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ABSTRACT
We introduce Simultaneous Localization and Tracking, called
SLAT, the problem of tracking a target in a sensor network
while simultaneously localizing and calibrating the nodes of
the network. Our proposed solution, LaSLAT, is a Bayesian
filter that provides on-line probabilistic estimates of sensor
locations and target tracks. It does not require globally
accessible beacon signals or accurate ranging between the
nodes. Real hardware experiments are presented for 2D
and 3D, indoor and outdoor, and ultrasound and audible
ranging-hardware-based deployments. Results demonstrate
rapid convergence and high positioning accuracy.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed
Systems—Distributed applications; G.3 [Probability and
Statistics]: Statistical computing

General Terms
Algorithms

Keywords
Localization, calibration, tracking, wireless sensor networks,
statistical machine learning, position estimation

1. INTRODUCTION
Many sensor network applications require that the sensor

nodes be calibrated and localized. Automatic localization of
nodes is challenging due to the impracticality of precise node
placement, the unavailability of GPS (e.g. due to geography
or cost), and the fact that range information between nodes
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is often unreliable. Furthermore, spatially varying environ-
mental factors require that some of the sensor parameters be
calibrated in the field. Previous work [1–3] has shown that
the information provided by mutual sightings of a target (or
mobile) is sufficient to localize the nodes; this is an attrac-
tive solution for tracking applications, since it requires no
additional hardware on the nodes other than that required
for the actual tracking task. However, the methods used so
far require that the position of the mobile be known at all
times.

In this paper, we show how to track the position of an un-
constrained target while localizing and calibrating the sensor
nodes. We call this problem Simultaneous Localization and
Tracking (SLAT) and note that it is related to the Simulta-
neous Localization and Mapping problem in robotics. Like
the more recent work in this area [4–9] we employ a Bayesian
filter that uses range measurements to the target to update a
joint probability distribution over the positions of the nodes,
the trajectory of the target, and the calibration parameters
of the network. The Bayesian filtering framework is a non-
linear, non-Gaussian generalization of the Kalman Filter.
To avoid some of the representational and computational
complexity of general Bayesian filtering, we use Laplace’s
method to approximate this distribution with a Gaussian
after incorporating each batch of measurements. Accord-
ingly, we call our algorithm LaSLAT.

LaSLAT has several desirable features, many of which are
a direct consequence of using a Bayesian filtering framework.
Measurement noise is automatically averaged out as more
measurements become available, improving localization and
tracking accuracy in the high-traffic areas – precisely the ar-
eas of interest for a tracking application. The filtering frame-
work incorporates measurements in small batches, providing
online estimates of all locations, calibration parameters, and
their uncertainties. This speeds up the convergence of the
algorithm and reduces the communication impact on the
network. Targets may move arbitrarily through the envi-
ronment, with no constraint on their trajectory or velocity,
and multiple targets may be simultaneously tracked. An-
cillary localization information such as position estimates
from GPS, beacons, or radio-based ranging is easily incor-
porated into this framework. Our algorithm is fast and per-
mits a distributed implementation because it operates on



sparse inverse covariance matrices rather than dense covari-
ance matrices. When the user does not specify a coordinate
system, LaSLAT recovers locations in a coordinate system
that is correct up to a translation, rotation, and possible
reflection.

We demonstrate these features through a series of in-
door/outdoor and 2D/3D experiments using two different
ranging techniques. Using ultrasound ranging we are able
to accurately localize a dense network of 27 nodes to within
two centimeters, with the bulk of the error being removed
within only a minute of tracking. The nodes are wireless
Crickets [10] capable of measuring their distance to a moving
beacon using a combination of ultrasound and radio pulses.
In a larger and sparser network using inexpensive audible
ranging, we localize nodes to within eight centimeters. In
both cases, a measurement bias parameter is accurately cal-
ibrated for all nodes. We also present results from an exper-
iment in three dimensional localization and tracking. Our
algorithm accurately localizes a network of 40 crickets by ob-
serving a mobile for about 80 seconds. This mobile moves
in an unconstrained 3d path that includes changes in speed,
loops, and twists. Finally, we demonstrate LaSLAT in a
27 m x 32 m outdoor deployment of 40 motes with 4.6 m
spacing using inexpensive audible ranging. Despite crude
40 cm ranging resolution and only one measurement event
every 3 seconds, we are able to achieve 47 cm average error
in only 2 minutes.

2. RELATED WORK
The most common sensor network localization algorithms

rely on range or connectivity measurements between pairs of
nodes [11–16]. When such measurements are available, these
methods can supplement LaSLAT by providing a prior or an
initial estimate for the location of the sensors (Section 3.3).

Various authors have used mobiles to localize sensor net-
works [1–3, 17], but these methods assume the location of
the mobile is known. One exception is [2], which builds
a constraint structure as measurements become available.
Compared to [2], we employ an extensible statistical model
that allows more realistic measurement models. Our method
is most similar to [17], which used an Extended Kalman Fil-
ter (EKF) to track an underwater vehicle while localizing
sonar beacons capable of measuring their range to the ve-
hicle. We replace the EKF’s linearized measurement model
with one based on Laplace’s method. This provides faster
convergence and greater estimation accuracy. We also cali-
brate various parameters of the sensor nodes, and show that
the computation can distribute over the sensor nodes in a
straightforward way.

Our solution to SLAT adopts various important refine-
ments to the original Extended Kalman Filter (EKF) for-
mulation of SLAM [9]. LaSLAT processes measurements
in small batches and discards variables that are no longer
needed, as demonstrated by McLauchlan [18]. Following [6],
LaSLAT operates on inverse covariances of Gaussians rather
than on covariances to speed up updates and facilitate dis-
tributed computation.

3. LASLAT
As a mobile moves through the network, it periodically

emits events which allow some of the sensors to measure
their distances to the mobile. LaSLAT updates a distribu-

tion over the mobiles’ position, the sensor locations, and
other sensor parameters. The resulting posterior distribu-
tion is then propagated forward in time using a dynamics
model to make it a suitable prior for incorporating the next
batch of measurements. When incorporating each batch of
measurements, the posterior distribution is approximated
with a Gaussian using Laplace’s method [19]. Because the
Gaussian is a parametric distribution, the storage required
to represent it at each time step is bounded, regardless of
the amount of observed data. The Gaussian approxima-
tion also simplifies propagation with the dynamics model
and the incorporation of the next batch of measurements.
To speed up convergence and reduce communication over-
head, we process measurements in batches that span several
events.

Let et = {et
1, e

t
2, . . .} denote the collection of mobile po-

sitions in the th batch, where et
j denotes the location of the

mobile generating the jth event in the batch.
Let s = {si} denote the set of unknown sensor parameters,

where for each sensor i, si =
ˆ
sx

i sθ
i

˜
consists of the sensor’s

position sx
i , and sθ

i denotes its other calibration parameters.
For each batch, et and s are the unknowns that must be

estimated. We aggregate these into a single variable xt =ˆ
et s

˜
for notational simplicity.

Let yt = {yt
ij} denote the collection of all range mea-

surements in batch t, with the scalar yt
ij denoting the range

measurement between sensor i and the jth event in batch t,
After the measurements yt in a batch have been acquired,

the goal of the algorithm is to compute a distribution over
xt given all measurements so far:

p(xt|y1, . . . ,yt). (1)

LaSLAT provides an efficient way to recursively update
this distribution as each measurement batch yt becomes
available. Because LaSLAT represents this distribution ap-
proximately with a parametric Gaussian distribution, the
measurements yt may be discarded after updating the dis-
tribution.

To do this, we take advantage of the independence as-
sumptions made in other Bayesian filters. The posterior
distribution can be rewritten in terms of a measurement
model and the posterior obtained from incorporating the
last batch of measurements:

p(xt|y1, · · · ,yt) ∝ p(xt,yt|y1, · · · ,yt−1) (2)

= p(yt|xt,y1, · · · ,yt−1)p(xt|y1, · · · ,yt−1)

= p(yt|xt)p(xt|y1, · · · ,yt−1). (3)

The proportionality follows because p(x|y) ∝ p(x, y) as a
function of x. The first equality follows because p(x, y) =
p(y|x)p(x). The final equality follows because the new batch
of measurements depends only on sensor and target param-
eters, and not on old measurements.

The distribution p(yt|xt) is a measurement model: given
a particular configuration of sensors and event locations, it
provides a distribution over the measurements that might
be observed (Section 3.1).

The distribution p(xt|y1, · · · ,yt−1) summarizes all infor-
mation collected about xt prior to the current batch of mea-
surements, and can be computed from p(xt−1|y1, · · · ,yt−1),
the posterior obtained from incorporating the last batch of
measurements (Section 3.2).

In most cases, p(xt|y1, · · · ,yt−1) is not a conjugate prior



1. Observe a new batch of measurements yt.

2. Using Newton-Raphson (Section 3.1), compute the
curvature at the mode of p(yt|xt)p(xt|y1, · · · ,yt−1)
and use it to construct the approximate posterior
q(xt|y1, · · · ,yt).

3. Compute the prediction p(xt+1|y1, · · · ,yt) from
q(xt|yt, · · · ,yt) (Section 3.2).

4. Using this prediction as the new prior, return to step
1 to process batch t + 1.

Table 1: One iteration of LaSLAT incorporates
batch t and prepares to incorporate batch t + 1.

[19] for p(yt|xt), and (3) becomes difficult to compute. We
cope with this by computing a Gaussian approximation
q(xt|y1, · · · ,yt) to p(xt|y1, · · · ,yt) using Laplace’s method
(Section 3.1). Table 1 summarizes the steps of LaSLAT.

Other approximate Bayesian filters such as the Extended
Kalman Filter (EKF) and particle filters could also be used
in place of our Laplacian method. The EKF linearizes the
measurement model, forcing it, and the posterior to be linear-
Gaussian conjugate pairs. This linearization amounts to
performing only one step of the nonlinear optimization pro-
cedure that underlies the Laplace approximation. We show
in section 4 that this simplification can diminish accuracy
and the convergence rate of the overall algorithm. Non-
parametric methods such as particle filters represent distri-
butions as weighted instances of the state vector x. Updat-
ing these samples requires evaluating the likelihood model
for each sample. Since many samples are typically needed to
represent high-dimensional distributions, these evaluations
can be computationally prohibitive.

3.1 Incorporating Measurements with the Mea-
surement Model

The distribution p(yt|xt) probabilistically models the pro-
cess that generates a batch of measurements given a setting
of the sensor parameters and mobile positions. In this paper,
we assume that each measurement is a corrupted version of
the true distance between the mobile and the sensor report-
ing the measurement:

yt
ij = ‖sx

i − et
j‖ + sθ

i + ωt
ij . (4)

Here, ‖·‖ is the Euclidean norm, so the first term is the true
distance between the mobile and the sensor. The scalar sθ

i is
a bias parameter to be estimated. It models an unknown off-
set due to process variations in the ranging hardware of each
sensor. The scalar random variable ωt

ij is zero-mean with

known variance σ2, and models nondeterministic noise in the
measurement hardware, and other factors not accounted for
in this model.

Equation (4) defines p(yt
ij |si, e

t
j) as a univariate Gaussian

with mean ‖sx
i − et

j‖ + sθ
i and variance σ2. More sophisti-

cated measurement models may also be used. For example,
using a heavy-tailed distribution such as the student-t in
place of the Gaussian would provide automatic attenuation
of outlying measurements (such as those caused by echoes).
Other calibration parameters could also be included in the
measurement model.

Since each measurement yt
ij depends only on the sensor

that took the measurement, and the location et
j of the mo-

bile that generated the event, the measurement model for a
batch is:

p(yt|xt) =
Y
i,j

p(yt
ij |si, e

t
j), (5)

where the product is over the sensors and the events that
they perceived in batch t.

To fit an approximate Gaussian distribution q(x) to a dis-
tribution p(x), Laplace’s method first finds the mode x∗ of
p(x), then computes the curvature of the negative log pos-
terior at x∗.

Ω = − ∂2

∂x2
log p(x)

˛̨̨
x=x∗

. (6)

The mean and inverse covariance of q(x) are then set to x∗

and Ω respectively. Notice that when p is Gaussian, the re-
sulting approximation q is exactly p. For other distributions,
the Gaussian q locally matches the curvature of p about its
mode.

We use Newton-Raphson to find the mode xt∗, and the
curvature (see the Appendix):

xt∗ = arg max
xt

p(xt|y1, · · · ,yt) (7)

= arg min
xt

− log p(yt|xt)p(xt|y1, · · · ,yt−1) (8)

= arg min
s,et

1

2
(s− µ0)

T Ω0(s− µ0)

+
1

2σ2

X
i,j

(‖sx
i − et

j‖ + sθ
i − yt

ij)
2, (9)

where µ0 and Ω0 are the means and inverse covariance of
p(xt|y1, · · · ,yt−1), respectively.

Following Laplace’s method, the mean µ of q(xt|yt, · · · ,yt)
is set to xt∗ and its inverse covariance Ω is set to the Hessian
at this mode. Representing q using its inverse covariance
allows us to avoid computing the inverse of the Hessian af-
ter adding each measurement, which significantly simplifies
computation and facilitates a distributed implementation of
our algorithm.

3.2 Dynamics Model
In this paper, we assume mobiles can move arbitrarily

and that sensors do not move over time. To propagate the
posterior q(xt|y1, · · · ,yt) forward in time, we replace the
estimate of the target’s trajectory in batch t with a predic-
tion for the target’s path during batch t + 1. Since mobiles
can move arbitrarily, the prediction of its location in the
next batch becomes a nearly uniform distribution. Since
the sensor parameters do not change over time, their esti-
mates remain the same in the prediction. Therefore, the
prediction step is:

p(xt+1|y1, · · · ,yt) = u(et+1)q(s|y1, · · · ,yt) (10)

q(s|y1, · · · ,yt) =

Z
et

q(xt|y1, · · · ,yt) det. (11)

The distribution q(s|y1, · · · ,yt) over sensor parameters is
obtained by marginalizing over the mobile’s trajectory dur-
ing batch t.

These steps can be carried out numerically by operat-
ing on the mean and inverse covariance of q(xt|y1, · · · ,yt).



First, partition these according to s and et:

µ =

»
µs

µe

–
Ω =

»
Ωs Ωse

Ωes Ωe

–
. (12)

Marginalizing out et produces a distribution q(s|y1, · · · ,yt)
with mean µs and with inverse covariance Ωs −ΩseΩ

−1
e Ωes.

To augment q(s|y1, · · · ,yt) with the uniform distribution
u(et+1), pad the former’s means and inverse covariance with
zeros, to denote an infinite marginal covariance for et+1:

µ0 =

»
µs

0

–
Ω0 =

»
Ωs − ΩseΩ

−1
e Ωes 0

0 0

–
. (13)

These are the desired mean and inverse covariance of
p(xt+1|y1, · · · ,yt).

If we have an a priori guess about et+1, then the mean
can be augmented with a non-zero value instead, and the
0 diagonal block of the inverse covariance can be replaced
with an inverse covariance that reflects the uncertainty in
this prior.

3.3 Prior Information and Initialization
Prior information about the sensor parameters might be

available when the sensors are placed in roughly known posi-
tions, or when another less accurate source of localization is
available. Calibration in the factory might supply additional
prior information.

If such information is available it can be supplied as the
prior for incorporating the first batch of measurements. We
set the covariance of this prior to σ0I, with σ0 a large scalar
to allow measurements to override the positions prescribed
by the prior while providing a sensible default when few
measurements are available. The mode of this prior is also
used as the initial iterate for the Newton-Raphson iterations.
To obtain the initial iterate for events, we use the average
estimated location of the three sensors with the smallest
range measurements to the event.

In our experiments, we utilize the radio connectivity of
the sensors to obtain prior localization information. The
initialization step described by Priyantha et al. [14] pro-
vides rough position estimates to serve as a prior before any
measurements are introduced. This prior takes the form

p(sx) ∝ exp
h
− 1

2σ2
0

P
i ‖s

x
i − x0

i ‖2
i
, where x0

i is the position

predicted by the initialization step of the ith sensor and σ0

is a large variance.
Because the sensor nodes are nearly identical, we know a

priori that the variation between their calibration parame-
ters is small. These small variations are due mainly to en-
vironmental effects, so sensors that are close together tend
to have similar calibration values. We encode this informa-
tion in a prior of the form p(sθ) ∝ exp

h
− 1

2

P
i∼j(s

θ
i − sθ

j )
2
i
,

where the summation is over sensors that are in close prox-
imity to each other.

4. RESULTS
Our first set of experiments use the Cricket ranging sys-

tem [10]. Sensor Crickets were placed on the floor, and a
mobile Cricket was attached to a moving target. The mobile
Cricket emitted an event (a radio and ultra-sound pulse) ev-
ery second. The difference in arrival time of these two pulses
to a sensor is proportional to the distance between the sen-
sor and target. Crickets computed ranges from these arrival
times. No range measurements between sensor Crickets were
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Figure 1: Localization error as a function of the
number of events observed for EKF and various
batch sizes for LaSLAT. LaSLAT converges more
quickly and attains a lower steady-state error than
the EKF. Furthermore, larger batch sizes improve
the convergence rate and the steady-state error of
LaSLAT. Note that in the case of LaSLAT with
batch size of 40, the estimates converge after only
200 events, corresponding to 66 seconds of real time.

collected. The measurements were transmitted to a desktop
machine, which processed them in batches using LaSLAT.
The ultra-sound sensor on a Cricket occupies a 1 cm x 2 cm
area on the circuit board, so it is difficult to estimate the
ground truth location of a Cricket beyond those dimensions.

Our first experiment involved a network with 27 Cricket
sensor nodes deployed in a 7 m x 7 m room. In this exper-
iment, we manually pushed a target through the network
for about 25 minutes, generating around 1500 events. On
average, each event was heard by about 10 sensors.

In this experiment, a measurement bias of about 23 cm
was computed for each sensor node. This experiment used
batches of 10 measurements and produced a final localiza-
tion error of 1.9 cm.

To demonstrate the benefits of the Laplace approxima-
tion, we compared LaSLAT with the Extended Kalman Fil-
ter (EKF). The EKF can be obtained in the limit when
LaSLAT performs only one Newton-Raphson iteration for
each measurement batch. Figure 1 shows average localiza-
tion errors as a function of the number of observed events,
computed using the EKF and LaSLAT with various batch
sizes. The EKF performs best with no batching (batch
size = 1). LaSLAT converges faster and also exhibits lower
steady-state localization error. As batch sizes are increased,
so does the rate of convergence of LaSLAT. Batching also
improves the final localization error. LaSLAT, with batch
sizes of 1, 10 and 40, produced final localization errors of 3
cm, 1.9 cm, and 1.6 cm respectively. On average, LaSLAT
took 3 Newton-Raphson iterations to incorporate each batch.
The EKF’s final localization error was 7.5 cm, which is out-
side the error tolerance for the ground truth.

Figure 2 shows localization results on a larger network (49
sensors) deployed over a larger area (10 m x 17 m). With



Figure 2: LaSLAT localization result on a sparser
sensor network with 49 nodes in a 10m by 17m en-
vironment. Crosses indicate the recovered sensor
locations, projected onto the image. The average
localization error was 7.5 cm.

about one sensor per three square meters, this network is
somewhat less dense than the previous one, which had a
sensor per two square meters. As a result, on average only
5 sensors heard each event, and the localization error was
about 7.5 cm. The algorithm also determined measurement
biases of about 20 cm for all nodes. For all batch sizes, the
EKF produced an average localization error of about 80 cm,
showing that the improvement due to Laplace’s method can
be very significant.

4.1 3D SLAT
LaSLAT can localize and track sensors and targets in

a three dimensional environment. In our experiments, 40
crickets were placed on the floor and walls of a 4 m x 6
m room furnished with typical lab furniture: tables, chairs,
printers, and a refrigerator. The mobile was equipped with
additional ultrasound transmitters so that it could broadcast
in all directions. This mobile was carried by hand through
the room and moved in a natural path, including changes in
speed, loops, and twists.

Due to ultrasound echoes and ambient ultrasound from
devices in the building, a more sophisticated measurement
model was employed. In this measurement model, ranges
were modeled as draws from a mixture of ranges emitted
from the standard Gaussian model of equation (4) and out-
liers emitted from a uniform distribution. The mode finding
operation (9) was then carried out using Expectation Max-

Figure 3: LaSLAT results plotted on a picture on a
picture of the network. Plus signs indicate the esti-
mated 3D positions of the sensors. A small portion
of the target trajectory (about 80 events) is plotted
as asterisks connected by a dotted line. LaSLAT
localized sensors to within 7 cm.

imization (EM).
In the room shown in Figure 3, LaSLAT localized sensors

to within 7 cm while successfully tracking the path of the
target in 3d. Much of this error is accounted for by the
difficulty of measuring ground truth in this environment.

The best 3d results were obtained using a relatively large
batch size of 250 events. Smaller batch sizes caused LaSLAT
to converge slowly.

4.2 Extending LaSLAT to Outdoor Acoustic
Ranging

It is also possible to use LaSLAT to localize and track
sensors and targets using audible ranging. We conducted
our experiments using the eXtreme Scaling Motes [21].

The mobile periodically emits a short radio message im-
mediately followed by a loud audible chirp. The difference in
time of reception allows sensor nodes to estimate their dis-
tance to the mobile. The algorithm for localizing chirps in
time operates in the frequency domain to improve accuracy,
and was devised by MITRE. This system is less precise than
the Cricket’s ultrasound ranging system, but is substantially
cheaper, since it depends only on a piezo speaker on the mo-
bile and inexpensive microphones on the passive sensors.

In this experimental setup, 42 motes were arranged in a
6 x 7 grid at 4.6 m spacing yielding a 27 m x 32 m area.
The motes were placed on 10 cm x 10 cm x 10 cm wooden
blocks placed on a field of roughly 15 cm-tall grass. Ground
truth was obtained using a tape measure. The beacon was
carried by a person, and emitted a ranging event every three
seconds.

Figure 4 shows the results plotted over ground truth and
Figure 5 shows the convergence plot. The average localiza-
tion error over three runs at 2 minutes is 47cm and at 3
minutes is 43cm. This shows that the algorithm is capa-
ble of running with larger spacing, running with cruder and
cheaper ranging hardware, running outdoors, and running
in real time.

The ranging resolution of the acoustic ranging system is
limited to 40 cm increments. Its accuracy could be further
improved with more sophisticated signal processing. This in
turn would increase the accuracy of the LaSLAT system.
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Figure 4: The positioning results for one LaSLAT
run on our outdoor deployment involving 40 nodes
placed in a 6 x 7 grid with 4.6 m spacing. Here we
show the ground truth as squares, the AFL prior as
circles, and the final positions as pluses. The final
average error for this run is 32 cm. Two sensors in
this experiment were defective and failed to report
any measurements at all. They are omitted from
these results.

5. CENTRALIZED VERSUS DISTRIBUTED
We have implemented both centralized and distributed

versions of LaSLAT [23]. In the centralized implementa-
tion, the network transports all range observations to a cen-
tral computer, which performs LaSLAT computations and
optionally returns position estimates to the network. In a
distributed implementation, the LaSLAT computations are
performed in-network using local iterative methods. Only
nodes that have witnessed common events need commu-
nicate with one another, leading to a natural parallel dis-
tributed algorithm. Although this style of in-network pro-
cessing is the norm in sensor network systems, there are ac-
tually interesting trade-offs between the two approach that
we briefly outline.

Consider a small network in a controlled environment such
as a building. In this case, the central computer can be po-
sitioned within a single radio hop of all or nearly all sen-
sors and therefore, each node that senses the target need
only transmit one message. In a distributed implementa-
tion each node would have to transmit several messages,
one for each cycle of the iterative solution methods. In this
case, the best performance is obtained by transferring all
the measurements to the central computer, reducing the ra-
dio bandwidth, memory, and processing requirements on the
sensors and decreasing the hardware cost of the network. As
the network grows the number of messages transmitted by
each node in an distributed iterative method stays roughly
constant, however, multiple hops are required to transmit
data to the central computer, and the energy and bandwidth
cost of centralization increases, particularly for nodes near
the central computer. In this case, distributing LaSLAT
may save power by keeping computation and communica-
tion local.

However, as sensor networks grow even larger there are
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Figure 5: Error over time for three different runs in
our outdoor experiment. The batch size is 10 events
and the average error at 40 events (with one event
every 3 seconds) is 47cm.

compelling reasons for building a hierarchical system in which
an ensemble of nodes surrounds a more powerful base sta-
tion with longer-range communications capabilities; these
base stations form a second tier of the network, etc. This
architecture has the advantage that the individual sensors
can be simple, requiring little more than a radio, an ultra-
sound receiver, and a tone detector. Such a limited sensor
is likely to be very cheap and the cost savings can be used
to pay for the more powerful second tier nodes.

6. CONCLUSION AND FUTURE WORK
We have demonstrated the benefits of applying Bayesian

to the problem of simultaneous localization, tracking, and
calibration. We showed experimentally that we can track
and localize sensors to within one or two centimeters using
ultrasound ranging and to within 43cm in a large scale out-
door deployment with 4.6m spacing and using less accurate
acoustic ranging.

The Bayesian framework provides many other advantages
that we hope to demonstrate in the future. Different types
of measurements such as bearings could be included by suit-
ably modifying the measurement model. By modeling dy-
namics on the position of sensors, LaSLAT may be able to
localize sensors that move over time.
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8. APPENDIX: FINDING A MODE
The update (9) can be rewritten in the form of non-linear

least squares. Letting fij(x) = ‖sx
i − et

j‖+ sθ
i , and defining

f(x) as a column vector consisting of all fij(x), we can recast
(9) as:

arg min
x

1

2σ2
‖f(x)− yt‖2 +

1

2
(x− µ0)

T Ω0(x− µ0). (14)

Each iteration of Newton-Raphson maps an iterate x(t) to
the next iterate x(t+1) by approximating (14) by linearizing

f about x(t), and optimizing over x:

x(t+1) = arg min
x

1

2σ2

‚‚‚∇f (t)x− b
‚‚‚2

+
1

2
(x− µ0)

T Ω0(x− µ0), (15)

where ∇f (t) is the gradient of f with respect to x at x(t),
and b = ∇f (t)x(t) − f

`
x(t)

´
− yt.

This is a linear least squares problem in terms of x. Its
solution can be found by setting the derivative with respect
to x to zero to obtain a linear problem that can be solved
by matrix inversion:ˆ

Ω0 +
1

σ2
∇f (t)>∇f (t)˜x = Ω0µ0 +

1

σ2
∇f (t)>b. (16)

Furthermore, differentiating (15) one more time results in

Ω = Ω0 + 1
σ2∇f (t)>∇f (t). Since (15) is an approximation to

the negative log posterior (9), Ω serves as an approximation

to its Hessian at x(t).
Because the true distance fij depends only on sensor i and

event location j, each row of ∇f (t) is made up of zeros, ex-
cept at locations corresponding to the ith sensor and the jth
event. Thus ∇f (t)>∇f (t) has local connectivity. If Ω0 has
local connectivity, then the updated inverse covariance ma-
trix Ω also has local connectivity. Therefore incorporating
a batch of measurements preserves local connectivity.
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