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Abstract Programmability is an increasingly important

barrier to the deployment of multi-robot systems, as no prior

approach allows routine composition and reuse of general

aggregate behaviors. The Proto spatial computing language,

however, already provides this sort of aggregate behavior

programming for non-mobile systems using an abstraction

of the network as a continuous-space-filling device. We

extend this abstraction to mobile systems and show that

Proto can be applied to multi-robot systems with an actuator

that turns a vector field into device motion. Proto programs

operate on fields of values over an abstract device called the

amorphous medium and can be joined together using

functional composition. These programs are then automat-

ically transformed for execution by individual devices,

producing an approximation of the specified continuous-

space behavior. We are thus able to build up a library of

simple swarm behaviors, and to compose them together into

highly succinct programs that predictably produce the

desired complex swarm behaviors, as demonstrated in

simulation and on a group of 40 iRobot SwarmBots.

Keywords Spatial computing � Amorphous medium �
Swarm robotics � Amorphous computing � Multi-robot

1 Introduction

As highly capable robots become increasingly available

and less expensive, there is increasing interest in applica-

tions in which swarms of robots work together. For

example, a swarm of lightweight scout robots might search

a disaster area and coordinate with a team of more capable

rescue robots that can aid victims, or a swarm of aerial

vehicles might team with firefighters to survey and manage

wildfires and toxic spills, or a group of autonomous

underwater vehicles might survey their environment and

autonomously task portions of the swarm to concentrate

data gathering on particular interesting phenomena.

A major barrier to developing such applications, how-

ever, is the programming of robust aggregate behaviors for

the swarm. The dream is that using a high-level language to

program a multi-robot application, a programmer would be

able to succinctly implement robust group behavior prim-

itives and to quickly compose new programs out of existing

primitives and simpler programs. In current practice,

however, a programmer typically specifies the behavior of

individual robots and attempts to show that their interac-

tions will produce the desired aggregate behavior. The

mapping from robot actions to group actions is often

complex and difficult to invert, and so multi-robot appli-

cations tend to be extremely difficult to create, even harder

to extend with new functionality, and often exhibit unex-

pected fragility and scaling problems.

We observe that when communication is local (e.g.,

short-range radio), the collection of robots as a whole may

be viewed as a spatial computer—a collection of
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computational devices distributed through a physical space

in which the difficulty of moving information between any

two devices is strongly dependent on the distance between

them, and the ‘‘functional goals’’ of the system are gen-

erally defined in terms of the system’s spatial structure.

The Proto language [7] already addresses these aggregate

programming challenges for spatial computers composed

of non-mobile devices, using the amorphous medium

abstraction, which views the network as a continuous-

space-filling device [6] Proto programs operate on fields of

values over this abstract device and can be joined together

using functional composition. These programs are then

automatically transformed for execution by individual

devices, producing an approximation of the specified

continuous-space behavior. As we shall see in Sect. 3.3, we

can accomplish this by transforming global programs for

local execution on an amorphous medium where each point

contains a particular stack-based virtual machine and a

discrete kernel approximates execution of these virtual

machines on discrete devices.

Although originally designed for static systems, we show

that Proto can be applied to multi-robot systems with an

actuator that turns a vector field into device motion. We

begin by reviewing the amorphous medium abstraction and

describing its extension to moving devices. Following a

brief review of Proto, we demonstrate how the language can

be used to succinctly specify robust, scalable behaviors for a

swarm of robots, that these behaviors can be composed

together to form complex programs with predictable

behaviors and that such complex programs can inherit

robustness and scalability from their components. Finally,

we verify the applicability of Proto to multi-robot systems

by executing some of the behaviors we have developed on a

group of 40 iRobot SwarmBots1 and showing that the quality

of the approximation remains within reasonable bounds.

1.1 Related work

There are many domain-specific programming models for

spatial computers. Most of these, such as Swarm [30],

TinyOS [20], Paintable Computing [12], and CAs [27],

involve programming the behavior of the devices, rather

than the behavior of the aggregate. An early exception is

CMost, the operating system for the CM-5 [34], which

allows operations on distributed fields of values, but

assumes a fixed population of devices arranged in a grid.

Although in most multi-robot systems the programmers

work at the level of individual robots, there have been a

number of approaches to aggregate programming. Mataric

[28] introduced the notion of basis behaviors and group

computing, but the basis behaviors are challenging to

combine. Works by Klavins [22] and Kloetzer and Belta

[24] have promoted the idea of high-level descriptors for

swarm flocking and the ability to compile out rules. The

high level is more akin to what we will show, but these

systems mainly produce motion control laws on more

capable robots—with GPS, and global clocks—where

interactions are less critical in determining robot behavior.

Furthermore, the languages are focused on motion and do

not provide very expressive means for distributed sensing

and distributed state, which one might desire for a robot

swarm application. More recently, Meld [1] and LDP [37]

have taken a logic programming approach to shape for-

mation in modular robotic ensembles, which LDP seeks to

extend to more general distributed programming. These

languages offer no means of abstraction, and the logical

programming model means that composing together pro-

grams can produce hard to predict effects.

Much of Proto’s previous application has been in the area

of sensor networks. Other sensor network languages focus

almost exclusively on data collection, often abstracting

away the spatial nature of the network in favor of well-

established tools or theoretical frameworks. For example,

the Regiment [32] programming language operates on

geometric regions of space, but is targeted toward sensor

network data gathering and only distributes some operations

across space, while its successor WaveScript [33] drops the

spatial operations in favor of a tighter stream semantics.

Others are farther still: TinyDB [26] allows the user to

interact with the network as though it were a database, and

Kairos [19] focuses on the manipulation of abstract graphs.

The structure of Proto as a dynamic network of streams

is strongly influenced by previous work on Gooze [2], as

are many of the compilation strategies used to compact

Proto code for execution on embedded systems. More

generally, there is a long tradition of stream processing in

programming languages. The closest and most recent work

is Functional Reactive Programming (FRP) [17] that is

based on Haskell [21], which is a statically typed pro-

gramming language with lazy evaluation semantics. In

these systems, less attention is spent on run-time space and

time efficiency, and the type system is firmly wedded to

Haskell, with all of its strengths and weaknesses.

2 Duality of swarm and space

The amorphous medium abstraction [6] is derived from the

observation that in many spatial computing applications, we

are interested not in the particular devices that make up our

network, but rather in the space through which they are

distributed. The point of a sensor network, for example, is

generally the environmental values that it senses. If more

1 SwarmBots [29] are not to be confused with Swarm-bots [31], a

similarly named robotic platform.
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sensors are available, the area of interest can be inspected at a

higher resolution, but the essential task remains the same.

The amorphous medium abstraction takes this to its

logical extreme: an amorphous medium is a manifold M

with a computational device at every point (Fig. 1). Adding

in the dimension of time, we may also consider the foliated

manifold M 9 T, where each point describes the state of a

device m [ M at time t [ T. Information propagates

through this medium at a maximum velocity c. Each device

is associated with a neighborhood of nearby devices and

knows the state of every device in its neighborhood inter-

sected with its past light cone (i.e., the most recent infor-

mation that can have arrived from its neighbors). Given a

program and the state across any space-like surface of

M 9 T (i.e., a continuous surface in which every point in

M appears precisely once and no two points have access to

one another’s past state), we may thus compute all future

state (and past state as well if the computation is

reversible).

2.1 Approximation by discrete devices

While an amorphous medium cannot, of course, be con-

structed, any actual spatial computer can be viewed as a

discrete approximation of an amorphous medium for the

space that it fills. If programs are formulated with contin-

uous units of measure, such as meters and seconds, and an

appropriate conversion is made between continuous and

discrete units, then a continuous-space program can be

executed approximately on the discrete network, and it is

possible to predict the quality of the discrete approximation

of the continuous program—see, for example [5] and [9].

There is a duality in this relationship between a space of

interest and a network of devices. On the one hand, we may

consider a space, and ask how well it is approximated by a

given network of devices as shown in Fig. 2. On the other

hand, we may consider a network of devices and ask what

space is best approximated by this network.

It is an open question what is the best way of determining

the quality of approximation, though it is certain that there

will always be calculations that can occur on a manifold that

cannot be well approximated on a finite set of devices. More

than likely, the ultimate answer depends on the communi-

cation model and the particular application under consid-

eration. For example, devices using infrared LEDs to

communicate will be blocked from communicating by

obstacles that would not block broadcast radio communi-

cation. Devices using infrared would thus need more devi-

ces or more carefully placed devices in order to approximate

the connectivity of a building with a complex floor plan, but

once connected would have edges that better approximate

the geometry because they do not go through walls.

In order to have some basis to build from, we consider a unit

disk model of connectivity, in which each device is connected

to all others within r meters. While this model is a vast

oversimplification, it is still a reasonable generic starting point

for describing spatial computers, since the most important

property of the communication model is strong locality.

Given this model, we may estimate whether a homo-

geneous distribution approximates space well by looking at

the expected number of neighbors with which each device

communicates. For example, Kleinrock and Silvester [23]

show that at two or more expected neighbors, reasonable

forward progress can be expected in each hop through the

network; for distributed distance measures, a good thresh-

old is 10 expected neighbors [5]. Assuming that the

expected number of neighbors is sufficient, the responsi-

bility of devices for approximating portions of the space

can be determined using a Voronoi decomposition.

Going in the other direction, a conservative approach to

determine a space that is well approximated by a discrete

neighborhood of P

P

Fig. 1 An amorphous medium is a manifold where every point is a

device that knows its neighbors’ recent past state

Fig. 2 Duality of space and network: we may consider either how

well a space of interest is approximated by a given network, or what

space the network best approximates. For example, the square space

on the left is poorly approximated by the network at center, but the

network approximates well the oddly shaped space on the right
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network is to surround each device with a disk whose

radius is 1
2

r (Fig. 3). The union of all such disks is a space

well approximated by the network: there is a straight-line

path connecting any pair of devices that can communicate

directly, and when two devices are in disconnected com-

ponents of the network, there is no path connecting them

through the space.

2.2 Extending the amorphous medium to moving

devices

At a surface level, extending the amorphous medium

abstraction to moving devices is straightforward: merely

add a function for moving devices to the language. Many

swarm robotic applications are also focused not on the

robots, but on the space through which they move. The

focus of mapping is the environment being mapped. For

search and rescue, it is the area being explored and the

victims that may be discovered therein. Network coverage

is about ensuring adequate signal-strength across the larg-

est possible useful area. Just as in the static case, at any

given instant in time, we may consider a space of interest

(e.g., a desired formation of robots) and ask how well the

swarm currently approximates it, or use a mapping like the

half-disk mapping above to ask what space is currently

well approximated by the swarm.

When the devices are capable of moving, we must pay

more careful attention to the relationship between the

network and the space it occupies. Moreover, because the

goal of many swarm robotic programs is precisely to

arrange the robots in some environment-dependent distri-

bution, it is no longer reasonable to assume that devices are

distributed homogeneously through some subspace. In fact,

the whole point of a program may be to distribute devices

inhomogeneously: for example, consider a network of

mobile sensors, where we wish to have sensors distributed

at low density throughout the entire environment, but have

a portion of them cluster densely in regions where some-

thing interesting has been detected in order to provide high

resolution.

We thus need to extend the amorphous medium

abstraction to include some notion of the density with

which devices are distributed in space. The continuous-

space abstraction is obvious: the manifold of the amor-

phous medium shall be considered to consist of matter, and

the density of this abstract matter is approximated by the

proximity of robots to one another.

In a robotic swarm, robots can move closer together and

farther apart while still being able to communicate reliably,

so the matter of the amorphous medium is compressible.

We shall thus consider it to be in a gaseous state. If the

robots pack together closely enough that it is difficult for

any robot to make significant progress without evading or

being evaded by other robots, then the matter of the

amorphous medium is no longer significantly compress-

ible, and mass flow requires the development of vorticity

(in the form of mutual evasion). We shall thus consider

such an amorphous medium to be in a liquid state. In

modular robotics, on the other hand, the robots are packed

together at an approximately fixed density (though there

may be voids in the structure). If they can move at all, it is

often the case that the moving robots must be a relatively

small percentage relative to a substrate of non-moving

robots (see [36] for an elegant example of this). In this

case, we shall consider the amorphous medium to be in a

solid state.

In this paper, we consider only robots in the gaseous

state. Using the unit disk model of communication (with

communication radius r) and the half-disk mapping for

deriving an amorphous medium from a distribution of

robots, let the area of a robot’s Voronoi cell in the manifold

be V. The density of the amorphous medium within a cell

(a) (b)

Fig. 3 A conservative approach to determining a space that is well

approximated by a discrete network (assuming unit disk communi-

cation) is to surround each device with a half-communication radius

disk (a). The union of all such disks is a space well approximated by

the network (b), and a Voronoi decomposition of the space (red lines)

can be used to determine which portions of the space are to be

approximated by which discrete devices
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may then be approximated by q ¼ 1=4pr2

V (Fig. 4). Mass

flow in such an amorphous medium may then be calculated

as a vector field over the manifold and approximated by

moving each robot according to the vector at its location.

The normalization of the density by half-disk area

makes this a scalable measure: for a given expected num-

ber of neighbors, the expected density remains constant.

The density at which the amorphous medium transitions

between gaseous and liquid behavior, however, is of course

platform dependent, as it is set by the ratio between the size

of a robot and the range of its communication.

Note, however, that the quality of approximation of

mass flow under this mapping is an open question, and we

make no assertions on that front. Note also that it is not

immediately obvious whether adding a time dimension still

produces a foliated manifold, given that the connectedness

of the swarm may change over time, so the appropriate

mathematical formalism for time evolution in this model is

also an open question. Empirically, however, we shall see

that using this model of approximation produces good

results, which leads us to believe that appropriate formal

answers to these questions can be found.

3 Review of Proto

The Proto language [7] uses the amorphous medium

abstraction to factor programming a spatial computer into

three loosely coupled sub-problems, as shown in Fig. 5:

global descriptions of programs as functional operations on

fields of values, compilation from global to local execution

on an amorphous medium, and discrete approximation of

an amorphous medium by a real network. In this section,

we briefly review the Proto language and the enabling

infrastructure that allows it to approximate global contin-

uous programs in terms of discrete local interactions. For

full details, see [8] and [4]. Proto may be obtained online at

http://www.stpg.csail.mit.edu/proto.html.

3.1 Fields and functional composition

Proto is a functional language. Its primitive elements are

mathematical operations on fields, where a field is a

function that maps every point in space to a value. These

elements are composed using the rules of mathematical

function composition. A Proto program may thus by

interpreted as a dataflow graph of operations on fields, such

as that shown in Fig. 6. A program is then evaluated

against a manifold to produce a field whose values evolve

over time.

For example, the expression 4 is an operator of no

arguments that produces a field mapping every point in the

amorphous medium to the scalar value 4. The operator

sqrt takes a scalar field and produces a scalar field where

every point that mapped to n in the input field maps to
ffiffiffi

n
p

in

Fig. 4 For mobile devices, we extend the amorphous medium to

include density. One reasonable approximation of the density at a

point may be found by taking the area of a half-radius disk and

dividing it by the area of a Voronoi cell. Here, the space from Fig. 3 is

shown with higher density indicated by darker colors

Fig. 5 The Proto language uses

the amorphous medium

abstraction to factor

programming a spatial computer

into three loosely coupled sub-

problems: global descriptions of

programs as functional

operations on fields of values,

compilation from global to local

execution on an amorphous

medium, and discrete

approximation of an amorphous

medium by a real network
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the output field. Proto uses LISP-style parenthetical notation

to show composition (though the reader should remain

aware that Proto is not a LISP). For example, (sqrt 4)

applies the sqrt operator to a field mapping every point to

4, producing a field that maps every point to 2.

The instantaneous evaluation of an expression—its

evaluation at a given point in time—is simply its applica-

tion to an amorphous medium, producing a set of fields.

Figure 6 shows an example of a complex computation of

this sort, from [3], finding a redundant path between source

and destination regions. To find out what values have

actually been computed, one evaluates the field at partic-

ular points.

To evaluate an expression across time, we perform a

sequence of instantaneous evaluations. Each instantaneous

evaluation depends only on the previous evaluation (via the

delay operator—see Sect. 3.2). Typically, these occur at

fixed intervals, but Proto uses a continuous time semantics

(described in [4]) that allows devices to update asynchro-

nously at a variable rate.

3.2 Four families of primitives

Proto uses four families of operations (Fig. 7): pointwise

operations like ? that involve neither space nor time,

restriction operations that limit execution to a subspace,

feedback operations that establish state and evolve it in

continuous time, and neighborhood operations that com-

pute over neighbor state and space–time measures, then

summarize the values computed over neighborhoods with

set operations like integral or minimum.

3.2.1 Pointwise

Any purely functional operation on a normal computer can

be a pointwise operation on an amorphous medium: the

amorphous medium version simply applies the operation

uniformly to every point in the amorphous medium. For

example, constants like 4 and mathematical operators like ?

and sqrt are pointwise operations. Other examples include

constructing tuples with the tup operation and accessing

their elements, sensors and actuators, and mux—a condi-

tional ‘‘multiplexer’’ operator that uses a truth value to select

between the outputs of two branches running in parallel.

3.2.2 Restriction

Conditional code needs to be thought of differently when

programming an aggregate rather than a single device,

since in general different devices may need to take dif-

ferent branches. Proto supports this with the operation

restrict, which limits the domain of fields. This

functionality is made accessible to the programmer through

the syntactic operator if, which executes each branch in a

domain restricted by the Boolean test field. The out-

puts of the two branches are then combined back together

with a mux operator that selects input piecewise using the

same test value that split the branches. The result is con-

ditional code that obeys the same intuitions as an if on a

single device.

Fig. 6 A Proto program—here creating a channel between two

regions—specifies a dataflow graph of operations on fields. The

program is shown evaluated on an irregularly shaped space, with

scalar fields gray (lighter is less) and Boolean colored (true is red).

The inputs are Boolean source and destination regions and the output

is a channel created by dilating a minimal length path created between

these inputs. The path is computed using the triangle inequality to be

a Boolean region true where the sum of minimal distances at a given

point to the source and destination region, respectively, is equal to the

minimal distance between the source and destination regions

Fig. 7 Proto uses four families of operations: pointwise operations

that involve neither space nor time, restriction operations that limit

execution to a subspace, feedback operations that establish state and

evolve it in continuous time, and neighborhood operations that

compute over neighbor state and space–time measures, then summa-

rize the values computed over neighborhoods with set operations.

Feedback operations are composed of a feedback graph producing

outputs from inputs and previous outputs and a delay operator

producing previous outputs taking an initial value and current output

as inputs. The neighborhood operations are composed of a nbr
operator which produces fields of fields of its input (i.e., a field for

each neighbor) and a summary operator (e.g., any-hood) which

reduces that field of fields into a single output field
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3.2.3 State

In Proto, program state is handled using feedback loops

built around a delay operation for time-shifting values

and a dt operation that tracks the elapsed time since the

last update. The delay operation takes two fields, one

whose values are to be delayed and one with initial values.

The value of the field it produces depends on the domain of

the delayed field at the previous instantaneous evaluation:

any point in the domain at both the current and previous

evaluations receives the value of the delayed field at the

previous evaluation; all others receive the initial values.

Note that this implies that in the first instantaneous eval-

uation of a program, every point receives the initial values,

and also that this interacts with the domain restriction of

if to reset state in the branch not taken. Expressing state

using delay rather than mutation semantics is somewhat

more restricted, but makes both composition and the

compiler’s transformation from global to local simpler.

A programmer does not typically use delay directly,

but instead the feedback loop constructs letfed and rep.

The letfed construct is a syntactic operator with the

signature (letfed vars . body), where vars is a list

of feedback variable declarations (var init evolve).

The evolve expression calculates the current value of

var, using a delayed value (initialized with the corre-

sponding init) for any feedback variable in the expres-

sion. The syntactic form (rep var init evolve)

captures a common letfed pattern: it is equivalent to

(letfed ((var init evolve)) var).

Thus, for example, a timer can be implemented with:

ðrep t 0ðþ t ðdtÞÞÞ

which computes an elapsed time t that starts at zero and

rises by dt at each instantaneous evaluation. In a more

complicated example, a stoplight finite state machine can

be implemented with:

ðdef stoplight ðÞ
ðletfed ðððtup l tÞ
ðtup 0stop 30Þ
ðif ð[ t 0Þ ðtup l ð� t ðdtÞÞÞ
ðcase l
ðgo ðtup 0stopping ðþ 3 tÞÞÞ
ðstop ðtup 0go ðþ 27 tÞÞÞ
ðstopping ðtup 0stop ðþ 30 tÞÞÞÞÞÞÞ

ðgreen ð¼ l 0goÞÞ
ðred ð¼ l 0stopÞÞ
ðyellow ð¼ l 0stoppingÞÞÞÞ

The system state is a tuple of the current light and a timer,

which is translated into an actuation of lights in the body of

the letfed. As time advances, the timer counts down

toward zero. Once it hits zero, the state advances (changing

the light) and the timer resets. The only difference between

this and a more conventional finite state machine imple-

mentation is that the length of each step of the machine is

not assumed.

3.2.4 Neighborhood

Neighborhood operations express the flow of information

through a spatial computer. As such, the set of neighbor-

hood operations in a program completely specify the

communication that will take place between devices when

that program is run on a spatial computer: if an operation

uses a neighborhood value, then in the local version each

device proactively transmits that value to its neighbors (or

a null value when excluded from the domain by a

restrict operation).

Neighborhood operations follow a fixed pattern. First,

values are gathered from the neighborhood to produce a

field where the value of each point is a field mapping

neighbors to values. These are gathered using the nbr

operator (nbr v), which selects neighborhood values to

produce a field where the value at each point is a field

mapping neighbors to their values of v, and also with a set

of space–time measurements such as nbr-range and

nbr-lag, which collect local information about the

structure of the spatial computer. These operations imply

communication, and for simplicity are not allowed to be

nested.

Computations may then be performed on fields of

neighborhood values with polymorphic pointwise opera-

tions that have been ‘‘pushed down’’ to operate on the

elements of a neighborhood. For example, when ? is

applied to fields of neighborhood values, it produces a field

where the value of each point is a field that maps points in

its neighborhood to the sum of the values they mapped to in

the input fields.

Finally, the values of each neighborhood are summa-

rized back to a single value. These summaries are typically

set operations, such as min-hood, which produces a

field whose value at each point is the infimum of the

neighborhood values for that point in the input field, and

int-hood, where each point maps to the integral of the

neighborhood values.

Long-distance communication is then produced by

combining feedback and neighborhood operations, with the

neighborhood operation moving information a short dis-

tance and feedback chaining across neighborhoods. For

example, we can estimate the distance from every point to

the nearest source point by chaining the triangle inequality

over neighborhoods:
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ðdef distance � to ðsourceÞ
ðrep d ðinfÞ
ðmux source 0
ðmin � hoodðþ ðnbr dÞ ðnbr� rangeÞÞÞÞÞÞ

In this program (sometimes termed a gradient for historical

reasons), d is a feedback variable containing the estimated

distance to the source and source is a Boolean field

where source points map to true. The distance estimate is

set to zero at the source and elsewhere is computed with the

triangle inequality, using min-hood to minimize over the

sum of the distance from each neighbor to the source and

the distance to that neighbor.

With these four families of operators, the amorphous

medium abstraction provides a natural way to express

spatial programs. For example, distance-to is defined

over continuous spaces, in units of meters rather than hops,

and can thus be used directly to build up higher-level

geometric constructs such as bisectors and region dilation.

Furthermore, because these are defined on with respect to a

manifold, rather than a Euclidean subspace, a change in the

structure of the network automatically results in a matching

change in the geometric construct being produced. For

example, because the distance-to measures meters

through the space occupied by devices, changing the device

distribution may change which devices form a bisector in

that space, but the bisector will still be found correctly, no

matter how warped the space becomes.

3.3 From global to local

With this choice of appropriate space–time operators,

compilation and discrete approximation are straightfor-

ward. Our implementation of Proto accomplishes this with

a rendezvous at the amorphous medium abstraction: the

compiler transforms global programs for local execution on

an amorphous medium where each point contains a par-

ticular stack-based virtual machine, and a discrete kernel

approximates execution of these virtual machines on dis-

crete devices.

3.3.1 Compilation and execution

The design of the virtual machine was strongly shaped by a

major early challenge in the development of Proto: fitting

an executing implementation into the approximately two

kilobytes of RAM available on a Mica2 Mote. The virtual

machine is thus a simple stack machine that executes

scripts of 1-byte instructions, manipulating data tagged as

one of several types—scalars, tuples, functions, and dead

values. Execution happens in regular rounds, with one

invocation of the script per round.

The compiler translates Proto expressions into dataflow

graphs. As it transforms code to graph, the compiler infers

data types, then simplifies the graph by inlining, folding

constant sub-expressions, and removing empty structures.

The compiler then walks the graph, translating it into a

script that computes a single round of execution. In the

process, restrict instructions become branch code,

delay instructions have state storage allocated, and

neighborhood operators export values.

Besides normal operating system responsibilities, such

as interfacing with sensors and actuators and scheduling

regular execution of the script, the discrete kernel provides

two special functions: approximation of neighborhood

operations and distribution of programs. Neighborhood

operations are supported by a neighborhood communica-

tion module that broadcasts exported values halfway

between executions and maintains a best-effort table

(similar to that in [12] and others) containing a device’s

neighbors, information they have transmitted to be con-

sumed by nbr operations, and space–time measurements.

Meanwhile, receipt of packets proceeds in the background.

Neighborhood operations are then approximated by walk-

ing through the table, calculating from the information it

contains and combining it incrementally into an approxi-

mate summary value.

Distribution of programs is a service provided so that a

user can load a program into the whole computer by

touching only a single device. We implement this capa-

bility with a viral programming mechanism similar to those

in [29] and [25]. Compiled programs are versioned and

broken up into packets for transmission. Each device then

broadcasts script digests stating which script packets it has

and sends script packets when a neighbor needs a packet it

has. The compiled program also carries with it all of the

necessary information for allocating memory and starting

the computation running. This process is expensive in

communication and power consumption, but occurs

infrequently.

When a script is loaded onto a device, the link/load code

is executed to allocate memory, initialize the program, and

return a pointer to the start of the script; when a script is

unloaded, exit code releases the memory. Memory is

allocated into many different sections (See Fig. 8) with the

majority generally dedicated to the neighborhood. At pres-

ent, all of these are kept in RAM but the script sections

could be moved to slower storage. The size of each section

of memory is determined statically by the compiler,

meaning that the compiler can also determine whether a

given platform will be able to execute a particular program.

Within the neighborhood memory section, structures

encode neighbors’ ID, timeout, position, timestamp, and

data values. Because of memory considerations, a limited

number of neighbor structures are allowed. This number is
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fixed for each platform, so that the behavior of code is not

affected by the context in which it is called. Optimal

handling of excess neighbors is a topic for future research.

At present, neighbors are taken on a first come first serve

basis and discarded if they have not been heard from within

a timeout period.

The neighborhood mechanism also regulates power by

an exponential backoff in frequency of transmission when

data is not changing. The gradual backoff makes it less

likely that dropped packets will cause a neighbor to mis-

takenly drop a slowly transmitting device. Since broadcast

is a significant fraction of power consumption, this backoff

can save large amounts of power during periods of

stability.

3.3.2 Cross-platform portability

Portability between platforms comes primarily from the

approximation of continuous-space operations on the vir-

tual machine. The rest comes from a thin hardware

abstraction layer including a device interface provides

sensing, actuation, communication, and geometry. This

allows the same code to run on different platforms and

makes it easier to test code in simulation.

Sensors and actuators are implemented as instructions

that call a platform-specific handler for the device, with

default results provided for unavailable devices. The han-

dler for actuators must resolve conflicts for multiple actu-

ations during a single round; at present, we have only used

lowest-and-rightmost precedence, though any method is

acceptable as long as it is consistent across platforms.

The device interface also allows debugging support

through virtual sensors and actuators: at present, there is a

probe device that exposes values, a peek/poke interface

that manipulates sensor and geometry information, and an

interface for breakpoints and communication tracing.

Neighborhood support depends on communication and

geometry. Communication simply provides the local

broadcast interface needed for neighborhood support.

Geometric information, in the form of relative coordinates,

area, time lag, etc. is derived from whatever localization

hardware the platform provides. This can be as crude as an

estimate of approximate communication range or as

sophisticated as precise range-finding and global

coordinates.

At present, Proto’s discrete kernel has been implemented

in simulation and on four hardware platforms (Fig. 9):

3.3.2.1 Simulation The Proto simulator provides inter-

active development and rich visualization and debugging

support. This platform simulates swarm robots and modu-

lar robots using the Open Dynamics Engine2 (ODE)

implementing robots with 3D geometric extent, collision

detection, and motor dynamics or optionally a home-spun

particle physics engine with point robots, wall collision

detection, and motor dynamics. This platform has the most

resources: a general purpose CPU that time shares Proto

virtual machines on top of Linux, Mac OS X, or Windows.

The low-level machine module interfaces to the robot

simulator to drive the motors and sense the environment.

The blackboard system is implemented as call outs and call

backs on top of the simulator efficiently maintaining actual

neighborhood and geometric relationships. Neighborhoods

are defined using a communication radius and communi-

cation itself is defined to always succeed. The ODE sim-

ulator has proved to be a good approximation to real

robotic system and allows a large number of issues to be

worked out before deployment.

3.3.2.2 Mica2 Motes Proto runs on Mica2 Motes [20] on

top of TinyOS. The Mica2 has an 16 MHz 8-bit processor,

4 K of RAM, and 128 K of flash memory. The hardware

abstraction layer uses TinyOS’s radio communication stack

for transceiving data and script in 32-byte packets at

19.2 kbps, and its timer, sensor, and actuation modules for

implementing the rest of the hardware layer. In this

implementation, we assumed the presence of a global

positioning service and send global coordinates to neigh-

bors who then calculate relative coordinates.

3.3.2.3 Topobo Topobo [35] is a modular robotics plat-

form where devices are physically connected using passive

linkage components connected from one motor to a join

point on another device. This platform has the least

resources: a 16 MHz 8-bit processor, 2-K RAM, 32K of

flash memory, four 9,600-kbps wired connections to its

neighbors, and a user interface of a button and two LEDs

on each device. There is no native Topobo operating sys-

tem, so the Proto implementation includes low-level

modules to drive the motor, run the user interface, and
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Fig. 8 Memory is allocated

into many different sections,

with most going to the

neighborhood. The script

sections could be moved to

external storage to save memory

2 http://www.ode.org.
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communicate packets. Geometric information is available

only through connectivity.

3.3.2.4 SwarmBots Proto runs on McLurkin and iRobot’s

swarm robots [29] on top of their embedded threaded

operating system. Resources are plentiful: 40 MHz 32-bit

processor, 648 K of RAM, 3 MB of flash memory, and

125-Kbps infrared communication that also provides

ranging and direction information. The operating system

provides its own incompatible neighborhood system, which

we use as a blackboard system to simulate local broadcast.

3.3.2.5 iCreate Proto runs on an Atheros radio-on-a-chip

MIPS platform running OpenWRT3 Linux providing the

brains and networking for an iRobot iCreate robot [13].

Proto itself runs on top of the OpenWRT Linux operating

system using a single thread. Resources are relatively

plentiful: 180 MHz 32-bit MIPS processor, 32 MB of

RAM, 8MB of flash memory, and WIFI communication

that also provides crude ranging information. We imple-

ment the Proto blackboard system on top of low-level WIFI

using promiscuous broadcast mode which permits efficient

communication and neighborhood detection. The iCreate

differential wheel robotic platform is controlled and sensed

through a serial interface on the Atheros board at intervals

of 50 ms. The iCreate provides coarse odometry, bumpers,

and cliff sensors.

4 Building up complex swarm behaviors

With Proto’s four families of space–time primitives and

automatic global-to-local translation, all based on the

amorphous medium abstraction, it is straightforward to

build complex swarm behaviors. In this section, we illus-

trate how the synthesis of these principles in Proto enables

scalable and robust behavior, differentiation of swarm

behavior with respect to space and time, and the incre-

mental construction of complex swarm behaviors by

composing together simpler components. As we do so, we

shall build up a search-and-rescue demonstration in simu-

lation as a composition of 8 simpler programs, using a total

of 56 lines of Proto code.

4.1 Motion from vector fields

The basic idea of how Proto can be used to control robotic

swarms has already been hinted at in Sect. 2.2: we compute

a vector field over the amorphous medium approximated

by the current distribution of robots, then pass that vector

field to a new actuator, mov, which interprets its input as a

specification for desired mass flow in the amorphous

medium. This is approximated discretely simply by having

each robot attempt to move in the direction and speed

specified by the vector at its location.

For example, a random vector field may be created by

the Proto expression:

ðdef rand� vec

ðtup ðrnd � 1 1Þðrnd � 1 1Þ ðrnd � 1 1ÞÞÞ

where the rnd operators create fields of random scalar

values4 within the specified bounds, and the tup operator

combines them to produce a field of random vectors

(Fig. 10a). Thus far, this is only a field, and we have not yet

produced any motion. We can program a swarm of robots

to move according to this vector field by using mov as

follows:

ðmov ðrand� vecÞÞ

This produces random movement of robots not unlike

Brownian motion, though actual Brownian motion requires

somewhat more code to ensure isotropy and proper scaling.

Many existing algorithms for the control of swarms can

be translated into simple Proto programs. For example, we

can implement a flocking algorithm, adapted from [15] and

[14], as follows:

Fig. 9 Proto’s discrete kernel has been implemented on hardware for

sensor networks (a), modular robotics (b), and swarm robotics (c) and

(d). (Photo credit: b Hayes Raffle and Amanda Parkes and c James

McLurkin and Swaine Photography)

3 http://www.openwrt.org.

4 See [8] for more on the subtleties of random values on an

amorphous medium.
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In this program, nearby matter repels, distant matter

attracts, and matter at an intermediate range attempts to

align vectors, creating a vector field that tends to produce

an even distribution of mass moving all in the same

direction (Fig. 10b). This is mixed together with another

field, dir, that specifies preference about the direction of

motion, allowing a small percentage of informed individ-

uals to guide the whole flock, as per [15].

More complicated vector fields can be formed by

composing Proto programs together in the calculation, such

as motion toward a set of targets (Fig. 10c) or orbiting a

region at a fixed distance (Fig. 10d). We can also combine

different vector fields in various ways, such as differenti-

ating by region to specialize a group of robots into

searchers and teams of rescuers (Fig. 10e).

As a swarm computes desired mass flow in an amor-

phous medium, the robots move to approximate that flow,

reshaping the space. For example, Fig. 11 shows 500 point

robots moving under the guidance of flock. As noted in

Sect. 2.2, there are open questions about quality of

Fig. 10 Swarm robotic

programs in Proto calculate a

vector field over the space

occupied by the robots,

specifying what motion a robot

at any point should take. Shown

above are programs calculating

vector fields on a swarm of 500

robots for behaviors of random

motion (a), flocking (b),

clustering to a source (c),

orbiting around a source at a

fixed distance (d), and search

and rescue (e)

ðdef flock ðdirÞ
ðrep v
ðtup 0 0 0Þ
ðlet ððd ðnormalize
ðint� hood

ðif ðand ð[ ðnbr� rangeÞ 0Þð\ ðnbr� rangeÞ ð� ðcomm� rangeÞ0:333ÞÞÞ
ð� � 1ðnormalize ðnbr� vecÞÞÞ; repel nearby mass
ðif ð[ ðnbr � rangeÞ ð� ðradio � rangeÞ0:666ÞÞ
ð� 0:2 ðnormalize ðnbr� vecÞÞÞ ; attract distant mass

ðnormalize ðnbr vÞÞÞÞÞÞÞÞ ; between; align vectors

ðnormalize ðþ dir dÞÞÞÞÞ ; mix with preferred dir
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approximation and how best to model the relationship

between space and robots. In practice, however, we shall

see that adopting this vector-field approach to computing

swarm behavior makes it fairly straightforward to pre-

dictably produce robust and scalable complex swarm

behaviors by combining simpler behaviors.

4.2 Scalability and robustness

Using a continuous-space abstraction aids in the con-

struction of scalable and robust programs using an

appropriate choice of measurement units to separate the

specification of a program from its instantiation on a

particular set of devices. Programs written in Proto are,

abstractly, executing on an infinite number of devices, so

different numbers and arrangements of devices may

simply be viewed as different discrete approximations.

Thus, we may expect that program that respects the

abstraction and runs correctly on one hundred devices

should run just as easily on one thousand devices, one

million devices, or even greater numbers. This can, of

course, break down if the scaling of the swarm means that

devices are unable to maintain the amorphous medium

abstraction—for example, if the number of neighbors of a

device is so high that its communication facilities become

saturated.

Typically, a program is expressed in physical units such

as meters and seconds. There are also parameters whose

values are expressed in these units, but which vary

depending on the nature of the spatial computer on which

the program is being executed. For example, the flock

program expresses interaction with neighbors in terms of

fractions of the expected communication range.

A prime example of a program that takes advantage of

the geometric abstraction to achieve scalability and

robustness is a self-healing version of the distributed dis-

tance estimation algorithm from Sect. 3.2:

This program, implementing the CRF-Gradient algo-

rithm from [10], uses the triangle inequality to constrain

distance estimates downward to the minimum path from

each point to the nearest location in the source region and

relaxes that constraint based on the speed that information

propagates through the space when a distance estimate

needs to rise. For a thorough description, see [10].

Formulating the program in terms of these geometric

relationships provides robustness as well, allowing it to

self-stabilize (adjust from arbitrary values to correct val-

ues) in O(diameter/c) time, where diameter is the maxi-

mum physical distance between devices and c is the

maximum rate at which information propagates through the

network [11]. Figure 12 shows an example of self-healing

in a network of 1,000 simulated devices. Note that the

performance of the algorithm is independent of the number

of devices or their particular locations in space, and

depends only on the bulk geometric properties of the

aggregate.

Using the geometric primitives supplied by Proto tends

to produce scalable and robust behaviors even when the

relationship of the program to the continuous-space

abstraction is less clear, as in this program for dispersing

robots evenly through space via spring forces:

ðdef distance � to ðsourceÞ
ð1st
ðrep ðtup d vÞ ; d ¼ distance estimate; v ¼ value rising

ðtup ðinfÞ 0Þ ; initial value

ðmuxsource
ðtup 0 0Þ ; source is always distance zero

ðmux ðmax� hoodþ ; test whether to apply constraint

ð\ ¼ ðþ ðnbr dÞ ðnbr� rangeÞð� vðþ ðnbr� lagÞ ðdtÞÞÞÞ dÞÞ
ðtup ðmin� hoodþ ðþ ðnbr dÞ ðnbr� rangeÞÞÞ 0Þ ; apply triangle inequality

ðlet ððv0 ð=ðcomm� rangeÞ ð� ðdtÞ 12ÞÞÞÞ ; rise rate based on info speed

ðtup ðþ d ð� v0 ðdtÞÞÞ v0ÞÞÞÞÞÞÞ
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Fig. 12 A self-healing distance

estimate, implemented with the

CRF-Gradient algorithm,

reconfigures in response to a

change of source location

(orange a minimum of red
dots), running in simulation on a

network of 1,000 devices, 19

hops across. The network is

viewed at an angle, with the

value shown as the height of the

red dot above the device (blue).

The source location starts at the

upper left in the picture labeled

T = 0 and then is immediately

moved to the lower right in the

remaining pictures and time

steps. Reconfiguration spreads

quickly through areas where the

new value is lower than the old

(b), then slows in areas where

the new value is significantly

higher (c), completing 74

rounds after the source moves

Fig. 11 As a swarm computes

desired mass flow in an

amorphous medium, the robots

move to approximate that flow,

reshaping the space, as in these

snapshots from an evolving

flock program executing on a

swarm of 500 robots starting

from a random distribution

ðdef disperse ðÞ
ð� ð=1 ðint� hood 1ÞÞ ; normalize for neighborhood size

ðint� hoodð� ð� ðnbr� rangeÞð�0:9ðcomm� rangeÞÞÞ ; integrate distance from fixed� point:::

ðnormalize ðnbr� vecÞÞÞÞÞÞ ; ::: times direction to neighbor
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In this program, virtual springs connect a robot to its

neighbors, attempting to keep a separation of 90% of the

communication range. Using an integral to summarize the

spring forces, however, ensures that robots are subject to a

force scaled by the density of their packing (Fig. 13), and

normalizing by neighborhood size means that the scaling of

force due to neighborhood size is only due to the location

of the equilibrium point.

The choice of spring forces as a physical model to

emulate also allows this program to be robust and self-

repairing when robots are confined within a bounded

region. As shown in Fig. 14, even a large perturbation is

rapidly recovered from as the spring forces push robots

toward equilibrium.

Such geometric programs also often scale in the number

of spatial dimensions, meaning that the same program

should be usable for controlling swarms of both surface-

bound robots and also underwater, aerial, or space-faring

robots. The flock and disperse programs, for example,

are entirely based on vector mathematics, and execute in

three-dimensions as easily as in two, as shown on a swarm

of 500 robots in Fig. 15. Likewise, the triangle inequality

and velocity-based relaxation used in self-healing dis-

tance-to owe nothing to two dimensions and execute

equivalently in three dimensions. In principle, the pro-

grams should also execute appropriately in one dimen-

sional or more than three dimensional space, but two and

three dimensions are most relevant for robotic swarms.

4.3 Composition

We have shown how a continuous-space abstraction

facilitates the construction of robust and scalable behav-

iors. We now show how functional composition allows

succinct and modular combination of such basic behaviors

together to create larger swarm applications, and that these

Fig. 14 In a swarm of 500

robots running disperse in a

bounded space (a), even a large

perturbation (b) such as a

motion of a cluster of 30 robots

(circled devices) is rapidly

recovered from by the

algorithm’s continual

adjustment (c, d, e) toward

equilibrium (f)

Fig. 13 The disperse
algorithm distributes robots

evenly through space by

integrating spring forces over

their neighborhoods. Note that

force expressed with an integral

automatically scales with the

density of packing, so that the

magnitude of the vectors

changes little across an order of

magnitude of different numbers

of robots
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behaviors can inherit the robustness and scalability prop-

erties of the behaviors they are built out of.

4.3.1 Functional composition

Because Proto uses functional composition and captures all

state in feedback operations, once a useful spatial construct

like self-healing distance-to has been created, we may

think of it as though it were a primitive operation and use

many instances without fear of interference between them.

For example, we can use the distance-to function

to create higher-level spatial constructs, such as a dilation

operator:

ðdef dilate ðsource radÞ
ð\ ðdistance� to sourceÞ radÞÞ

that selects every point within distance rad of the source

region. Unsurprisingly, the scalability of distance-to

carries through the compositions: Figure 16 shows swarms

of different density executing the same program, (green

(dilate (is-light) 0.5)), to turn on a green light

at every robot within 0.5 m of an active light sensor.

The distance-to function can also be used to

broadcast values from a source region to the rest of the

environment:

ðdef broadcast ðsource sentÞ
ðrep received sent
ðmux source sent
ð2nd ðmin� hood ðnbr ðtup
ðdistance� to sourceÞ receivedÞÞÞÞÞÞÞ

Here, the distance-to function creates an implicit

spanning tree: tuples are compared lexicographically, so

minimizing over a tuple of distance and received value

has the effect of selecting the neighboring value closest to

the source. Thus, new copies of the sent value move

outwards along this implicit spanning tree away from the

source. Because the distance-to function is self-

healing, the broadcast function is as well—as the network

changes, the distance estimates shift, and the path taken by

information adapts as well.

Let us illustrate this with yet another function based on

distance-to, which calculates the minimum distance

between two regions and broadcasts it to every robot in the

network:

ðdef distance ðregion1 region2Þ
ðbroadcast region2 ðdistance� to region1ÞÞÞ

This uses one instance of distance-to to measure the

distance between regions, and another instance to propa-

gate that information throughout the network. As seen in

Fig. 17, basing this function on self-healing primitives

causes it to automatically detect a change in the distance

between the designated regions and propagate the new

information throughout the network of robots.

Fig. 15 Since the flock and

disperse programs are

expressed in terms of vector

mathematics, they execute in

three dimensions as easily as in

two

Fig. 16 Scalability carries through composition: the dilate oper-

ator behaves equivalently in swarms of 100 and 1,000 robots in this

example, turning on a green light on every robot within 0.5 m of an

active light sensor (orange disk)
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We can transform such scalar field calculations into

vectors to direct the motion of robots by computing a

potential function and calculating its gradient to find the

direction and magnitude of steepest descent:

ðdefgradðvÞ
ð�ð=1ðint�hood1ÞÞ; normalizeoverneighborhood
ðint�hoodðifð¼ ðnbr�rangeÞ0Þ
ðtup000Þ; ignoresingularity
ð�ð=ð�vðnbrvÞÞðnbr�rangeÞÞ
ðnormalizeðnbr�vecÞÞÞÞÞÞÞ

Since an analytic description of the input field v is not

generally available, this grad function estimates the gra-

dient empirically from the change in values within its

neighborhood.

When robots are instructed to follow such a gradient, they

move toward regions of minimum potential. For example,

they can be instructed to cluster toward a set of sources:

ðdef cluster � to ðsourceÞ
ðgrad ðdistance� to sourceÞÞÞ

as shown in Fig. 10c. A more complex use is following a

contour line of equal value, which can done by summing

vectors toward and tangential to the desired contour line:

ðdef contour � field ðfield levelÞ
ðlet � ððvec ðgrad fieldÞÞÞ
ðþ ð� c ð� level fieldÞ vecÞ
ðrotate pi=2 vecÞÞÞÞ

where c is a feedback constant less than one. This creates a

field with a stable limit cycle along the desired contour, as

shown in Fig. 10d.

4.3.2 Heterogeneous behavior

Thus far, we have mostly seen only examples where the

entire swarm of robots are all always performing the same

behavior. In most applications, however, we would like the

swarm to be able to differentiate its behavior in space and

time. We have already seen an example of temporal dif-

ferentiation of behavior in the stoplight finite state

machine in Sect. 3.2. We will now see how domain

restriction allows spatial differentiation of behavior and

how this can be combined with temporal differentiation to

assign groups of robots to tasks that change over time.

For example, let us consider a more sophisticated ver-

sion of the cluster-to function discussed in the

Fig. 17 Self-healing can carry through composition: here, a program

based on two instances of self-healing distance-to computes the

distance between two regions (orange and purple) to be 156.79 m (a).

When one device moves, changing the connectivity of the network

and becoming much closer, the self-healing of distance-to
quickly causes the distance estimate to adjust to the new value,

65.78 m, which begins propagating through the network (b),

converging again after 24 rounds (c)
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previous section, in which robots assume one of two roles:

movers and guides. The guides remain stationary, com-

puting directions for how to get to the source, and the

movers follow their directions and actually move toward

the source. First, we use if to restrict a distance-to

calculation to run only on a subset of the robots, but share

the fruit of the distance calculation with any nearby non-

calculating robots:

ðdefshare�distance�toðis�calculatingsourceÞ
ðletððbaseðifis�calculating
ðdistance�tosourceÞðinfÞÞÞÞ
ðmuxis�calculatingbase
ðmin�hoodðþðnbr�rangeÞðnbrbaseÞÞÞÞÞÞ

We can then build our desired function, which we call

nav-grad, to navigate down a share-distance-to

potential field as follows:

ðdef nav� grad ðis� mover sourceÞ
ðlet ððg ðgrad ðshare� distance� to

ðnot is� moverÞ sourceÞÞÞÞ
ðmux ðand is� mover ð[ ðlen gÞ 0ÞÞ
ðnormalize gÞðtup 0 0ÞÞÞÞ

where the guides calculate the distance-to scalar field

upon which the gradient is based and the movers follow the

gradient, as shown in Fig. 18a.

Since the components are modular and self-healing, it

is relatively easy to improve this behavior. For example,

we can have each subset of the swarm work together

better as a team, changing the guides to be scouts, which

use disperse to actively explore the space, and

making the movers group together as a flock by inter-

preting the output of nav-grad as the preferred

direction for flocking, rather than a direct motion

command:

ðdef flock� nav� grad ðis� mover sourceÞ
ðmux is� mover

ðflock ð� 0:5 ðnav� grad is� mover sourceÞÞÞ
ð� 0:1 ðif is� mover ðtup 0 0Þ ðdisperseÞÞÞÞÞ

Since the scouts are moving, the gradient values are no

longer fixed, but as long as the motion is relatively slow

compared to the rate of self-healing, the program will

perform as desired (Fig. 18b).

Spatial and temporal differentiation combine cleanly,

allowing complex swarm behavior to be specified simply.

For example, with the addition of a small utility to detect

transitions from true to false in a Boolean field:

ðdef falling � edge ðvÞ
ðmuxand ðnot vÞðdelay vÞÞÞ

we can combine the nav-grad, broadcast,

disperse and flock behaviors to produce a simple

search and rescue program:

ðdef search � and� rescue ðrescuer victim baseÞ
ðlet � ððrescued ðfalling� edge victimÞÞÞ
ðmux rescuers
ðletfed ððsearching #t
ðif ðany� hood

ðif searching
ðnbr rescuedÞ
ðand ð\ðnbr� rangeÞ 3Þðnbr baseÞÞÞÞ
ðnot searchingÞ
searchingÞÞÞ

ðflock ðnav� grad rescuers

ðif ðbroadcast rescuers searchingÞ
victim baseÞÞÞÞ

ð� 0:1ðif rescuers ðtup 0 0 0Þ ðdisperseÞÞÞÞÞÞ

Fig. 18 Restriction enables

heterogeneous behavior in a

group of robots, such as

‘‘movers’’ (orange) following

directions, individually (a) or as

a flock (b), to a desired

destination (purple) as

calculated by ‘‘guides’’ (red)
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The rescuer parameter is a Boolean field dividing robots

into scouts, which disperse through the space to find vic-

tims (whose detection by some sensor suite is indicated by

the victim Boolean field), and rescuers, which move as a

flock guided by the scout robots to collect victims and

return them near to a base location. Note that it is out of

our scope to address how exactly a particular robotic

platform might collect victims or transport them to the

base: given our interests are in coordination of heteroge-

neous behaviors, we merely assume it is sufficient to get a

coherent group of rescuers close by the victim or the base,

respectively.

Six different interacting behaviors for robots are man-

aged in the search-and-rescue program, involving

composite behavior and heterogeneity in both space and

time. Rescuers maintain cohesion as a flock at the same

time as they are switching between searching for victims to

collect (cued by the scouts) and returning collected victims

to the base. Scouts maintain an even dispersal through

space while switching between guiding the rescuers to

victims and guiding the rescuers to the base.

Moreover, because the program is a composition of self-

healing and scalable components that do not interfere with

one another, the composite is itself self-healing and scal-

able. Figure 19 shows search-and-rescue running

on 100, 300, and 1,000 simulated robots, and Fig. 20 shows

an example of self-healing as the program adjusts to a

simultaneous appearance of new victims, displacement of

scouts, and addition of new rescuers.

All of this complicated heterogeneous scalable and self-

healing behavior is expressed in only 56 total lines of Proto

code, counting all of the subprograms that are composed to

produce search-and-rescue. We argue that the

simplicity of this program and the modularity of its com-

ponents, most of which we have shown being used in other

examples as well, are evidence that the continuous-space

Fig. 19 A composite program

for complex, heterogeneous

behavior like search-and-
rescue can inherit scalability

from its components, as shown

by these equivalent executions

on 100, 300, and 1,000

simulated robots, where

rescuers (orange) flock to

collect victims (green) and

return them to a base (pink)

Fig. 20 A composite program

for complex, heterogeneous

behavior like search-and-
rescue can inherit self-

healing from its components, as

shown in this execution on 500

simulated robots, where

rescuers (orange) flock to

collect victims (green) and

return them to a base (pink).

From an initial stable behavior

(a), new victims and rescuers

appear and a group of scouts is

displaced (b). Within a few

seconds the robots begin to

adapt (c), quickly converging to

handle the new victims (d, e),

and eventually showing no

evidence of the perturbation (f)
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approach embodied in Proto is a powerful approach to

programming robotic swarm behavior.

5 Verification on SwarmBots

We verified the applicability of Proto to multi-robot sys-

tems by executing three programs with easily quantifiable

performance on a group of 40 iRobot SwarmBots. In every

case, the quality of the approximation remains within

reasonable bounds given the nature of the swarm. We may

thus expect that composition of such primitives into com-

plex Proto programs, as in Sect. 4, can produce predictable

results for mobile devices just as it does for stationary

devices [5].

The iRobot SwarmBot (Fig. 21) is a platform designed

for distributed algorithm development [29]. Each Swarm-

Bot is autonomous and has a 40 MHz 32-bit ARM Thumb

microprocessor, which provides ample processing power

for our algorithms. Robots periodically transmit to nearby

neighbors within line of sight using an infrared commu-

nication system—for our experiments we set the power to

produce a range of about 1.0 m. The infrared communi-

cation also allows each robot to determine the position and

orientation of its neighbors within its own relative coor-

dinate system, providing data for the nbr-range, nbr-

angle, and nbr-vec functions: at a range of 500 mm

between robots, this system has an accuracy of 2 degrees

angle and 20 mm range under low-interference conditions.

In addition, the robots use an omnidirectional bump skirt to

avoid contact with obstacles.

We used a group of 40 SwarmBots distributed amor-

phously within a 2.43 m 9 2.43 m (80 9 80) square pen.

Position data was collected from the robots using a ceiling-

mounted vision tracking system that recorded the positions

of each robot at 1Hz and a calibrated accuracy of

approximately 15mm, and radio telemetry was used to

record each robot’s internal state. Due to limitations of the

telemetry system, we limit the maximum speed of the

robots to 80 mm/s.

We begin by estimating distance on unmoving robots, to

confirm that the implementation of Proto on SwarmBots is

operating correctly:

ðdistance� to ðelect� leader ðidÞÞÞ

where elect-leader is a simple program of dubious

scalability and no self-healing:

ðdef elect� leader ðidÞ
ð¼ ðrep minid id ðmin� hood ðnbr minidÞÞÞ
idÞÞ

that gossips to find the minimum of the unique identifiers

assigned to each robot, thereby selecting one robot to

designate as leader (note that scalable and robust distrib-

uted leader election requires a much more sophisticated

algorithm, of which there are many in the literature; here,

we are just symmetry-breaking for the purpose of experi-

ments). This leader is then used as the source for dis-

tance-to. Figure 22 shows the resulting estimates of

distance to the nearest source, plotted against true straight-

line distance. As expected, a single leader is elected—as

demonstrated by the single robot with a distance estimate

of zero—and all other robots estimate distances close to

their true distance. Across the four hops from the leader to

the furthest robots, these gradually become overestimates,

which [23] and [5] predict should occur as accumulated

error from the difference between straight-line and com-

munication-graph distance begins to dominate over error

from imprecise sensing.

We next verify that a running Proto program can use

self-healing to adapt to mobility of a robot, running

ðdilate ðelect � leader ðidÞÞ 0:8Þ

and using radio control to drive the robot elected as leader

in an arbitrary path through the swarm (Fig. 23a). The

dilate function compares a distance estimate from

Fig. 21 Experiments were carried out on a group of 40 iRobot

SwarmBots, a platform designed for distributed algorithm develop-

ment. Each SwarmBot is autonomous and is equipped with bump

sensors, light sensors, and an infrared inter-robot communication and

localization system

Network Path Distance vs. Euclidean
Distance

0

1

2

3

0 1 2 3

euclidean distance (m)

n
et

w
o

rk
 p

at
h

 d
is

ta
n

ce
 (

m
)

Fig. 22 The distance estimates produced by distance-to
executing on real robots closely approximate true distances
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distance-to to its threshold distance to select the set of

points within k meters of the source—in this case 0.8 m

(Fig. 23b). We measured the positions of the robots and

their current decision of whether they were in the dilated

region, then grouped the measurements into 0.1-m bands of

true distance to the leader and calculated the likelihood that

a robot held the correct estimate at any given point in time

as a function of distance from the source (Fig. 23c).

Despite the constant motion of the source, the likelihood of

a robot correctly deciding whether it is within the dilated

region is high, although there is, unsurprisingly, significant

error near the transition point.

Finally, we verify that Proto computations can be used

to guide robots by computing a vector field for the robot to

follow:

ðmov ðmux ðelect� leader ð� ðidÞÞÞ
ðcluster � to ðelect � leader ðidÞÞÞ
ðtup 0 0ÞÞÞ

This program selects two distinct leaders, the robots with

minimum and maximum unique identifiers, and drives the

maximum robot toward the minimum robot by computing a

gradient on the estimates of distance from the minimum

robot. The maximum robot is then commanded to follow

that vector field while all other robots remain stationary. In

twenty trials of this program, the maximum robot navigated

successfully to the minimum robot every time, although

error and the discrete approximation cause paths to wander

somewhat, as shown by a plot of five sample paths in

Fig. 24a. The overall efficiency of the navigation is rea-

sonable and consistent, as shown by the plot of ratio of

actual to shortest path distance against shortest path dis-

tance, shown for the sample paths in Fig. 24b.

Although these three experiments are simple and do not

exercise the full mobility of the swarm, they verify that

Proto programs can be accurately approximated on robots

as well as on static devices, and give us reason to believe

that the much more complex programs described and
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Fig. 23 When the leader (robot

with white light in b) is moved

arbitrarily through the swarm

(a), a region selected by the

dilate function (robots with

blue lights in b) adjusts to

follow it. Despite the constant

motion of the source, the

likelihood of a robot correctly

deciding whether it is within the

dilated region is high (c)
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simulated in Sect. 4 should be able to execute predictably

on real robots.

6 Contributions and challenges

We have shown that the Proto language can be used to

construct robust, scalable behaviors for robotic swarms.

This is enabled by viewing the robotic swarm as a spatial

computer, using a generalization of the amorphous medium

abstraction to mobile devices. When properly designed,

swarm behaviors written in Proto may be simply composed

to produce complex behaviors that inherit robustness and

scalability from their components. We have further verified

the applicability of Proto to multi-robot systems by exe-

cuting some of the behaviors we have developed on a

group of 40 iRobot SwarmBots and showing that the

quality of the approximation remains within reasonable

bounds.

At a pragmatic level, we expect that Proto will continue

to become more useful as a robotic programming platform

as more robotic applications are developed in it and as the

library of available components is extended. Translating

existing approaches into Proto challenges the language,

ensuring that it is sufficiently general, as well as the sca-

lability and robustness of the approaches, since it has been

our experience that transformation into a continuous-space

formulation often exposes hidden assumptions and scala-

bility problems.

Many open questions remain, however, both in the

fundamentals of Proto and its application to mobile devi-

ces. One critical question is how best to characterize the

duality between network and space and, in the domain of

robotics, to relate the specification of mass flow in the

continuous abstraction to its approximation by robotic

motion. We have also treated only the case of robots in the

gaseous state—while we expect that Proto will also be

applicable to tightly packed robots and modular robots, this

has not yet been demonstrated and the details of the

application are likely to differ.

Another important challenge is how to handle swarms

that split into sub-swarms. While the basic continuous-

space approach is straightforward (a split swarm maps to a

disconnected manifold), it is subject to the same difficulties

that other swarm algorithms face. McLurkin’s thesis [29]

provides much information on this problem. One way to

address this is to employ a cohesion mechanism to keep

swarms together using any information available such as

GPS and landmarks. Another approach is to use search

mechanisms to have sub-swarms find and rejoin their

swarms. While there are many approaches, the continuous-

space approach does not dictate a particular one, but should

be able to support a generalized version of any discrete

algorithm.

We also do not address sensor noise in this paper, but

note that its effects can be mitigated either within the

virtual machine, by combining sensor information from

neighboring robots, or in the continuous-space abstraction

by bounding the impact of discretization error, as shown

for the case of geometric computations based on distance

measurements in [5]. Although this result is a promising

beginning, the three-way relation between sensor error,

discretization error, and program behavior still needs to be

extended to cover more general geometry-based programs.

Heterogeneity of robots in a swarm can be addressed in

a straightforward manner as long as the robots adhere to the

virtual sensor/actuator abstraction layer. For example, a

continuous-space program does not care what sensors a

robot uses to discover its relative position. The availability

of a particular sensor or actuator can also be indicated as a

Boolean-valued virtual sensor or actuator, and a program

can case its execution based on which resources are

available where.

Finally, although we hope to have made the advantages

of a continuous-space approach clear in this paper, the

advantage of Proto over other swarm programming
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Fig. 24 Computing a gradient

on the distance to a source robot

allows a mobile robot to

navigate efficiently toward the

source. Although error and the

discrete approximation cause

paths to wander somewhat, as

seen in the five paths shown in

a, the overall efficiency of the

navigation is reasonable and

consistent, as shown by the plot

of ratio of actual to shortest path

distance against shortest path

distance in b
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approaches has not been measured through quantitative

user studies. One result suggestive of the large advantage

that we expect such studies would discover is presented in

[3], where we showed an implementation of Eames’s

algorithm for distributed discovery of minimum threat

paths [16] in 25 lines of Proto code, while Eames’s

implementation in nesC [18] code was approximately 2000

lines long.

Although these challenges are significant, they are lar-

gely ones that any approach to programming swarm

behaviors must face. Taking a spatial computing approach

to swarm robotic systems allows us to tackle each rela-

tively independently, however, and we believe that the

factoring of the problem provided by Proto is a route

toward rapid advancement of swarm robotic capabilities.
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