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Abstract—Gel is a hardware description language that enables
quick scripting of high level designs and can be easily extended
to new design patterns. It is expression oriented and extremely
succinct. Modules are described as functions and composed
through function calls. Types and bit widths are inferred auto-
matically to guarantee correctness. Together these features reduce
hardware development time, allowing complex designs to be
scripted quickly. A simulator and logic analyzer are available to
help in the development process. A compiler has been developed
that translates Gel to Verilog, and a number of applications have
been demonstrated. This paper introduces the core language,
demonstrates its extensibility, and shows how design patterns
can easily be created. Finally, we compare a few applications
written in Gel against equivalents written in Verilog.

Index Terms—hardware description, programmable gate arrays,
programming languages, compilers

I. INTRODUCTION

FPGAs fill an important gap between software and custom
hardware: they offer the quick turnaround time of software
with the runtime efficiency of custom hardware. Custom
hardware is important for certain applications that demand
low energy consumption, low latency, parallelism, and/or
small packaging. Typical applications include software radios,
medical imaging, computer vision, cryptography, computer
hardware emulation, and digital signal processing.

Design time has become the bottleneck of hardware develop-
ment, and hardware design still takes much longer than soft-
ware design. Hardware description languages such as Verilog
(and VHDL) offer software specifications of hardware, but
unfortunately have many shortcomings. Modules are difficult
to reuse, as they often depend on particular timing and wiring
constraints. Module parameterization is also limited, often
requiring separate generator programs and scripts. Current
popular languages tend to be tedious, long winded and brittle.

The Gel approach is to script hardware, writing descriptions
functionally and inferring types automatically. In so doing,
Gel descriptions become concise and highly composable, and
avoid the need for explicit wires. Gel has automatic type
inference allowing the user to eliminate most bit width dec-
larations. The compiler supports extensive partial evaluation
and common subexpression elimination. Finally, an extensible
core library is provided.

Gel has been used to build a number of hardware components
including audio, video, and processor cores. These were devel-
oped with the help of a simulator that includes logic analyzer
functionality. Designs can be viewed graphically and traced,
triggered, and single stepped.

This paper provides a first overview of Gel.

II. ASSUMPTIONS AND DESIGN CHOICES

In its current form, Gel makes a number of assumptions
that simplify its implementation without greatly restricting its
usefulness. In particular, it assumes directed input and output
signals and a global synchronous clock. Furthermore, it is
not concerned with spatial layout, which is left to vendor-
specific design tools. In the future, we look towards supporting
bidirectional signals and asynchronous circuits.

Gel is built out of a simple core language with a minimum
number of syntactic constraints. This philosophy provides
great flexibility for implementing new design patterns. We
would like the language to be agnostic to particular hardware
design paradigms. Each paradigm and design pattern can be
built as an independent layer on top of core Gel and used
when appropriate. Simple and low level designs as well as
large systems and high level designs are possible within the
same language.

Finally, Gel utilizes Scheme as a host language, but could
be implemented in other languages as well. Scheme was
chosen for its functional programming support, simple syntax,
and macros. In the future, Gel may be implemented as an
independent compiler, rather than a construct within Scheme.

III. SCHEME BASICS

Gel incorporates the syntax of Scheme, so the following is a
brief introduction to Scheme. This functional language uses
a simple and consistent prefix syntax, where syntactic forms
called s-expressions are made up of numbers, names and lists:
sexpr == number | name | list
list == ’(’ sexpr ... ’)’

Evaluation proceeds recursively according to the contents of
the s-expression. Numbers are self evaluating, variables look
up values in their local environments, and lists are evaluated
according to their first element. If the first element of the list



is one of a number of reserved names, then its evaluation
proceeds according to a special rule. Otherwise the list is
considered a function call, and the function and arguments
are evaluated and then applied. The special forms used are
quote which returns its argument unevaluated, lambda
which introduces an anonymous function, let which intro-
duces initialized local variables, define which introduces
initialized variables and functions, and if which evaluates
one of two expressions depending on a predicate:
number
variable
(‘quote’ name)
(‘lambda’ parameters value)
(‘let’ ((name init) ...) value)
(‘define’ name value)
(‘define’ (name parameter ...) body ...)
(‘if’ predicate consequent alternative)
(function argument ...)

Beyond the basic arithmetic, Scheme has a number of powerful
list functions:
(‘apply’ f arg ...)
(apply + (list 1 2 3)) = (+ 1 2 3)

(‘map’ f list ...)
(map + (list 1 2) (list 3 4)) = (list (+ 1 3) (+ 2 4))

(‘range’ min max step)
(range 0 10 2) = (list 0 2 4 6 8)

(‘fold-right’ f init list)
(fold-right + 0 (list 1 2 3)) = (+ 1 (+ 2 (+ 3 0)))

(‘fold-left’ f init list)
(fold-left + 0 (list 1 2 3)) = (+ (+ (+ 0 1) 2) 3)

where apply calls the given function with arguments from
the given args and list elements, map produces a list of
function applications with arguments formed from successive
elements of given lists and range produces a list of numbers
starting at min, incrementing by step and strictly less than
max. fold-left and fold-right accumulate successive
elements of a list using a binary function f. Consult [1] for
more information on the Scheme language.

IV. GEL CORE

This section explains the primitive constructs of the language.
The following components are all that need be implemented by
a Gel compiler, as the more advanced patterns can be defined
in terms of these. In its current form, Gel uses Scheme as a
host language, where Gel primitives are defined in Scheme so
as to construct appropriate hardware graphs. The primitive data
elements of Gel are signals representing buses of wires. These
primitives and the compositional elements of the language are
described below.

A. Literals

Literals are written in Scheme syntax. Example integers are
specified in the usual way as follows:
0
11
-14

with
11

producing the following hardware:

11

B. Input and Outputs

Inputs and outputs are represented as Gel functions. For
example, the mic input would be used as follows:

(mic)

producing the following hardware:

mic

The speaker output function would be used as follows:

(speaker x)

and produce the following hardware:

speakerx 

outputting the x signal to the speaker.

C. Tuples and Structures

Signals can be combined into bundles using tuples:

(tup (mic) 1)

and tuple elements can be extracted using elt and a constant
index. For example, the following

(elt (tup (mic) 1) 0)

would produce the same output as (mic).

Named tuples can be defined using h:define-struct 1

as follows:

(‘h:define-struct’ struct-name field-name ...)

and would produce a structure constructor and field accessors.
For example, a signal with an end of signal flag could be
defined as follows:

(h:define-struct segment val eos?)

and would be equivalent to:

(define (segment val eos?) (tup val eos?))
(define (segment-val s) (elt s 0))
(define (segment-eos? s) (elt s 1))

1The h: prefix signifies the Gel package, and distinguishes it from
Scheme’s structure definition form.



D. Combinational Logic

More complicated Gel computations can be specified using
functional composition. For example,
(speaker (h:* 22 (mic)))

produces the following hardware

x
mic

22

speaker

which outputs an amplified microphone value to the speaker
and
(speaker (h:if (h:> (mic) 0) (h:- (mic)) (mic)))

computes the absolute value of the microphone input. Expres-
sions can be built using the full set of Verilog operators such
as:
h:+ h:* h:-
h:<< h:>>
h:not h:and h:or
h:> h:>= h:== h:< h:<=
h:if

The : operator can be used to extract bit fields and cat can
be used to concatenate bit fields:
(: val {len | start end})
(cat val ...)

Expressions written in Gel are implicitly parallel. For example,
two parallel square waves can be summed together on the same
line:
(speaker (h:+ (square-wave 2) (square-wave 1)))

where the value of the entire par expression is the value of
e_n.

E. Fan Out

Hardware outputs can be fanned out with the Scheme let
form. For example, the following:
(let ((src (mic))) (h:* src src))

produces the following hardware:

xmic speaker
src

and parameters can be bound to variables and used within
expressions:
(let ((fac 22)) (h:* fac (mic)))

The h:let special form allows tuple extractions:
(h:let (((tup val ready?) (serial-read rx)))
(h:if ready? val -1))

using a tuple pattern on the left side of the let binding, and
bit field extractions:
(h:let (((cat (: op 8) (: src 8)) (read-inst insts)))
(h:if (h:== op op-led) (led src) ...))

using a cat pattern, where op and src are 8 bit fields
in instructions. The h:let* form is the sequential binding
version of h:let, meaning that successive bindings have
previous bindings in scope.

F. Abstraction

Scheme functions can be used to define hardware abstractions.
For example, signals can be squared as follows:
(define (h:sqr x) (h:* x x))
(h:sqr (mic))

producing

sqr

xmic
x

and inputs can be made positive as follows:
(define (h:abs x) (h:if (h:> x 0) x (h:- x)))
(h:abs (mic))

G. Registers

The function reg constructs registers triggered on the rising
clock edge. Registers can be wrapped around signals produc-
ing delayed copies:
(reg (mic))

and then used to access and compare them. For example, the
positive edge function compares the current and previous value
of a signal to detect the positive edge:
(define (posedge x)
(h:and x (h:not (reg x))))

An n-clock cycle delay can be constructed recursively:
(define ((tap-n x) n)
(if (= n 0) x

(reg ((tap-n x) (- n 1)))))

When reg is applied to a procedure, it automatically com-
poses with it. For example:
(map (reg h:+) xs ys)

is equivalent to:
(map (lambda (x y) (reg (h:+ x y))) xs ys)

H. Feedback

Feedback loops can be created using the h:letrec special
form, which is similar to Scheme’s letrec special form
allowing variables to be bound and referenced recursively:
(h:letrec ((var init next) ...) expr)



For example, an infinite counter might be defined as follows:
(h:letrec ((x 0 (reg (h:+ x 1)))) x)

producing

+ 1
x

However, we cannot build counters with infinite size. Sec-
tion VI discusses how to specify the precision of feedback
variables so that they can actually be compiled.

Single variable loops can be abbreviated using the rep form:
(rep var init next)

which is equivalent to:
(h:letrec ((var init next)) var)

Using rep, the counter can be defined more simply as:
(rep x 0 (reg (h:+ x 1)))

A finite counter of a given range can be constructed as follows:
(define (counter max)
(rep count max (overflow (h:+ (reg count) 1) max)))

with overflow defined as:
(define (overflow n max)
(h:if (h:> n max) 0 n))

Counters can be used to define pulse trains by outputting 1
when the counter reaches 0:
(define (pulse n)
(h:== (counter (- n 1)) 0))

From there, a square wave can be specified in terms of toggling
at each pulse:
(define (square-wave period)
(toggle (pulse period)))

where toggling is defined as alternating between 0 and 1 based
on a pulse input:
(define (toggle p)
(rep x 0 (reg (h:if p (h:not x) x))))

default specifies the reset value for a feedback variable:
(define (default x init)
(if *reset* init x))

and *reset* is the reset signal defined as a fluid variable in
Scheme.

I. Memory

Gel provides a convenient interface to block RAMs. ROMs are
defined as a function which takes an address and returns the
associated data. rom constructs such a function from provided
data:
((rom data) addr)

The following example steps through the contents of a ROM
with three entries:
(define myrom (rom (list 11 22 33)))
(myrom (counter 2))

producing 11, 22, 33, 11, 22, 33, ... We can create
an n-value sine lookup table using a ROM initialized as
follows:
(define (sin-table A n)
(rom (map (lambda (t) (round (* A (sin t))))

(range (- pi) pi (/ (* 2 pi) n)))))

(define (sin-wave A n)
((sin-table A n) (counter n)))

RAMs are like ROMs except that they allow writing. Their
interface is curried to match the ROM function signature once
write data is provided as follows:
(((ram size) waddr wdata we) raddr)

where waddr is the write address, wdata is the write data,
and we is the write enable signal. RAMs could be used to build
an audio recorder where a button switches between recording
or playback:
(define (audio-recorder n)
(let ((addr (counter n)))
(((ram n) addr (mic) (button)) (h:if (button) 0 addr))))

V. ADVANCED GEL

The previous section demonstrated how the special forms,
expressions, and functional abstraction of the Gel core can be
used to quickly build up a number of highly reusable modules.
We now introduce more powerful functional and syntactic
abstractions that can be used to create new design patterns
and more sophisticated applications.

A. Meta Programming

Expressions can be constructed using the full power of
Scheme. For example, a tapped delay line can be constructed
by mapping tap-n across a list of numbers:
(define (taps x n)
(map (tap-n x) (range 0 n 1)))

With a list of coefficients, one can now quickly construct the
traditional “inner-product” FIR filter. Given a signal x and
an impulse response h of duration N, the general FIR filter
equation can be written:

y[n] =
N−1

∑
k=0

x[n− k]h[k]

and implemented in Gel as:
(define (inner-product-fir hs x)
(let ((xs (taps x (length hs))))
(apply h:+ (map h:* hs xs))))

More sophisticated FIR topologies also benefit greatly from
Gel’s automatic bit-width inference. The following code
presents both the transposed and systolic FIR topologies (see
[2]), shown in Fig. 1:
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xh[N-1] 

x 

0 +

xh[N-2] 

(a) Schematic view of a Transposed FIR Realization.

+

xh[0] 

x 

0 +

xh[1] 

(b) Schematic view of a Systolic FIR Realization.

Fig. 1. Example FIR Filter Topologies

(define (transposed-fir hs x)
(fold-right (reg h:+) 0
(map (lambda (h) (reg (h:* h (reg x)))) hs)))

(define (systolic-fir hs x)
(let ((taps (map (tap-n x) (range 1 (* 2 (length hs)) 2))))

(fold-left (reg h:+) 0
(map (reg h:*) hs taps))))

Other design patterns such as balanced trees are also easy
to express. The following implements an n-way mux as a
balanced decision tree:
(define (h:ref sel . args)
(let* ((len (length args))

(mid (quotient len 2)))
(if (= len 1)

(car args)
(h:if (h:< sel mid)
(apply h:ref

(cons sel (sublist args 0 mid)))
(apply h:ref

(cons (+ sel mid) (sublist args mid len)))))))

Thus, these would be equivalent:
(h:ref a x y z)
(h:if (h:< x 1) x (h:if (h:== x 2) z y))

Gel’s meta-programming facility can be used to build ar-
bitrarily complex parameterized hardware structures such as
tessellations, shuffle networks, etc. Unlike solutions involving
explicit type parameterization [3], Gel’s automatic type infer-
ence allows combinators to be built easily and independently
of the input/output types.

B. Parallel Feedback

Section IV-H presents simple feedback forms (e.g.,
h:letrec and rep) that allow variables to be updated
independently, albeit in the context of each other. Sometimes
variable update expressions are related or share common
subexpressions, and it is more convenient to update the
variables in parallel. However, not all variables need to be
updated each clock cycle. Our solution is to use keyword
values with defaults. The cyc form introduces a parallel state
variable update mechanism as follows:
(‘cyc’ (go (var init [default]) ...) update output)

where go is the parallel state constructor taking keyword
arguments, var is a state variable name, init is its initial
value, and default is its optional default update value,
update is an update expression that uses go to construct
a next value, and output is the output value produced. The
result can be considered equivalent to:
(h:letrec (((tup var ...) (tup init ...) update))) output)

where update evaluates to a tup expression with updates
for each variable.

An example usage of cyc is a simple two-stage RISC proces-
sor composed of a set of registers and a simple three operand
instruction format:
(define-enum
op-noop op-lit op-add op-lt? op-eq?
op-bri op-bra op-ld op-st)

(define w 8)

(define (cpu code n-regs mem-size)
(cyc (go (pc (: 0 w) (h:+ pc 1)) (dst (: 0 w) w)

(val (: 0 w)) (rwe 0 0)
(mwa (: 0 w)) (mwe 0) (mre 0))

(h:let* ((inst ((rom code) pc))
((cat (: op w) (: ra w) (: rb w) (: rc w)) inst)
(regs ((vec n-regs) dst val rwe))
(b (h:if (h:== dst rb) val (regs rb)))
(c (h:if (h:== dst rc) val (regs rc)))
(m (((ram mem-size) mwa val mwe) (h:+ b c))))

(h:if mre
(go ’dst ra ’val m ’rwe 1 ’mre 0)

(h:case op
((op-lit) (go ’dst ra ’val (cat ra rb) ’rwe 1))
((op-add) (go ’dst ra ’val (h:+ b c) ’rwe 1))
((op-lt?) (go ’dst ra ’val (h:< b c) ’rwe 1))
((op-eq?) (go ’dst ra ’val (h:== b c) ’rwe 1))
((op-bra) (go ’pc (h:+ pc (cat rb rc))))
((op-bri) (go ’pc (h:+ pc (h:== c 0) 1 (cat ra rb))))
((op-ld) (go ’dst ra ’mre 1 ’pc pc))
((op-st) (go ’val b ’mwa (h:+ c ra) ’mwe 1))
((op-noop) (go))
(#t (go ’pc pc)))))

val))

where define-enum defines constants of increasing non-
negative values and w defines the width of a instruction
field. The processor maintains a program counter pc, and
destination register index dst, a value val, a register write
enable flag rwe, a memory write address mwa, a memory



write enable flag mwe, and a a memory read enable flag mre.
The main body of the parallel feedback performs instruction
decoding and a potential memory read, with each branch of
the code updating the state variables needed to read/write the
registers/memory.

C. Finite State Machines

Finite state machines (FSM) can be build out of the cyc
parallel feedback form by introducing an implicit current state
variable, replacing the update expression with a current state
dispatch, and by automatically defining the state constants.
The fsm form becomes:
(‘fsm’ (go state (var init [ default ]) ...)

((state expr) ...)
output)

Now that we have FSM’s, a serial port reader can be defined
quite simply as follows:
(define (serial-read rx period)
(fsm (go (word (: 0 8)) (bit (: 0 3))

(is-ready 0) (n period))
((stopped

(h:if (h:not rx)
(go wait ’n (h:/ period 2) ’is-ready 0 ’bit 0)
(go stopped)))

(wait
(h:if (h:== n 0)

(go read ’word (h:bitior (h:<< word 1) rx))
(go wait ’n (h:- n 1))))

(read
(h:if (h:== bit 8)

(go stopped ’word word ’is-ready 1)
(go wait ’bit (h:+ bit 1) ’n period))))

(tup word is-ready)))

where the state machine paces the reading of the signal. The
serial reader starts in the stopped state waiting for rx to go
low, at which point it goes to the wait state with the wait
counter n set to half a period. The wait state decrements n
until it hits zero at which time it goes to the read state sampling
the rx signal and incorporating it into the word. When nine
bits have been accumulated, the ready signal is turned on and
the state machine is reset to the stopped state.

D. Segments

FSM’s are a general purpose way of sequencing logic, but
sometimes simpler mechanisms can be used to compose
sequencers. In this section, we introduce finite signals, called
segments which are signals with an associated end of segment
flag. In the audio world, they could be used to sequence
between audio sources or effects. For example, the following:
(loop (wait (* 2 sec) (square-wave p))

(wait (* 3 sec) (sin-wave p n)))

would produce a square wave for 2 seconds followed by a sin
wave for 3 seconds. This would be clumsy to represent as a
FSM but is succinctly expressed using segments.

We can define a segment as a structure of value and end of
the segment signals as follows:
(h:define-struct segment val eos?)

We could then truncate a signal by attaching a counter as the
end of segment signal as follows:
(define (wait delay x) (segment x (counter delay)))
(define (until trigger x) (segment x (h:not trigger)))
(define (while trigger x) (segment x trigger))

From here we can sequence between a list of segments by
switching from segment to segment upon the end of segment
signals as follows:
(define (reset-thunk reset thunk)
(fluid-let ((*reset* reset)) (force thunk)))

(define (seq fseg1 . fsegs)
(let ((n (+ (length fsegs) 1)))
(cyc (go (index (: 0 n))

((tup val eos?) (reset-thunk #t fseg1)))
(let ((segs (map (lambda (s)

(reset-thunk (posedge index) s))
(cons fseg1 fsegs))))

(h:let (((tup nval neos?) (apply h:ref index segs)))
(go (default (overflow (h:+ index neos?) n) 0)

(tup nval (negedge (h:== index (- n 1)))))))
(segment val eos?))))

where index is used to select segments and is updated on the
posedge of the end of segment signal, segments are represented
as thunks (i.e., zero argument anonymous functions) which
are evaluated in a proper reset environment such that at the
beginning of each segment, the *reset* signal is brought
high, signaling default expressions or h:letrec variables
to reinitialize. The sequence is itself a segment which pro-
duces an end of signal when it has sequenced through each
constituent segment once.

Finally, loop can be built out of seq by never ending:
(define (loop . segments)
(while #t (segment-val (apply seq segments))))

E. Samples

Often signals must be sampled unevenly and these discrete
signals must be composed through operations. We called these
signals samples and they can be represented as a tuple with
value and ready signals:
(h:define-struct sample val ready?)

Continuous signals can be converted to samples through
sampling:
(define (every x delay)
(sample x (pulse delay)))

and samples can be accumulated with the following:
(define (accum f init sample)
(rep (tup val n) (tup init 0)
(h:let (((tup sval ready?) sample))
(h:if ready?

(tup (f (reg val) sval) (h:+ (reg n) 1))
(reg (tup val n))))))

(define (bit-accum init sample)
(accum (lambda (word bit) (h:bitior (h:<< word 1) bit))

init sample))

which produces a tuple of sample values and number of
samples. Now we are in a good position to rewrite the original
serial reader code as follows:



(define (serial-read rx period)
(loop
(delay (while rx (sample 0 #f)))
(delay (wait (h:/ period 2) (sample 0 #f)))
(delay (h:let (((tup word n)

(bit-accum (: 0 8) (every rx period))))
(until (h:== n 8) (sample word (h:== n 8)))))))

where delay is the Scheme thunk creating operator.

VI. COMPILATION

Gel compiles a design to a single Verilog module, which can
then be mapped to hardware using existing design tools. The
first stage of Gel compilation generates an Abstract Syntax
Tree (AST) with stubs in place of all feedback variables. The
second step resolves all stubs and turns the AST into a graph.
The third phase infers the types and bit widths of all the
nodes. Fourth, the graph is optimized, replacing operations
over constant inputs with their application and eliminating
common subexpressions. The last phase generates Verilog
from the graph. In the next subsections, we present the type
inference, optimization, and code generation phases.

A. Type Inference

In hardware, signals must be represented by a fixed number
of wires, using a representation such as signed or unsigned
binary values. Most hardware description languages require
this type and bit-width to be specified throughout the design.
Unless specified, these parameters are automatically inferred in
Gel to guarantee the correctness of a calculation. In feedback
cases where bit-widths are difficult to infer, the compiler may
require that a type declaration be asserted somewhere in the
feedback path.

In Gel, the bit width of a literal is the minimum number of
bits used to represent it in two’s complement form, and the
sign of literal wire is determined from the sign of the literal.

Signals can be either signed or unsigned fixed width num-
bers or tuples (tup). Tuples are heterogeneous structures of
unnamed fields. The number of bits in a given signal can be
obtained using sizeof:
(sizeof (mic))

The width and sign of integers can be specified using the :
operator:
(: 0 8)
(: 0 -8)

for eight bit unsigned and signed zero respectively. In other
words, negative bit widths represent signed numbers.

In general, the bit widths of feedback variables need to be
specified, either through an initial value or type declaration:
(rep var init|type update)

where type is composed of one of the following expressions:
(type-of val)
(numt width)
(tupt type ...)

where width can be negative to specify a signed number.

From there, Gel automatically infers types and bit widths as-
suring sufficient precision for results of operators. Inputs have
defined bit widths and sign, and literals have size sufficient to
fit their contents and are signed if negative. Numeric operator
nodes have bit width sufficient so as not to loose information
in the worst case. Sign is propagated through contagiously
and conservatively. Tuple types are inferred from the tup
function and then are propagated through. Feedback variables
introduced with h:letrec require an initial value or a type
declaration to limit the bit width. Finally, outputs have defined
bit widths and sign and do the proper conversion to conform
to their declaration.

B. Input and Outputs

Hardware inputs and outputs are explicitly notated with
h:input and h:output functions:

(h:input name type)
(h:output x name type)

and used as follows:

(h:input mic -16)
(h:output 0 speaker -16)

Input and output functions can be generated as:

(define-input mic -16)
(define-output speaker -16)

and used as follows:

(speaker 0)

C. Optimizations

Gel performs a number of optimization to simplify the data
flow graph. The type inferencer propagates constancy through
the graph and the optimizer then replaces operator nodes
tagged as constant by the type inferencer with the value com-
puted by applying the operation on the constant inputs. Tuple
elt operations are replaced with the corresponding argument
of the generating tup call. This replaces all tuples with
their constituent signals and makes tuples a very lightweight
mechanism. Finally, redundant subexpressions are identified
and replaced with a single copy.

D. Running the Compiler

Compiling to Verilog is performed by calling the compiler on
a list of input / output arguments:

(compile { input | output } ...)

For example, we could compile a simple audio pass through
example as follows:

(compile (speaker (mic)))



E. Code Generation

Code generation proceeds as multiple passes over the data flow
graph. First, inputs, outputs, wires and registers are collected
and named. Then, wire and register declarations are emitted.
Next, combination logic is generated as a series of assignments
to wires. Finally, registers are updated in a posedge clocked
always block.

As an example, the following Gel program:
(speaker (counter 8))

turns into the following Verilog code:
module top (speaker, clk, reset);
reg [3:0]T0;
output [15:0]speaker;
input [0:0]reset;
input [0:0]clk;
wire [4:0]T3;
wire [0:0]T4;
wire [4:0]T5;
wire [3:0]T6;
wire [3:0]T7;

assign out = T0;
assign T3 = T0 + 1’d1;
assign T4 = T3 > 4’d8;
assign T5 = T4 ? 1’d0 : T3;
assign T6 = T5[6’d3:1’d0];
assign T7 = reset ? 4’d8 : T6;
always @ (posedge clk) begin
T0 <= T7;

end
end

VII. SIMULATOR

Gel provides a simulator that makes it easier to develop and
debug designs. Signals can be traced and viewed in a variety of
formats as shown in Fig 2(a). Gel allows many signals which
would require names in Verilog to be anonymous. To help with
debugging these signals, named probes can be wrapped around
expressions causing the corresponding signal to be traced in
the simulator. For example,
(toggle (probe pulse (pulse period)))

would add a pulse trace to the simulator. Triggers can be
set when traces equal satisfy user defined conditions. The
simulator can single step or continue until triggers are hit.

A graphical view of the circuit, shown in Fig. 2(b) can be
displayed and traces for graphical nodes can be interactively
added by clicking on the nodes. The user can control the view
using zooming and panning. Finally, the circuit can be single
stepped and breakpoints can be inserted.

VIII. RELATED WORK

Many other strategies for describing hardware at a high
level have been proposed. The most common approaches are
outlined below, and compared to Gel.

Many languages fall under the category of high level language
to HDL translators. These attempt to compile programs in
common high level languages (possibly with some language

extensions) to hardware, taking advantage of any implicit
parallelism. Many HDLs such as SystemC [4] and Altera’s
C2H [5] compile C-like language to hardware. Shard [6]
compiles recursive Scheme programs to a data-flow hardware
design. These languages are forgiving of programmers who
only have experience with software, but they limit expressibil-
ity for those familiar with hardware and the associated design
and layout tradeoffs. While a given calculation or behavior
may be easy to express, a specific hardware topology or timing
arrangement may be impossible to describe. Gel is flexible
enough to express most hardware designs, however, and allows
high level abstractions which make design patterns easy to
express.

Some languages are based on particular design patterns for
hardware. BlueSpec System Verilog (BSV) [3] uses guarded
atomic actions to make designs easier to analyze. Esterel [7]
uses event-based statements to program hardware for reactive
systems. DIL [8] is an intermediate language targeted at stream
processing and hardware virtualization. Design patterns like
these can make certain applications or functions extremely
natural to express, but may not be the best for all situations.
Gel is intended to be a simple platform that can be easily
extended to capture these useful design patterns. By using such
a flexible platform, projects can incorporate whichever design
pattern or language most easily expresses the design. Large
hardware projects could have sub-circuits each programmed
in different ways, appropriate to the subproblem.

Other languages focus on specifying the spatial layout of
designs. Lava [9] is a Haskell-based HDL where hardware
layout is explicit and complex interconnect and layout patterns
can be abstracted. PamBlox treats C++ classes as hardware
modules, with placement methods that can be inherited or
overridden. Gel is intended not for optimizing the layout
of a preexisting design, but for quickly scripting hardware
and capturing high level design patterns. While Gel could be
extended to allow placement instructions, we hope to be able
to build abstractions which allow you to work with signals
and objects at a high level, without thinking of wires or the
FPGA placement details.

Finally, some languages embed a familiar hardware pro-
gramming model into another language, so as to over-
come the macro limitations of languages such as Verilog.
Verischemelog [10] provides a Scheme syntax for specifying
modules in a similar format to Verilog. JHDL [11] equates
Java classes with modules. HML [12] uses standard ML
functions to wire together a circuit. These approaches allow
familiar and powerful languages to be macro languages for the
common net-list hardware description. While these languages
are theoretically as capable as Gel, they effectively require
designs to be described in Verilog’s module and bus format.

Gel combines a number of features touched upon in other
languages. DIL, Esterel, and HML have some form of auto-
matic typing or bit-width inference. BlueSpec, Lava, Shard,
Verischemelog, and HML are based on functional languages.



(a) Logic analyzer traces for the RISC processor. (b) Circuit view of the RISC processor.

Fig. 2. The Gel simulator.

TABLE I
SYNTHESIS COMPARISON OF GEL VS. VERILOG

LUTs MHz
Gel Verilog Gel Verilog

Serial RX 49 28 195 230
Transposed FIR 254 251 194 198

Systolic FIR 384 368 194 202

High level language translators such as HandelC, SystemC,
Altera’s C2H, and Shard represent signals as simple symbols
which can be operated on, rather than wired up as a net-list.
Each of these languages has limitations or design principles
which constrain the ways a programmer can express hardware
designs. While Gel may not be right for all designs, we
believe that the combination of these features in a simple and
small language allows Gel a unique power of expression and
abstraction.

IX. STATUS AND RESULTS

Currently, Gel is entirely written in MIT Scheme. It runs on
any platform MIT Scheme runs on, which is Windows, Linux,
and MacOSX. Finally, it is unreleased.

Table 1 presents a comparison of several example applications
from this paper and hand-written Verilog equivalents. The
transposed and systolic FIR examples were generated for
a 16-bit input, with 9 taps ranging from 7 to 14 bits in
magnitude. The serial receiver was synthesized for a 38.4 Kbps
baud-rate. All of these designs were built targeting a Xilinx
Spartan 3E xc3s500e-fg320, clocked at 50 MHz. For the
FIR applications, Gel performs favorably; the automatic type
inference manages the bit growth as necessary for FIR designs.
However, the serial receiver performs poorly compared to the
hand-written Verilog equivalent. The Verilog synthesis tools
inferred a subtractor, instead of a down counter, from the
serial-read function. Future compiler revisions will target
overcoming this limitation.

The cost of automatic type inference is that certain arithmetic
instructions will grow the data path, though in a conservative
fashion. Feedback data widths are trimmed back based on
either the width of an initial value or a declaration. The user
can further control the growth through judicious placement of
declarations.

Because of the automatic type inference, Gel code is much
more succinct, reusable and composable. For example, the
serial port reader code is 78 lines of Verilog and 16 lines of
Gel in FSM form and 7 lines in segment form. Furthermore,
the Gel code is built out of components that can be reused in
many other circuits.

X. NEXT STEPS

Gel appears to be descriptive and succinct for the examples
we have presented, but we need to tackle more complex
applications. Bit-width inference enhances the composability
of modules. However, we have yet to devise ways to combine
modules without worrying about timing and data formats. Gel
allows for powerful abstractions, but more abstractions are
needed for things such as transactions and pipelining. We
have been experimenting with a mechanism for automatic
pipelining, but more work is needed.

We have implemented a number of design patterns. Early
results are encouraging, but more work is needed. We will
endeavor to apply Gel to more paradigms and raise the level
of abstractions so that, for example, video processing can be
expressed in a concise algebraic form.

So far Gel is very efficient for smaller designs, but needs
a story for virtualization for larger ones. We think that we
can parameterize the virtualization in a natural and platform
specific manner. Previous work on Gooze [13] gives us some
measure of confidence.



While the distinction between the host and embedded language
is at times cumbersome, having a host language is a net win.
We would like to at least explore moving away from Scheme
and unifying the language to better understand the tradeoffs.

XI. CONCLUSION

Gel provides a natural and concise scripting solution for hard-
ware. It supports polymorphic signals that are well suited for
a variety of hardware types. Automatic type inference allows
the programmer to specify modules in a very reusable manner.
The meta-programming facility allows the user to define novel
and powerful libraries for specific hardware paradigms and
design patterns, keeping the core language small and paradigm
agnostic. Applied to FPGAs, these pieces together allow hard-
ware development time to better match the quick turnaround
expected only for software. A simulator is provided permitting
convenient and interactive hardware development. We have
built a number of hardware examples, and shown that their
succinct description still produces performance comparable
to current standards. While more advanced examples will
be needed to prove Gel’s utility in real applications, current
results indicate that Gel is a promising new approach to
hardware design.
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