output the resulting macro expansion. A macro
call can either be fully expanded or expanded one level at a
time. This can be used in smart editors to selectively macro
expand marked regions of program source.

Even with this selective macro expansion support, it still
can often be daunting to understand exactly why macros
are failing. Often it is necessary to understand exactly what
patterns are matching and how pattern variables are then
subsequently bound. JSE provides both a global and per
macro tracing flag which controls this output.

Finally, when compiler errors occur, JSE maintains source
locations through macro expansion such that the original
macro call source can be printed instead of the correspond-
ing macro expansion. This gives programmers compiler feed-
back based on the code they actually wrote. This can also
be used during source level debugging. Unfortunately, be-
cause JSE supports procedural macros, it is possible that
macros can arbitrarily rewrite original program source and
thus in uses of more complicated macros, source level step-
ping, for example, could be a bit Disorienting. In practice
though, we have found that simple source location propaga-
tion gives reasonable results.

A number of facilities are made to gracefully handle the
case of macro expanders that crash or otherwise fail dur-
ing expansion. Top level macro expansion exceptions raised
during macro expansion are handled and reported through
a compiler error message along with appropriate context in-
formation. Expanders that fail to terminate will hang the
compiler. One possible solution would be to provide a user
specified timeout (implemented with a parallel timer thread)
which, if reached, would again report non-termination fail-
ures through an expansion-time error message.

8. COMPARISONS
8.1 Dylan Macros

Dylan macros were the main inspiration for JSE, but unlike
Dylan’s rewrite-rule only macro system, JSE exploits Java’s
compilation model to offer a full procedural macro engine. In
other words, syntax expanders may be implemented in, and
so use all the facilities of, the full Java language. Because of
this, JSE has a simpler pattern matching and rewrite rule en-
gine utilizing standard Java control and iteration constructs
for instance. JSE includes a more complicated mechanism
for finding the extent of a macro call, because the basic Java
syntax does not include an easy mechanism for finding the
end bracket.

8.2 Lisp Macros

Lisp’s destructuring and quasiquote facilities inspired Dy-
lan’s macro system design. Their advent played a big part
in popularizing macros and Lisp itself [2]. We maintain that
our patterns and templates are as natural to use as Lisp’s

destructuring and quasiquote. In fact, we feel that our splic-
ing operator (?) is an easier to use unification of quasiquote’s
unquote (,) and splicing (,@) operators. The reason this is
possible in JSE is because pattern variables can be bound
to the actual elements of a sequence and not the sequence
itself. For example, in Lisp, in order to splice in elements to
the end of a parameter list, one uses the splicing operator
on a whole sequence as follows:

(let ((more ’(c d e)))
‘(a b ,@more))

while in JSE, one could do the same with the following:

Fragment more = #{c, d, e};
return #{a, b, 7more};

without the need for a different splicing operator.

In order to better relate JSE’s code quotes to Lisp’s quasi-
quote, we present the following table showing a loose corre-
spondence between the two:

Name Lisp JSE
quasiquote ‘O #{>
unquote , e
splicing ,@ ?
quote ’ N/A
unquote-quote-unquote ,’, °?
unquote-unquote ) ?(?77)

We feel that for the typical nested code quote situation,
JSE’s multiple question mark is much more intuitive to use.

Unfortunately, several limitations restrict Lisp macros’ ease
of use. First, variable capture is a real problem and leads to
difficult to debug macros. Second, macro calls are difficult
to debug as Lisp macros do not offer a mechanism for cor-
relating between macro expanded code and a user’s original
source code.

Several other researchers have reported on systems that gen-
eralize the quasiquote mechanism to infix syntaxes. Weise
and Crew [21] are discussed below. Engler, Hsieh, and
Kaashoek [8] employ a version of quasiquote to support a
form of partial evaluation in C.

8.3 Scheme Macros

Macro systems for Scheme (e.g., syntax-rules) come the
closest to offering the power and ease of use of JSE. The
major restriction with Scheme macro systems is that they
are restricted to languages with sexpr-based syntax. Ignor-
ing this major restriction, we feel that JSE provides a much
more cohesive whole that gracefully progresses from a self-
contained pattern language to the full power of procedural
macros.

In this section we will briefly compare JSE to R5RS’s [12]
syntax-rules rewrite-only and the syntax-case [7] proce-
dural macro systems . It is worth mentioning that other



Scheme systems exist (e.g., [5]), but they are beyond the
scope of this paper. syntax-rules is restricted to a rewrite-
only system and thus arbitrary Scheme code can not be uti-
lized during macro expansion. The syntax-case extension
lifts this restriction. In JSE, the same basic pattern match-
ing language naturally incorporates the full Java language
when writing procedural macros.

Even without considering this major limitation, we feel that
JSE makes typical macro writing more natural. For exam-
ple, in syntax-case, a programmer is required to introduce
local pattern variables using with-syntax whereas, in JSE,
a programmer merely introduces them with the usual local
variable declaration syntax. For example in syntax-case
one must write the following:

(lambda (f)
(with-syntax ((stuff £))
(syntax stuff)))

whereas in JSE, one could do the equivalent with the fol-
lowing;:

Fragment doit (Fragment f) { return #{ 7f }; }

without having to explicitly introduce f as a pattern vari-
able. Furthermore, both syntax-rules and syntax-case re-
quire users to specify reserved intermediate words up front;
otherwise names occurring within a pattern or template are
interpreted as pattern variables. In JSE, pattern variables
have a special notation and thus reserved intermediate words
do not need to be declared ahead of time.

syntax-case and syntax-rules provide nice solutions to
hygiene that automatically avoid most variable capture er-
rors. JSE improves on this by providing an intuitive no-
tation (i.e., ?=) for circumventing hygiene. Consider the
syntax-case version of the following JSE nif macro defined
above:

(define-syntax nif
(lambda (x)
(syntax-case x ()

((nif test then else)

(with-syntax
((it (datum->syntax-object (syntax nif) ’it))
(syntax (let ((it test))

(if test then else)))))))))

Notice how in syntax-case, one must use a long-winded
call and a with-syntax binding to produce the desired it
variable. Note that R5RS’s syntax-rules provides no way
to disable hygiene.

One advantage Scheme macros have over JSE is that one
can limit a macro’s visibility to a lexically local region of
code using let-syntax and letrec-syntax. Although not
as precise, JSE does provide class-scoped macros.

8.4 Grammar Extension Macros

Grammar extension macros allow a programmer to make
incremental changes to a grammar in order to extend the
syntax of the base language. JSE is less ambitious in that it
provides a convenient and powerful mechanism for extending

the syntax in limited ways. In particular, it provides only
a limited number of shapes and requires that macros must
always commence with a name. We feel that this tradeoff is
justified because it makes the vast majority of macros easier
to write.

8.4.1 Programmable Syntax Macros

Weise and Crew [21] describe a macro system for infix syntax
languages such as C. Their macro system is programmable
in an extended form of C, guarantees syntactic correctness
of macro produced code, and provides a template substi-
tution mechanism based on Lisp’s quasiquote mechanism.
Their system lacks support for hygiene, but instead requires
programmer intervention to avoid variable capture errors.

Unfortunately, their system is restrictive. Their macro syn-
tax is constrained to that describable by what is, essentially,
a weak regular expression. In contrast, in our system, within
the liberal shapes of an SST, just about anything goes, and
further, the fragments can be parsed using any appropriate
technique. Finally, because templates are eagerly parsed,
it’s not clear that forward references within expanders (and
so mutual recursion, say) works in their system. It could be
made to work, however (by forward declaring the input syn-
tax apart from the transformer), but this would be awkward
to use.

Their system requires knowledge of formal parsing intrica-
cies. They say:

The pattern parser used to parse macro invoca-
tions requires that detecting the end of a repe-
tition or the presence of an optional element re-
quire only one token lookahead. It will report an
error in the specification of a pattern if the end
of a repetition cannot be uniquely determined by
one token lookahead.

We think that it is difficult for programmers to understand
and solve static grammar ambiguities like this.

We believe that as far as possible, programmers should only
have to know the concrete syntax, not the abstract syn-
tax. Unfortunately, their system requires programmers to
use syntax accessors to extract syntactic elements, whereas
our system allows access through pattern matching concrete
syntax.

Their system requires templates to always be consistent. We
feel that it’s often useful to be able to generate incomplete
templates containing macro parameters for instance, that
are spliced together at the end of macro processing to form
something recognizable. Weise and Crew’s insistence that
the result of evaluating a template should always be a rec-
ognizable syntactic entity defeats that mechanism. Being
able to work easily with intermediate part-expressions that
have no corresponding full-AST class (e.g. a disembodied
pair of function arguments) is a win for the SST approach.



8.4.2 Metamorphic Syntax Macros

Braband and Schwartzbach [3] introduce a macro system
that improves on Weise and Crew’s system but is still laden
with similar restrictions. In particular, it is tedious to write
complicated macros because their system is based solely on
rewrite rule extensions to a base grammar. Although, their
system can express almost all macros expressible in JSE,
having full access to Java control and data structures makes
writing demanding macros in JSE much easier. Their ad-
vantage is that they can within their system prove at macro
definition time that macros will always produce admissible
expansions.

8.4.3 Camlp4

Camlp4 [6] is a pre-processor-pretty-printer for Objective
Caml. Grammar tools and offers the ability to modify the
concrete syntax of the language including new quotations
and syntactic extensions. It uses a recursive descent parser
and users extend the syntax by adding new rewrite rules.
Users can specify levels of precedence so as to help order
rules. Rewrite rules are written in terms of pattern match-
ing with replacement patterns and similar restrictions apply.
Finally, they offer no guarantees about parseability and/or
correctness.

8.5 Java Macro Systems

8.5.1 Jakarta Tool Set

The Jakarta Tool Set [1] (JTS) provides a set of tools for
creating domain specific languages. The first of those tools,
named Jak, adds support for meta-programming to Java. In
particular, Jak supports the definitions of AST constructors
and offers hygiene facilities. AST’s are created using typed
code quotes, and are manipulated using a tree walk. This is
in contrast to our procedurally extensible rewrite-rule sys-
tem which mostly shields the user from the details of the
underlying AST.

The second JTS tool, named Bali, is essentially a parser
generator, addressing the need for creating syntactic exten-
sions in a more familiar BNF style with regular-expression
repetitions. The Bali productions are associated with the
class of objects created when a production fires. The result
of parsing is an AST which can be further modified through
a tree walk. This system is similar to the above mentioned
grammar extension macro systems.

8.5.2 EPP

EPP [9] is a Java system for extending a recursive descent
parser and lexical analyzer using the composition of mix-
ins. The parser consists of functions which parse each of
the non-terminals returning corresponding AST’s. Users
can define parser mixins in order to extend these functions
by defining their own non-terminal parsers which can aug-
ment and/or override inherited functions. No guarantees are
made about the interactions between these mixins. Similar
concerns about ease of use apply to their system. Users are
asked to understand the idiosyncrasies of a grammar and the
interactions of grammar extension combinations. Although
more limited, we consider the manipulation of surface syn-
tax (as in JSE) to be a much less daunting enterprise.

8.5.3 JPP

JPP [18] implements a fixed set of language extensions rather
than a means for Java programmers to add their own. It
supports cpp-style conditional compilation, but not substi-
tution macros: “Macros like the standard C preprocessor
has are the cause of many bugs, and because of this I have
no plans to support them”.

8.5.4 OpenJava

OpenJava [20] is a compiler supporting a compile-time meta
object protocol (MOP) for Java. A number of protocols
for adding or modifying features of the Java language are
provided, including a limited syntax extension mechanism.
Syntactic extension is limited to only a few certain places in
class definitions (e.g., class adjectives) and their uses (e.g.,
after class names in callers). This allows the system to parse
programmer input without potential grammar conflicts. Al-
though an impressive system, its main focus is on seman-
tic rather than syntactic extension. While limited in the
amount of potential surface syntax extension, their system
allows for more powerful extensions that can depend on log-
ical or contextual information such as types.

A number of other MOP-based systems are worth mention-
ing. In particular, Chiba introduces OpenC++ [4] which
is very similar to OpenJava and shares most of its relavent
strengths and weaknesses.

MPC++ [10] is a powerful system which defines a compile-
time metalevel architecture including a mechanism for ex-
tending limited parts of the C++ grammar. Syntactic ex-
tensions are defined by writing what amount to non-terminal
mixins similar to EPP. Code quotes are introduced, but gen-
erally the user is required to construct code fragments using
object constructors. Furthermore, MPC++4 does not offer
any sort of high level pattern matching facilities nor auto-
matic hygiene support.

9. IMPLEMENTATION STATUS

JSE is currently implemented as a preprocessor taking . jse
files and producing . java files. Hygiene is currently unim-
plemented, although we have confidence in the the described
design as it is based on our Dylan procedural macro system
used in Functional Objects’ production compiler. A full SST
library is implemented and documented. JSE is available as
open source software from www.ai.mit.edu/~jrb/jse.

10. FUTURE WORK

Many important future directions remain. We would like
to see JSE provide more guarantees about macro definitions
always producing admissible expansions. We would like to
extend JSE to allow for symbol macros and to support gener-
alized variables such as CommonLisp’s setf. Furthermore,
JSE seems like a very nice substrate for staged compilation
as exhibited in ‘C (see also [19]). Finally, we think that our
approach could be fruitfully applied to other languages such
as C and Scheme.

11. CREDITS

A large amount of inspiration for JSE came from the Dy-
lan macro system. Much of the initial design work on Dylan



macros was done at Apple. The syntax of macro definitions,
patterns, constraints, and templates used in Dylan’s stan-
dard macro system was developed by Mike Kahl. Dylan’s
very first “loose grammar” was due to David Moon, who also
designed a pattern matching and constraint parsing model
suitable for such a grammar. Earlier, Moon had proposed a
model of compile-time evaluation for Dylan in the context
of a prefix-syntax macro system from which ours takes some
terminology.

Generalizations of Dylan’s loose grammar enabling it to de-
scribe all Dylan’s syntactic forms, along with the first imple-
mentation of the macro system, were developed by the au-
thors while at Harlequin Ltd. The procedural macro system
was initially designed and implemented as a component of
Harlequin’s Dylan compiler, now owned by Functional Ob-
jects, Inc. Many other “Dylan Partners” made contributions
to the design of Dylan macros, particularly the Gwydion
team at CMU.

This paper benefitted from helpful discussions with Alan
Bawden, Andrew Blumberg, Tony Mann, Scott McKay, Dave
Moon, and Greg Sullivan. Finally, we would like to thank
the anonymous OOPSLA reviewers for their many helpful
suggestions.

12. REFERENCES

[1] Don Batory, Bernie Lofaso, and Yannis Smaragdakis.
JTS: Tools for implementing domain-specific
languages. In P. Devanbu and J. Poulin, editors,
Proceedings: Fifth International Conference on
Software Reuse, pages 143-153. IEEE Computer
Society Press, 1998.

[2] Alan Bawden. Quasiquotation in Lisp. In SIGPLAN
Workshop on Partial Evaluation and Semantics-Based
Program Manipulation, pages 4-12. ACM, January
1999.

[3] Braband and Schwartzbach. Growing languages with
metamorphic syntax macros. available on their web
site, 2000.

[4] Shigeru Chiba. A metaobject protocol for C++. In
Proceedings of OOPSLA 95, pages 285-299, October
1995.

[5] William Clinger. Hygienic macros through explicit
renaming. ACM LISP Pointers, 4(4):25-28, 1991.

[6] Daniel de Rauglaudre. Camlp4.
http://caml.inria.fr/camlpa/, 2001.

[7] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman.
Syntactic abstraction in scheme. Lisp and Symbolic
Computation, 5(4):295-326, 1993.

[8] E.R. Engler, W.C. Hsieh, and M.F. Kaashoek. ‘c: A
language for fast, efficient, high-level dynamic code
generation. In Proceedings of Symposium on Principles
of Programming Languages, January 1996.

[9] Yuuji Ichisugi. Modular and extensible parser
implementation.
http://www.etl.go.jp/ epp/edoc/epp-parser.pdf, 2000.

[10] Yutaka Ishikawa, Atsushi Hori, Mitsuhisa Sato,
Motohiko Matsuda, Jorg Nolte, Hiroshi Tezuka, and
Hiroki Konaka. Design and implementation of
metalevel architecture in C+4 — MPC++ approach —.
In Proceedings: Reflection’96, 1996.

[11] Guy Lewis Steele Jr. Growing a language. Lisp and
Symbolic Computation, 1998.

[12] R. Kelsey, W. Clinger, and J. Rees. Revised® report
on the algorithmic language scheme. Higher-Order and
Symbolic Computation, 11(1):7-105, 1998.

[13] E. Kohlbecker, D. P. Friedman, M. Felleisen, and
B. Duba. Hygenic macro expansion. In Proceedings of
the 1986 ACM Conference on Lisp and Functional
Programming, pages 151-161. ACM, ACM, August
1986.

[14] Klil Neori. Self generating java program. available on
a web site, 1999.

[15] Peter Norvig. DEFTABLE: A macro for implementing
tables. ACM LISP Pointers, 5(4):32-38, 1992.

[16] C. Queinnec. Lisp In Small Pieces. University Press,
Cambridge, 1994.

[17] A. Shalit. The Dylan Reference Manual. Addison
Wesley, 1996.

[18] Nik Shaylor. Java preprocessor (JPP).
http://www.geocities.com/CapeCanaveral/Hangar/4040/jpp.html,
1996.

[19] Walid Taha and Tim Sheard. Multi-stage
programming with explicit annotations. In SIGPLAN
workshop on partial evaluation and semantics-based
program manipulation, pages 203-217, 1997.

[20] Michiaki Tatsubori. Open Java.
http://www.hlla.is.tsukuba.ac.jp/ mich/openjava/, 2000.

[21] Daniel Weise and Roger Crew. Programmable syntax
macros. In Proceedings of the SIGPLAN ’93
Conference on Programming Language Design and
Implementation, pages 156-165, June 1993.



