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Abstract—Multi-robot systems are becoming in-
creasingly prevalent, but programmability is a major
barrier to their deployment. Present systems force
programmers to think in terms of individual agents.
Application code becomes entangled with details of
coordination and robustness and often does not com-
pose well or translate to other domains. We offer an
alternate approach whereby the programmer controls
a single virtual spatial computer which fills the en-
vironment space. The computations on this spatial
computer are actually performed by a large number
of locally-interacting individual agents. This abstracts
the actual computational hardware behind the spa-
tial computer interface, and allows the programmer
to focus on a single model of global computation.
We achieve this abstraction with two components: a
language that embodies continuous space and time
semantics and a runtime library that implements these
semantics approximately. We demonstrate the efficacy
of our approach with multi-agent algorithms in both
simulation and on a group of 40 robots.

I. INTRODUCTION

Multi-robot applications involve coordinating
the movement of robots in space over time. How-
ever, programming multi-robot applications re-
quires the user to write software for individual
robots and then imagine how these robots will
interact to produce the final application. The map-
ping from robot actions to group actions is often
complex and difficult to invert, making program-
ming these systems challenging.

The dream is that by using a high level language
to program a multi-robot application, we would
empower a programmer to succinctly implement
low-level repair and group functionalities and to
quickly compose new programs out of these com-
ponents. Programs would be developed with a
more intentional macro perspective, and modular-
ity would be strongly promoted.

Recently there has been significant success in

this direction in the domain of sensor networks in
developing real high-level programming languages
that utilize common programming models. For ex-
ample, TinyDB [11] takes the database point of
view, and Regiment [16] and Proto [4] [2] take the
reactive/streams point of view.

However, one limitation of the sensor network
languages so far is the focus on sensing and data
gathering, and the lack of actuation and control
as a fundamental part of the programming model.
This makes them illsuited for application to mobile
robots. Furthermore the underlying implementa-
tions often assume static networks of immobile
nodes, and topologies that change infrequently due
to node failures. In contrast, mobile robots are
dynamic network and this poses significant chal-
lenges in how the abstractions/primitives of these
languages can be supported.

In this paper, we present a new language, called
Protoswarm, that is inspired by the continuous
space-time model of Proto and extends this type of
model to program swarms of robots. In particular,
we present a virtual spatial computer, built out of
a continuous Amorphous Medium, which fills the
environment space. Programmers develop code for
this medium without considering the details of the
individual agents. The computations on this spatial
computer are actually performed by a population of
locally-interacting agents. The agents approximate
the virtual computer presented to the user. We
achieve this Amorphous Medium Abstraction [3]
using two mechanisms: a language, called Proto-
swarm, which provides continuous space and time
semantics, and a runtime library which approxi-
mates the semantics on the given hardware.

In this paper, we describe the use of the ab-
straction and the Protoswarm language in the do-
main of multi-robot applications. We show how



this language can allow the programmer to write
programs that are insulated from the details of the
hardware allowing the same program to run on a
variety of hardware, to scale to bigger populations,
and to be largely robust to robot failures. This
paper is divided into three main sections. First, we
introduce the framework, and the Protoswarm lan-
guage. Next, we discuss primitive functions, spatial
behaviors, and behavioral combinators. Finally, we
present experiments in simulation and on a group
of 40 robots and provide experimental results of the
accuracy and robustness of our approach.

II. RELATED WORK

There are many domain-specific programming
models for spatial computers, Swarm [15],
TinyOS [7], Paintable Computing [5], and CAs [12],
but they all involve programming the behavior
of the devices, rather than the behavior of the
aggregate. A notable exception is CMost, the
operating system for the CM-5 [17], which allows
operations on fields of devices, but assumes a fixed
population of devices arranged in a grid.

In related swarm languages, programmers are
similarly forced to program and manage individ-
ual robots. Mataric [13] introduced the notion of
basis behaviors and group computng, but the basis
behaviors are more challenging to combine than in
Protoswarm. More recently, works by Klavins [9]
and Kloetzer [10] have promoted the idea of high-
level descriptors for swarm flocking, and the ability
to compile out rules. The high-level is more akin
to what we will show. However these systems
mainly produce motion control laws on more ca-
pable robots – with GPS, and global clocks – where
interactions are less critical in determining robot
behavior. Furthermore, the languages are focussed
on motion, and do not provide very expressive
means of distributed sensing and distributed state,
that one might like to do wth a robot swarm
application.

In contast, sensor networks have focussed almost
exclusively on data collection. They have focussed
on using well-known complete languages such as
SQL or functional languages, which come with
strong guarantees about what can be computed and
many algorithmic tools to support the language
implementation. For example, the Regiment [16]
programming language operates on geometric re-
gions of space, but is targeted towards sensor-
network data-gathering and only distributes some
operations across space.

Finally, the structure of Protoswarm as a dy-
namic network of streams is strongly influenced

by previous work on Gooze[1], as are many of
the compilation strategies used to compact Proto-
swarm code for execution on robots. There is a
long tradition of stream processing in programming
languages. The closest and most recent work is
Functional Reactive Programming (FRP) [6] that is
based on Haskell [8], which is a statically typed
programming language with lazy evaluation se-
mantics. In these systems, less attention is spent
on runtime space and time efficiency, and the type
system is firmly wedded to Haskell, with all of its
strengths and weaknesses.

Our goal is to combine these two points of view
– both sensing and motion control are fundamental
parts of programming robot swarms. We would
like to take advantage of these types of languages
in robot swarms, since many times mobile sensor
networks are essentially robot swarms and vice
versa.

The Proto language is described in [4], and
its applicability to sensor networks in [2]. The
amorphous medium abstraction was first proposed
in [3].

III. MULTI-AGENT PROGRAMMING IN
PROTOSWARM

In this section, we introduce the Protoswarm
language, and build up facilities that support high-
level modular multi-agent programming. In Pro-
toswarm, the computational model is based on
manifolds of space that execute code, called the
Amorphous Medium. The medium has computa-
tional state and physical extent, both of which
evolve over time. We assume that the medium is
populated by an infinite number of agents, and
each agent can only communicate with neighbors
within a fixed distance. Programs for continuous
regions are then run approximately on a discrete
set of agents. Each agent runs identical code but
their execution diverges due to differing local state
and environment and interactions with neighbors.

Protoswarm programs are written as expressions
over fields, where fields are mappings from man-
ifolds to values. Expressions are executed repeat-
edly, producing streams of fields. Behaviors are
produced from vector fields by points in space
moving in the direction of the vectors.

Protoswarm is inspired by the programming
model of Proto [4]. We treat the world as
fields/streams and the computing constructs com-
pute on these streams. Also we treat the system
as a spatial computer, so all computing constructs
work on neighborhoods without reference to exact
neighbors. Unlike Proto however agents can move



in space, and this is described by adding movement
actuation. Figure 1 outlines the basics of Proto-
swarm broken into ten categories. Consult [4] for
more information on the Protoswarm programming
language. Now we describe some constructs one
can build in this language to program at the group
level.

A. Basic Spatial and Temporal Functions
This section develops a number of basic spatial

and temporal functions that are useful in pro-
gramming the Amorphous Medium. We describe
functions to measure distance, elect a leader, define
a subregion, broadcast data, and provide a global
clock.

To extend geometry beyond local neighbor-
hoods, we need to be able to calculate distances
between points in space that are further apart than
a robot’s communication range. The first function,
called distance-to, measures the distance between
any point and a designated source region. This
function calculates the distance using a relaxation
algorithm. The distance is set to zero inside the
source region. Other points compute their distance
to the source region by minimizing over the sum
of the distances to each neighboring point and its
current distance estimate. In Protoswarm code:
(def distance-to (is-source)

(rep d (inf)
(mux is-source 0

(min-hood (+ (nbr d) (nbr-range))))))

We can use this measure of distance to construct
higher-level spatial constructs. We can calculate a
dilated region around a source region by including
all points that are within rad distance from any
point in the source region:
(def dilate (is-source rad)

(< (distance-to is-source) rad))

The predicate in the second line evaluates to true
for any point within distance rad of the source
region. This produces a new region that is a dilated
version of the source region. For example, the dila-
tion of a lit region:
(def is-light ()

(> (light) 0.5))

(green (dilate (is-light) 0.5))

produces the results shown in Figure 2.
The distance-to function can also be used to

broadcast values from a source region to the rest
of the environment:
(def gradcast (src val)

(rep res val
(mux src val

Fig. 2. Dilation simulation example with 100 and 1000 robots,
where the orange disks represent lit regions.

(2nd (min-hood
(nbr (tup (distance-to src) res))
1st)))))

Points receive values from nearest sources by min-
imizing over distance-to/value tuples using the
distance-to value as the key.

We can elect a leader over a region according to
the following algorithm:

(def elect-leader (id)
(= (rep minid id (min-hood (nbr minid)))

id))

which works by minimizing over each point’s
unique id’s.

Finally, we can define a time synchronization
function as follows:

(def time ()
(rep t 0 (max-hood (+ (nbr t) (nbr-lag)))))

Each agent has a free-running clock t. Using a
function similar to leader election, the maximal
clock value t over a region is computed. This clock
becomes the clock for the entire region. Ultimately,
the highest value will come from the fastest clock,
and the region will remain in sync from that point
on.

B. Building Basic Behaviors

In this section, we build upon our basic spatial
and temporal functions to produce simple motion
primitives for wandering, clustering, and disper-
sion. We move regions by defining a vector field
over a region and using this vector field to move
the points in the region. For example, a random
vector field is produced by:

(def brownian (s)
(tup (rnd (- s) s) (rnd (- s) s)))

This produces a tuple at each point in the region
that represents a random change in that point’s
current goal position. Note that this is simply a
field; we have not produced any motion yet. We
can move each point to its goal position with:



literals – are self evaluating:
#t → #t
#f → #f
1 → 1

tuples – produce tuples of evaluated expressions and can be nested
arbitrarily:
(tup 1 2) → (tup 1 2)
(tup (tup 1 2) 3) → (tup (tup 1 2) 3)
(elt (tup 1 2) 0) → 1
(1st (tup 1 2)) → (elt (tup 1 2) 0)
(2nd (tup 1 2)) → (elt (tup 1 2) 1)

introspection – provides point properties, where comm-range
produces the communication range, (id) produces the point’s
unique number and (dt) produces the time since last execution:
(comm-range) → num
(id) → num
(dt) → num

sensors – provide sensory data:
(button) → num
(light) → num

actuators – drive the agent towards target states:
(rgb (tup (button) 0 0) → tup
(mov (tup 1 0)) → (tup 1 0)

conditionals – produce selected expression, but where mux eval-
uates both branches and if evaluates only the taken branch:
(mux #t (tup 1 2) (tup 2 3)) → (tup 1 2)
(if #f (red 1) (blue 1)) → 1

pointwise operators – provide random, trigonometric, and arith-
metic functions:
(pi) → π
(inf) → ∞
(rnd -1 1) → num
(neg (pi)) → −π
(sin (rnd (neg (pi)) (pi))) → num
(+ 1 2) → 3
(+ (tup 1 2) (tup 2 3)) → (tup 3 5)

functions – create functional abstractions, where fun produces
anonymous and def produces named functions:
((fun (x) (* x x)) 2) → 4
(def sqr (x) (* x x)) → fun
(sqr 2) → 4

temporal integration – maintains and combines values over time
using feedback loops with initial and update expressions, which can
optionally be tuple expressions:
(rep t 0 (+ t (dt))) → num
(rep (tup x y) (tup 0 0) (tup y x)) → tup
(once x) → (rep y x y)

spatial integration – summarizes neighborhood values using
nbr expressions, with min-hood for minimizing, max-hood
for maximizing, int-hood for integrating over neighborhood
expressions, and where (nbr-lag) is the time since receipt of
last data from neighbor, and (nbr-vec) is the relative vector to
the neighbor.
(min-hood (nbr d)) → num
(max-hood (+ (nbr t) (nbr-lag))) → num
(int-hood (nbr-vec)) → num

Fig. 1. Overview of Protoswarm Basics. All expressions evaluate to and operate on streaming fields.

(mov (brownian))

which produces the desired behavior.
Regions can be clustered into a set of smaller

regions by moving each point towards the average
of the positions of all neighboring points:
(def cluster ()

(int-hood (nbr-vec)))

As this code executes, points near the boundary of
the region move towards the center of the region.
No attempt is made to keep the region coherent as
it clusters. Eventually, the region will contract to a
set of points.

Conversely, regions can be dispersed by creating
virtual springs between points with a resting length
of d. The following fragment:
(def disperse (d)

(int-hood
(* (- 1 (/ d (nbr-range))) (nbr-vec)))))

moves points to minimize the spring energy be-
tween neighbors. This eventually results a uniform
dispersion [18].

In order to perform clustering and dispersion
directed towards (or away from) a region, we need
a way to determine the direction to a region. We can

interpret a field of scalars in a region as the z-values
of a topographic terrain. We can then compute
the gradient at any point in the region by finding
directions of maximal increase in height:
(def grad (field)

(int-hood
(* (/ (- (nbr field) field) (nbr-range))

(nbr-vec))))

The third line computes a vector towards each
neighbor, with magnitude equal to the gradient
of the field towards each neighbor. The int-hood

operator integrates all the gradient vectors within
a local region around each point, called a neigh-
borhood. The neighborhood of a point is the circle
of radius comm-range centered at that point. Essen-
tially, this function computes the average gradient
vector towards the source from all the points in the
neighborhood.

Distance-based dispersion and clustering can be
defined by moving towards or away from this
gradient vector:
(def disperse-from (src)
(grad (distance-to src)))

(def cluster-to (src)
(* -1 (grad (distance-to src))))



Fig. 3. Cluster-to and contour-field vector field examples run
on 500 simulated robots.

The left picture of Figure 3 shows the vector field
produced by:

(cluster-to (is-light))

where the vectors points towards lit regions.
Finally, we can follow a contour line in the

topography of the field. Our approach is to create
another field that has a stable limit cycle along
the contour at a given level. We can generate this
field by summing vectors pointed both towards and
tangential to the desired topographic line:

(def contour-field (field level)
(let* ((vec (grad field)))

(+ (* c (- level field) vec)
(rotate pi/2 vec))))

where c is a feedback constant less than one. The
following example, produces a vector field causing
points to orbit at 0.5 meter around the lit region:

(contour-field (distance-to (is-light)) 0.5)

as shown in the right picture of Figure 3.

C. Behavioral Combinators

In order to construct more complicated behav-
iors, we need a method for behavioral composition.
The first mechanism spatially composes behaviors.
For example, we can create a behavior that makes
agents disperse and remain somewhat stationary
over certain areas, while wandering everywhere
else. The following example creates a dispersal field
in lit areas, and a brownian field in other regions:

(def cover-light ()
(if (is-light) (disperse) (brownian)))

(mov (cover-light))

The second mechanism composes behaviors over
time, sequencing behaviors according to events. For
example, we can sequence dispersion for 2 seconds
followed by wandering for 3 seconds:

(loop (while (wait 2) (disperse))
(while (wait 3) (brownian)))

or wander until coming in contact with an object,
then pushing it for 5 seconds:
(loop (while (not (is-near-object)) (brownian))

(while (wait 5) (push-object)))

In general, we can sequence arbitrary behaviors by
introducing the notion of finite streams, which are
truncated by some event. The while function creates
a stream of fields while the predicate is true. Finite
streams are represented as a tuple of value fields
and a boolean active field that is true when the
stream is active. The loop function transitions from
finite stream to stream based on the active field.

IV. IMPLEMENTATION

The Protoswarm implementation addresses three
separate challenges: (a) how to implement the
primitives in a fault-tolerant manner in the face
of agent movement, (b) how to translate swarm
programs onto actual robots in an efficient and
portable manner, and (c) how to support program
development.

In order to facilitate portability, Protoswarm is
implemented on top of a virtual machine and a
hardware abstraction layer whose device interface
provides sensing, actuation, communication, and
neighbor positions. This allows the same code to
run on different hardware platforms and in simu-
lation.

The device interface also allows debugging sup-
port through virtual sensors and actuators: at
present, there is a probe device that exposes values,
a peek/poke interface that manipulates sensor and
geometry information, and an interface for break-
points and communication tracing.

Neighborhood communications and localization
are supported by a best-effort communication
scheme. The most recent information on neighbor’s
relative positions and shared variables are stored
in a table [5]. Neighborhood operations then access
the table, combining the most recent values into an
approximate summary value. The virtual machine
maintains the table by gathering shared values
during each round of execution. These are then
transmitted each round while receipt of packets
proceeds in the background.

A. Simulator
The simulator permits the running of much

larger networks (over 10,000 agents), larger appli-
cations, flexible visualization, and friendlier code
development and debugging. As in the robot port,
only a small amount of platform specific code is
necessary. The bulk of the simulator code facilitates
visualization, code development, and debugging.



Fig. 4. The iRobot SwarmBot is designed for distributed algo-
rithm development. Each SwarmBot has an infra-red localization
and communication system which enables nearby robots to
communicate and determine the position and orientation of their
neighbors. An omnidirectional bump skirt provides low-level
obstacle avoidance. A 40 MHz 32-bit ARM Thumb microproces-
sor provides enough processing power for our algorithms.
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Fig. 5. Distance-to data plotting actual versus computed
distances on 28 robots.

B. Mobile Robot Implementation
We implemented Protoswarm on a group of 40

autonomous mobile robots shown in Figure 4. Each
“SwarmBot” is autonomous and is equipped with
bump sensors, light sensors, and an infra-red inter-
robot communication and localization system [14].
The inter-robot localization system enables each
robot to determine the positions of its neighbors rel-
ative to its own local coordinate system. The infra-
red communication system is used to maintain the
neighborhood table.

V. EXPERIMENTS

We tested elect-leader, distance-to, cluster-to,
and dilate on the robots. Data was collected from
the robots using a ceiling-mounted vision tracking
system that recorded the positions of each robot
over time. Telemetry from each robot was recorded
to monitor each robot’s internal state.

A. elect-leader and distance-to

The distance-to function measures the distance
between any point in the medium space and a
source region. We ran the following code:
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Fig. 6. Dilate results on robots. The lefthand picture shows a
swarm of 40 robots running dilate. The righthand graph shows
the actual dilated region versus the ideal region.

(distance-to (elect-leader (id)))

which elects a robot to be the source region, and
then measures the distance to that robot from all
other robots. Figure 5 compares the estimated dis-
tance to the source region to the actual distance.
The distance estimate is accurate over the entire
workspace. Because the paths for messages are
constrained to only travel over the communication
graph, the distance estimate will be an overestimate
of the actual path. The longest path through the
network was four communications hops.

B. dilate
The dilate function uses the distance-to func-

tion to defined a region around a source. We tested
the following code:
(dilate (elect-leader (id)) 0.8)

to produce a region of 0.8 meters around the leader.
The picture in Figure 6 shows a snapshot of dilate
running on robots. The graph shows the extent of
the dilation region around the leader robot as it
is driven around using radio control. The black
line shows the probability of a neighboring robot
considering itself part of the dilation region. The
transition point is shifted to smaller radii because
distance-to is an overestimate of the actual dis-
tance. We suspect that the slope of the transition
is caused by the voids in the network and the
convergence speed of distance-to relative to the
speed of the robot.

C. cluster-to
The cluster-to produced a vector field which is

used to drive regions towards source regions. We
tested the following code:
(mov (mux (elect-leader (- (id)))

(cluster-to (elect-leader (id)))
(tup 0 0)))

which drives an “anti-leader” robot to a leader
robot. The left plot in Figure 7 shows five paths
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Fig. 7. Cluster-to results on robots. The lefthand plot shows
five paths towards the source the bottom left, and the righthand
plot shows the efficiency of these paths, where the efficiency is
the ration of shortest possible path length to actual path length.

from various starting positions. The right plot
shows the path efficiency for each of these paths,
where path efficiency is the ratio of shortest pos-
sible path length to actual path length. In twenty
runs, the robot always converged to the source.

VI. CHALLENGES, CONCLUSIONS, AND FUTURE
WORK

In this paper, we introduce a continuous spa-
tial computer abstraction to programming multi-
agent behaviors. Our approach is built upon an
Amorphous Medium Abstraction which frees the
programmer from needing to consider individual
robots. The Protoswarm language uses this ab-
straction to provide the user with a high-level
programming model. We describe several core al-
gorithms written in Protoswarm useful for con-
structing larger applications. We tested program
fragments on 40 to 10000 in simulation and on
a physical swarm of 40 robots. In all cases, the
programs behaved as expected and the resulting
behaviors were robust and scalable.

The power of our approach is that we can write
scalable applications once and deploy them approx-
imately on a number of multi-robot platforms with
each platform incurring a certain approximation
error. We think it is important to characterize this
error, but at this time we are unable to make
formal or statistical bounds on it or guarantees on
correctness of high level programs. We have been
working steadily on this challenge and hope to
have results soon.

Although the demonstrated examples are lim-
ited, the programming model is a promising tool
for multi-robot systems. In the future, we hope
to expand the list of group level behaviors and
applications and deploy the model on a wider
range of multi-robot systems.
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