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The computational landscape is drastically changing.  Processing is becoming virtually 
free, and sensors and actuators are becoming embeddable and affordable, allowing us to 
manufacture myriads of computational devices and embed them in the world.  
Unfortunately, as computing becomes smaller and more plentiful, it becomes harder to 
make parts error free and calibrated.  Furthermore, communication delays are becoming 
sizable, forcing devices to directly communicate with and directly affect only local 
neighbors.  In short, the assumptions that data is both perfect and available are no longer 
true. Traditional engineering approaches do not apply to this computing class of cheap, 
distributed, possibly faulty, locally communicating devices, that we call “spatial computing”.  
We are forced to radically rethink our computing models, languages, and practices.   

Spatial Computing opens up a number of exciting platforms that have the potential to 
embody unparalleled grace, fidelity, and pervasiveness.  Some example platforms are 
kinetic structures, sensor networks, swarm and modular robotics, peer to peer networks, 
reconfigurable computing, cloud computing, and biofilms.  Application areas include search 
and rescue, threat avoidance, target tracking, distributed energy management, 
programmable matter, data search, synthetic biology, and active structures.  Furthermore, 
because of power and speed tradeoffs at current and future transistor sizes, even 
conventional and enterprise computing are embracing very large scale parallel processing 
requiring novel programming approaches to utilize their potential.   

The goal of my research is to create organizational principles and high level programming 
tools for Spatial Computing, which I call “space-time programming”.  We look to biology for 
inspiration, where we can find many examples of robust engineering of Spatial Computing 
systems. While we can learn from biology about many mechanisms, we still need a 
practical engineering discipline, one that spans from high level specifications to 
implementation.  Borrowing and stitching together biological mechanisms would be 
unworkable and direct programming of device level rules would be unwieldy.  We instead 
strive to construct application level, intentional and intuitive program specification that are 
amenable to translation into device level rules.   

Our basic approach is to program the devices as a single spatial entity which fills the space 
through which the devices are scattered and to develop a series of high level and scalable 
abstractions, modules, and compositional mechanisms that lead to robust, predictable and 
scalable software.  We look to engineering and computer science for techniques for 
managing complexity in the design of complex systems.  Software applications greatly 
benefit from being decomposed into levels of abstraction and hierarchies of modules with 
explicit interfaces, contracts and data structures at each level.  Abstractions and modules 
can be built and tested independently, they can be named, interface compatible modules 
can be interchanged, and from there code reuse can be enhanced, and a separation of 
concerns can be maintained.  In short, resulting applications are less complex, having 



fewer moving parts, and, as a consequence, are smaller, more reliable and faster to 
develop. Machine learning and program language research have until recently developed 
independently, whereas I would like to consider hybrid approaches where adaptive 
behaviors are guided by language expressions.  Examples of self adaptation are adaptive 
routing, self repair, and homeostasis.  Languages force programmers to make certain 
things explicit and gain great power by hiding other details, details hidden behind a capable 
runtime.  Traditional dynamic languages have hidden memory management operations for 
example.  But I am interested in pursuing languages that involve much more powerful 
runtimes that expose robust interfaces to their self adaptive substrate.  

Such higher level languages will have the technical advantages that high level descriptions 
of machine behavior will get compiled down to low level operations that are implemented 
on individual components.  This approach provides machine descriptions that are more 
natural, powerful, and able to meet application requirements, and also provides scalable 
and robust software solutions that are independent of precise hardware details.  I also plan 
to pursue more advanced languages that allow the direct statement of task goals, 
constraints, and models and with their runtimes performing planning, constraint 
satisfaction, and failure diagnosis.  These approaches show great promise in the future 
where systems are more complicated, longer lived, and/or run unattended. For example, in 
a good choreographic language for modular robotics, one would specify target postures in 
abstract spatial terms.  A spherical posture for a kinetic structure could be specified and 
components would then conspire to occupy equidistant spherical surface points.  This 
approach would have the advantage that the abstract descriptions would be tolerant to the 
addition and deletion of components as well as defects and initial conditions.  From a 
programmerʼs point of view, this would be incredibly liberating since forms could be 
developed independently of the kinematic models necessary to control their behavior.  On a 
technical level, distributed algorithms would be one solution to developing a whole new 
vocabulary of space, time, and posture in order to describe robust and flexible ensemble 
behaviors. 

One key abstraction that we have used is the “amorphous medium” which allows the 
programmer to factor the problem into programming continuous space and time and 
approximating continuous space and time on a discrete network.  Programs can be written 
in terms of continuous space and time, while the compiler/runtime maps to actual physical 
realizations in terms of discrete computational devices at specific points.  The key 
advantage is that the programs can be written once and work on a variety of actualizations 
with varying resolutions, while the runtime adapts to device birth, death, failure, and 
movement. 

We have developed a language called Proto which embodies this amorphous medium 
abstraction and permits the construction and composition of high level modules.  Programs 
written in Proto are succinct -- often two orders of magnitude smaller than programs written 
in more traditional languages.  The compiler utilizes aggressive type inferencing and 
optimization yielding tiny and efficient runtimes with known space requirements allowing us 
to target extremely impoverished runtimes.  Proto has been implemented as a simulator 
with extensive visualization and development abilities and ported to several physical 
platforms including sensor networks, swarm robots, and modular robots.  The general 



approach has been widely applicable to a number of Spatial Computing problem domains.  
We have replicated results from the MIT Amorphous Computing group and have developed 
new robust algorithms including a self healing active gradient, a new time synchronization 
algorithm, and a new leader election algorithm, among others.   Furthermore, we have 
started to model biological phenomena such as slime molds and mammalian 
morphogenesis with promising early results.  Finally, Proto has been quite well received 
outside of MIT, leading to my being invited to be on a 2007 DARPA ISAT study on 
Engineered Ensemble Effects, several lectures at Harvard, an invitation to NDIST 2007 
workshop on engineered emergence, a keynote address to VIPSI-2008 Slovenia, and an 
NSF bio inspired computing grant (of which I was the primary author and editor). 

While Proto has concentrated on distribution, viral programming, and small footprint, other 
efforts have focused on additional aspects of the space-time programming vision.  We have 
pushed upwards towards higher abstractions while exploring the scripting of multimedia in 
the language called Gooze, concentrating on bulk operators, temporal abstractions, and 
targeting GPUs and SIMD coprocessors.  In the language Gel, we have concentrated on 
drilling down, targeting more constrained devices such as FPGAs (with an eye towards 
biological cells) requiring more detailed modeling of space and time and producing 
hardware oriented abstractions. 

Gooze allows artists and scientists to create and script multimedia effects modules 
combining wide ranging techniques such as 3D, vector, particle, and image based 
graphics.  Stream processing style languages raise the abstraction level for time-oriented 
domains where time abstractions are provided and time based operations can be 
conveniently specified and powerfully composed.  The concise and stream-based nature of 
the language has been invaluable for experimenting with interactive multimedia and 
computer vision algorithms and goes far beyond typical visual programming approaches. 
Targeting GPUs allows the effects to make use of supercomputing class resources and 
opens up great opportunities in scientific computing.   Finally, Gooze has been used in 
many large scale professional art installations and performances around the world. 

Gel is a new high level hardware scripting language that makes it convenient to specify 
hardware designs and permits the construction of paradigm specific libraries.  It features a 
rich set of data types, is extremely succinct, and is expression oriented.  Modules are 
described as functions and composed through function calls.  Types and bit widths are 
inferred automatically and functions are automatically folded and common subexpressions 
are identified.  A compiler has been developed that translates Gel to Verilog and a number 
of applications have been developed and compiled down to actual FPGA devices.  Finally, 
we have developed a postcard sized FPGA board with audio/video IO as a first 
demonstration vehicle. 

Because languages provide the representational substrate for Spatial Computing, radical 
language exploration is critical to the future of this new field.  Spatial Computing opens up 
exciting new possibilities for understanding Biology and engineering robust and scalable 
systems with spatial extent, but requires a new architectural approach and set of 
programming models.  It will be the focus of my research to invent these approaches and 
models through technical investigations, and to apply them to help create a new class of 



computational substrate and a new engineering discipline.   

Developing new languages must go hand in hand with aggressive exploration of new 
platforms combined with biological modeling and application development.  Through 
technical and scientific investigations, and collaboration with leading technologists and 
scientists, my research will focus on the invention of novel hardware and software for 
Spatial Computing, and will apply them to help create a new approach to engineering these 
systems.  I am uniquely positioned and poised to significantly contribute to the new field of 
Spatial Computing, having already produced three significant languages, several hardware 
platforms, published eight refereed papers in this field, and have a large research pipeline.  
Computer Science departments have historically been environments where technological 
and scientific innovation have introduced new computational disciplines to engineering and 
scientific communities.  I look forward to being part of this ongoing history by coupling 
programming models and Spatial Computing systems to expand the computing and 
scientific landscape. 


