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ABSTRACT
We present CRF-Gradient, a self-healing gradient algo-
rithm that provably reconfigures in O(diameter) time. Self-
healing gradients are a frequently used building block for
distributed self-healing systems, but previous algorithms ei-
ther have a healing rate limited by the shortest link in the
network or must rebuild invalid regions from scratch. We
have verified CRF-Gradient in simulation and on a net-
work of Mica2 motes. Our approach can also be generalized
and applied to create other self-healing calculations, such as
cumulative probability fields.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming ; C.2.1 [Computer-
Communication Networks]: Network Architecture and
Design—Wireless communication; F.2.2 [Analysis of Al-
gorithms and Problem Complexity]: Nonnumerical Al-
gorithms and Problems—Geometrical problems and compu-
tations

General Terms
Algorithms, Reliability, Theory, Experimentation

Keywords
Amorphous computing, spatial computing

1. CONTEXT
A common building block for pervasive computing sys-

tems is a gradient—a biologically inspired operation in which
each device estimates its distance to the closest device des-
ignated as a source of the gradient (Figure 1). Gradients are
commonly used in systems with multi-hop wireless commu-
nication, where the network diameter is likely to be high.
Applications include data harvesting (e.g. Directed Dif-
fusion[11]), routing (e.g. GLIDER[9]), distributed control
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Figure 1: A gradient is a scalar field where the value
at each point is the shortest distance to a source re-
gion (blue). The value of a gradient on a network
approximates shortest path distances in the contin-
uous space containing the network.

(e.g. co-fields[14]) and coordinate system formation (e.g.
[2]), to name just a few.

In a long-lived system, the set of sources may change over
time, as may the set of devices and their distribution through
space. It is therefore important that the gradient be able
to self-heal, shifting the distance estimates toward the new
correct values as the system evolves.

Self-healing gradients are subject to the rising value prob-
lem, in which local variation in effective message speed leads
to a self-healing rate constrained by the shortest neighbor-
to-neighbor distance in the network.

Previous work on self-healing gradients has either used
repeated recalculation or assumed that all devices are the
same distance from one another (e.g. measuring distance
via hop-counts). Neither of these approaches is usable in
large networks with variable distance between devices.

We present an algorithm, CRF-Gradient, that uses a
metaphor of “constraint and restoring force” to address these
problems. We have proved that CRF-Gradient self-stabilizes
in O(diameter) time and verified it experimentally both in
simulation and on Mica2 motes. We also show that the
constraint and restoring force framework can be generalized
and applied to create other self-healing calculations, such as
cumulative probability fields.

2. GRADIENTS
Gradients are generally calculated through iterative appli-

cation of a triangle inequality constraint. In its most basic
form, the calculation of the gradient value gx of a device x
is simply
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Figure 2: The rising value problem occurs when the round-trip distance between devices is less than the the
desired rise per round. The figures above show self-healing after the left-most in Figure 1 stops being a
source; for this example, updates are synchronous and unconstrained devices (black edges) attempt to rise
at 2 units per round. The original graph rises safely (a-d), completing after 9 rounds. With one short edge
(e-h), all rising becomes regulated by the short edge and proceeds much more slowly.

gx =



0 if x ∈ S
min{gy + d(x, y)|y ∈ Nx} if x /∈ S

where S is the set of source devices, Nx is the neighborhood
of x (excluding itself) and d(x, y) the estimated distance
between neighboring devices x and y.

Whenever the set of sources S is non-empty, repeated fair
application of this calculation will converge to the correct
value at every point. We will call this limit value ḡx.

2.1 Network Model
The gradient value of a device is not, however, instanta-

neously available to its neighbors, but must be conveyed by
a message, which adds lag. We will use the following wireless
network model:

• The network of devices D may contain anywhere from
a handful of devices to tens of thousands.

• Devices are immobile and are distributed arbitrarily
through space (generalization to mobile devices is rel-
atively straightforward, but beyond the scope of this
paper).

• Memory and processing power are not limiting resources.1

• Execution happens in partially synchronous rounds,
once every ∆t seconds; each device has a clock that
ticks regularly, but frequency may vary slightly and
clocks have an arbitrary initial time and phase.

• Devices communicate via unreliable broadcasts to their
neighbors (all other devices within r meters distance).
Broadcasts are sent at most once per round.

• Devices are provided with estimates of the distance
to their neighbors, but naming, routing, and global
coordinate services are not provided.

1Excessive expenditure of either is still bad, and memory is
an important constraint for the Mica2 implementation.

• Devices may fail, leave, or join the network at any
time, which may change the connectedness of the net-
work.

2.2 Separation in Space and Time
We can reformulate the gradient calculation to take our

network model into account. Let the triangle inequality
constraint cx(y, t) from device y to device x at time t be
expressed as

cx(y, t) = gy(t − λx(y, t)) + d(x, y)

where λx(y, t) is the time-lag in the information about y
that is available to its neighbor x. The time-lag is itself
time-dependent (though generally bounded) due to dropped
messages, differences in execution rate, and other sources of
variability.

The gradient calculation is then

gx(t) =



0 if x ∈ S(t)
min{cx(y, t)|y ∈ Nx(t)} if x /∈ S(t)

Our definition of the set of sources S(t) and neighborhood
Nx(t) have also changed to reflect the fact that both may
vary over time.

The most important thing to notice in this calculation is
that the rate of convergence depends on the effective speed
at which messages propagate through space. Over many
hops, this speed may be assumed to be close to r/∆t (cf.
[12]). Over a single hop, however, messages may move arbi-
trarily slowly: the time separation of two neighbors x and
y is always on the order of ∆t, while the spatial separation
d(x, y) may be any arbitrary distance less than r.

A device and its neighbor constrain one another. Thus,
when the value of a device rises from a previously correct
value, it can rise no more than twice the distance to its
closest neighbor in one round; if it rises higher, then it is
constrained by the neighbor’s value. This applies to the
neighbor as well, so after each round of rising the constraints



are no looser.
Since successive round trips between neighbors must take

at least ∆t seconds, a pair of neighbors constrain one an-
other’s distance estimates to rise at a rate no greater than
2d(x, y)/∆t meters per second. When a device x has a value
less than the correct value, its time to converge is at least

max{(ḡx − gx(t))
∆t

2d(x, y)
|y ∈ Nx(t)}

which means that close neighbors can only converge slowly.
Worse, the dependency chains from this retarded conver-

gence can reach arbitrarily far across the network, so that
the entire network is limited in its convergence rate by the
closest pair of devices. We will call this phenomenon the
rising value problem (illustrated in Figure 2).

This can be very bad indeed, particularly given that many
proposals for large networks involve some randomness in de-
vice placement (e.g. aerial dispersal). Consider, for exam-
ple, a randomly distributed sensor network with 100 devices
arranged in a 10-hop network with an average of 50 meters
separation between devices that transmit once per second.
Let us assume that the random distribution results in one
pair of devices ending up only 50cm apart. If the source
moves one hop farther from this pair, increasing the cor-
rect distance estimate by 50 meters, then the close pair and
every device further in the network will take 50 1

2·0.5
= 50

seconds to converge to the new value. If they had landed
5cm apart rather than 50cm, it would take 500 seconds to
converge—nearly 10 minutes!

2.3 Previous Self-Healing Gradients
To the best of our knowledge, the rising value problem

has not previously been formalized. Previous work in self-
healing gradients, however, may still be categorized into two
general approaches. An invalidate and rebuild gradient dis-
cards previous values and recalculates sections of network
from scratch, avoiding the rising value problem by only al-
lowing values to decrease. An incremental repair gradient
moves its values bit by bit until they arrive at the desired
values, and previously have avoided the rising value problem
by limiting the minimum link distance.

Invalidate and rebuild gradients periodically discard val-
ues across part or all of the network. This effectively avoids
the rising value problem by ensuring that values that may
need to change are raised above their correct values; often
the value is not allowed to rise at all except during a rebuild.
For example, GRAB[15] uses a single source and rebuilds
when its error estimate is too high, and TTDD[13] builds
the gradient on a static subgraph, which is rebuilt in case of
delivery failure. These approaches work well in small net-
works and are typically tuned for a particular use case, but
the lack of incremental maintenance means that there are
generally conditions that will cause unnecessary rebuilding,
persistent incorrectness, or both.

Incremental repair does not discard values, but instead
allows the gradient calculation to continue running and re-
converge to the new correct values. Previous work on incre-
mental repair (by Clement and Nagpal[7] and Butera[6]) has
measured distance using hop-count. This has the effect of
setting d(x, y) to a fixed value and therefore producing a con-
sistent message speed through the network. If generalized
to use actual distance measures, however, these approaches
suffer from the rising value problem and may converge ex-

tremely slowly.
Finally, our previous work in [1] uses a hybrid solution

that adds a fixed amount of distortion at each hop, pro-
ducing a gradient that does not suffer from the rising value
problem, but produces inaccurate values.

3. THE CRF-GRADIENT ALGORITHM
We have seen that a key problem for self-healing gradi-

ents is how to allow values to rise quickly yet still converge
to good distance estimates. The CRF-Gradient algorithm
handles this problem by splitting the calculation into con-
straint and restoring force behaviors (hence the acronym
CRF).

When constraint is dominant, the value of a device gx(t)
stays fixed or decreases, set by the triangle inequality from
its neighbors’ values. When restoring force is dominant,
gx(t) rises at a fixed velocity v0. The switch between these
two behaviors is made with hysteresis, such that a device’s
rising value is not constrained by a neighbor that might still
be constrained by the device’s old value.

The calculation for CRF-Gradient implements this by
tracking both a device’s gradient value gx(t) and the “veloc-
ity” of that value vx(t). We use this velocity to calculate a
relaxed constraint c′x(y, t) that accounts for communication
lag when a device is rising:

c′x(y, t) = cx(y, t) + (λx(y, t) + ∆t) · vx(t)

We will use the original cx(y, t) to exert constraint and
the new c′x(y, t) to test whether any neighbor is able to exert
constraint. Let the set of neighbors exerting constraint be

N ′

x(t) = {y ∈ Nx(t)|c′x(y, t) ≤ gx(t − ∆t)}

CRF-Gradient may thus be formulated

gx(t) =

8

<

:

0 if x ∈ S(t)
min{cx(y, t)|y ∈ N ′

x(t)} if x /∈ S(t), N ′

x(t) 6= ∅
gx(t − ∆t) + v0∆t if x /∈ S(t), N ′

x(t) = ∅

vx(t) =

8

<

:

0 if x ∈ S(t)
0 if x /∈ S(t), N ′

x(t) 6= ∅
v0 if x /∈ S(t), N ′

x(t) = ∅

Using this calculation, the values of devices will converge
to the same limit as before. The convergence is not, however,
limited by short-range message speed: the value of a device
rises smoothly, overshoots by a small amount, then snaps
down to its correct value.

4. ANALYSIS AND VERIFICATION
We have proved that CRF-Gradient quickly self-stabilizes.

We have further verified the behavior of CRF-Gradient
both in simulation and on a network of Mica2 Motes.

4.1 Fast Self-Stabilization
From any arbitrary starting state, the network of devices

converges to correct behavior in O(diameter) time. The
proof, detailed in a technical report[5], uses the amorphous
medium abstraction[3], which considers the collection of de-
vices as an approximation of the space they are distributed
through. Self-stabilization is first proved for the continuous
space, then shown to still hold for a discrete approximation



(a) T=0 (b) T=11

(c) T=31 (d) T=74

Figure 3: CRF-Gradient reconfigures in response to a change of source location (orange), running in simula-
tion on a network of 1000 devices, 19 hops across. The network is viewed at an angle, with the value shown
as the height of the red dot above the device (blue). Reconfiguration spreads quickly through areas where
the new value is lower than the old (b), then slows in areas where the new value is significantly higher (c),
completing 74 rounds after the source moves.



Figure 4: Our experimental network of 20 Mica2
motes, laid out in a mesh-like network with synthetic
coordinates. Reception range was software-limited
to 15 inches, producing a 5-hop network. Motes A
and B are the two gradient sources, and the red
circle contains two motes that are only 1 inch apart.

of that space. The proof shows that convergence time is
less than 6 · diameter/c, where c is the expected speed of
message propagation in meters per second.

4.2 Verification in Simulation
In simulation, CRF-Gradient converges and reconfig-

ures as predicted by our analysis. For example, the recon-
figuration shown in Figure 3 takes place on a network of
1000 devices, placed randomly with uniform distribution to
produce a network 19 hops wide. Analysis predicts that
the reconfiguration should complete within 6 ·diameter/c =
6 · 19 = 114 rounds, and in fact it completes in 74 rounds.

4.3 Verification on Mica2 Motes
We tested CRF-Gradient on a network of 20 Mica2

Motes running our language Proto[4] on top of TinyOS[10].
The motes were laid out at known positions in a mesh-like
network with one close pair, then supplied with perfect syn-
thetic coordinates (Figure 4). Note that, because CRF-
Gradient is self-stabilizing, we can expect that localization
error would not disrupt the gradient as long as the coordi-
nates are low-pass filtered to change more slowly than the
convergence time.

Reception range was software-limited to 15 inches (pro-
ducing a 5-hop network) in order to allow reliable monitoring
of a multi-hop network through a single base-station. The
frequency of neighborhood updates was set to 4 seconds.

We then ran two experiments, comparing CRF-Gradient
with a velocity of 2 in/sec against the naive self-healing gra-
dient described in Section 2.2. For each experiment, we
started by designating a mote near the close pair (labeled A
in Figure 4) as the source and allowed the gradient values to
converge. We then moved the source to a mote far from the
close pair (B) and waited again for values to converge. We
continued moving the source back and forth between A and
B, accumulating records of five moves in each direction.

We verify that the algorithm converges correctly by com-
paring the estimates of distance to the straight-line distance
to the source. The estimates calculated by CRF-Gradient

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

Distance to Source (inches)

G
ra

di
en

t V
al

ue
 (

in
ch

es
)

Accuracy of Distance Estimates

 

 

Estimated Distance
True Distance

Figure 5: CRF-Gradient calculates good range esti-
mates on our test network. The high quality of the
estimates is unsurprising, given good connectivity
and perfect range data, but serves to confirm that
CRF-Gradient is behaving as expected.

are unsurprisingly accurate, given the mesh-like layout and
synthetic coordinates (Figure 5). The error in the estimates
is entirely due to the difference between the straight-line
path and the straightest path through the network.

We then compare convergence rates in two cases: when
the values of the close pair fall (moves from B to A) and
when the values of the close pair rise (moves from A to B).
When the values of the close pair fall, the two algorithms
behave similarly; when the close pair must rise, however, the
naive algorithm is afflicted by the rising value problem, but
CRF-Gradient is not (Figure 6).

5. GENERALIZATION
The constraint and restoring force approach can be gen-

eralized and applied to create other self-healing calculations
besides gradients.

In the general form, we will let cx(y, t) be an any function
for the constraint between two neighbors, define g0 to be the
value of a source and define f(g, δ) to be the new value after
restoring force is applied to a value g for δ seconds.

The relaxed constraint c′x(y, t) is thus reformulated to

c′x(y, t) =



cx(y, t) if vx(t) = 0
f(cx(y, t), λx(y, t) + ∆t) if vx(t) 6= 0

ff

and N ′

x(t) to test ≤ for minimizing constraints and ≥ for
maximizing constraints. For a minimizing constraint, the
general constraint and restoring force calculation is

gx(t) =

8

<

:

g0 if x ∈ S(t)
min{cx(y, t)|y ∈ N ′

x(t)} if x /∈ S(t), N ′

x(t) 6= ∅
f(gx(t − ∆t), ∆t) if x /∈ S(t), N ′

x(t) = ∅

vx(t) =

8

<

:

0 if x ∈ S(t)
0 if x /∈ S(t), N ′

x(t) 6= ∅
f(gx(t−∆t),∆t)−gx(t−∆t)

∆t

if x /∈ S(t), N ′

x(t) = ∅

Maximizing is the same except it uses max instead of min.
For example, we can calculate maximum cumulative prob-

ability paths to a destination (used in [8] to avoid threats).



(a) T=0 (b) T=21

(c) T=41 (d) T=90

Figure 7: A threat avoidance program built using a generalization of the constraint and restoring force
approach. These images show reconfiguration in response to a change in threat location (orange), running in
simulation on a network of 1000 devices, 19 hops across. The vectors from each device display the estimated
minimum-threat path from that device towards the destination (upper-left corner).
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Figure 6: Convergence vs. distance for five trials
using the experimental setup in Figure 4. CRF-
Gradient and a naive self-healing gradient converge
similarly except when the value of the close pair
must rise (bottom graphs).

The maximum probability calculation is g0 = 1, cx(y, t) is a
maximizing constraint to gy times the maximum integral of
the probability density function along any path from x to y
confined to the neighborhood, and f(g, δ) = g · 0.99δ .

When incorporated into a threat avoidance program sim-
ilar to that in [8] and run in simulation, this calculation
shifts the path in response to changing threats. Figure 7
shows a path shifting in time that appears proportional to
the longest path of change.

6. CONTRIBUTIONS
We have introduced CRF-Gradient, a self-healing gra-

dient algorithm that provably reconfigures in O(diameter)
time. We have verified CRF-Gradient in simulation and
on a network of Mica2 motes. We also explain the ris-
ing value problem, which has limited previous work on self-
healing gradients.

Our approach can also be generalized and applied to cre-
ate other self-healing calculations, such as cumulative prob-
ability fields. This approach may be applicable to a wide
variety of problems, potentially creating more robust ver-
sions of existing algorithms and serving as a building block
for many pervasive computing applications.
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