
Correlation Clustering

Nikhil Bansal� Avrim Blum� Shuchi Chawla�

Abstract

We consider the following clustering problem: we have
a complete graph on n vertices (items), where each edge
(u; v) is labeled either + or � depending on whether u and
v have been deemed to be similar or different. The goal
is to produce a partition of the vertices (a clustering) that
agrees as much as possible with the edge labels. That is,
we want a clustering that maximizes the number of + edges
within clusters, plus the number of � edges between clus-
ters (equivalently, minimizes the number of disagreements:
the number of � edges inside clusters plus the number of +
edges between clusters). This formulation is motivated from
a document clustering problem in which one has a pairwise
similarity function f learned from past data, and the goal is
to partition the current set of documents in a way that cor-
relates with f as much as possible; it can also be viewed as
a kind of “agnostic learning” problem.

An interesting feature of this clustering formulation is
that one does not need to specify the number of clusters k
as a separate parameter, as in measures such as k-median
or min-sum or min-max clustering. Instead, in our formu-
lation, the optimal number of clusters could be any value
between 1 and n, depending on the edge labels. We look
at approximation algorithms for both minimizing disagree-
ments and for maximizing agreements. For minimizing dis-
agreements, we give a constant factor approximation. For
maximizing agreements we give a PTAS. We also show how
to extend some of these results to graphs with edge labels
in [�1;+1], and give some results for the case of random
noise.

1 Introduction

Suppose that you are given a set of n documents to clus-
ter into topics. Unfortunately, you have no idea of what
a “topic” is. However, you have at your disposal a classi-
fier f(A;B) that given two documents A and B, outputs

�Department of Computer Science, Carnegie Mellon University.
fnikhil,avrim,shuchig@cs.cmu.edu. This research was sup-
ported in part by NSF grants CCR-0085982, CCR-0122581, CCR-
0105488, and an IBM Graduate Fellowship.

whether or not it believes A and B are similar to each other.
For example, perhaps f was learned from some past train-
ing data. In this case, a natural approach to clustering is to
apply f to every pair of documents in your set, and then to
find the clustering that agrees as much as possible with the
results.

Specifically, we consider the following problem. Given
a fully-connected graph G with edges labeled “+” (similar)
or “�” (different), find a partition of the vertices into clus-
ters that agrees as much as possible with the edge labels.
In particular, we can look at this in terms of maximizing
agreements (the number of + edges inside clusters plus the
number of � edges between clusters) or in terms of mini-
mizing disagreements (the number of � edges inside clus-
ters plus the number of + edges between clusters). These
two are equivalent at optimality but, as usual, differ from
the point of view of approximation. In this paper we give
a constant factor approximation to the problem of minimiz-
ing disagreements, and a PTAS for maximizing agreements.
We also extend some of our results to the case of real-valued
edge weights. This problem formulation is motivated in part
by some clustering problems at Whizbang Labs in which
learning algorithms have been trained to help with various
clustering tasks [8, 9, 10].1

What is interesting about the clustering problem defined
here is that unlike most clustering formulations, we do not
need to specify the number of clusters k as a separate pa-
rameter. For example, in k-median [7, 15] or min-sum clus-
tering [20] or min-max clustering [14], one can always get
a perfect score by putting each node into its own cluster —
the question is how well one can do with only k clusters. In
our clustering formulation, there is just a single objective,

1An example of one such problem is clustering entity names. In this
problem, items are entries taken from multiple databases (e.g., think of
names/affiliations of researchers), and the goal is to do a “robust uniq”
— collecting together the entries that correspond to the same entity (per-
son). E.g., in the case of researchers, the same person might appear
multiple times with different affiliations, or might appear once with a
middle name and once without, etc. In practice, the classifier f typi-
cally would output a probability, in which case the natural edge label is
log(Pr(same)/Pr(different)). This is 0 if the classifier is unsure, positive if
the classifier believes the items are more likely in the same cluster, and
negative if the classifier believes they are more likely in different clusters.
The case of f+;�g labels corresponds to the setting in which the classifier
has equal confidence about each of its decisions.

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

and the optimal clustering might have few or many clusters:
it all depends on the edge labels.

To get a feel for this problem, notice that if there exists
a perfect clustering, i.e., one that gets all the edges correct,
then the optimal clustering is easy to find: just delete all “�”
edges and output the connected components of the graph
remaining. (This is called the “naive algorithm” in [10].)
Thus, the interesting case is when no clustering is perfect.
Also, notice that for any graph G, it is trivial to produce a
clustering that agrees with at least half of the edge labels:
if there are more + edges than � edges, then simply put all
vertices into one big cluster; otherwise, put each vertex into
its own cluster. This observation means that for maximiz-
ing agreements, getting a 2-approximation is easy (note: we
will show a PTAS). In general, finding the optimal cluster-
ing is NP-hard, which can be seen via a tedious reduction
from X3C (details can be found in [5]).

Another simple fact to notice is that if the graph contains
a triangle in which two edges are labeled + and one is la-
beled �, then no clustering can be perfect. More generally,
the number of edge-disjoint triangles of this form gives a
lower bound on the number of disagreements of the optimal
clustering. This fact is used in our constant-factor approxi-
mation algorithm.

For maximizing agreements, our PTAS is quite similar
to the PTAS developed by [12] for MAX-CUT on dense
graphs, and related to PTASs of [4, 3]. Notice that since
there must exist a clustering with at least n(n � 1)=4
agreements, this means it suffices to approximate agree-
ments to within an additive factor of �n2. This problem
is also closely related to work on testing graph properties
of [13, 19, 1]. In fact, we show how we can use the Gen-
eral Partition Property Tester of [13] as a subroutine to get a

PTAS with running time O(neO((
1
�
)
1
�)). Unfortunately, this

is doubly exponential in 1
� , so we also present an alterna-

tive direct algorithm (based more closely on the approach
of [12]) that takes only O(n2eO(

1
�
)) time.

Relation to agnostic learning: One way to view this
clustering problem is that edges are “examples” (labeled as
positive or negative) and we are trying to represent the target
function f using a hypothesis class of vertex clusters. This
hypothesis class has limited representational power: if we
want to say (u; v) and (v; w) are positive in this language,
then we have to say (u;w) is positive too. So, we might
not be able to represent f perfectly. This sort of problem —
trying to find the (nearly) best representation of some arbi-
trary target f in a given limited hypothesis language — is
sometimes called agnostic learning [17, 6]. The observation
that one can trivially agree with at least half the edge labels
is equivalent to the standard machine learning fact that one
can always achieve error at most 1=2 using either the all
positive or all negative hypothesis.

Our PTAS for approximating the number of agreements
means that if the optimal clustering has error rate �, then we
can find one of error rate at most � + �. Our running time is
exponential in 1=�, but this means that we can achieve any
constant error gap in polynomial time. What makes this in-
teresting from the point of view of agnostic learning is that
there are very few nontrivial problems where agnostic learn-
ing can be done in polynomial time. Even for simple classes
such as conjunctions and disjunctions, no polynomial-time
algorithms are known that give even an error gap of 1=2��.

2 Notation and Definitions

Let G = (V;E) be a complete graph on n vertices, and
let e(u; v) denote the label (+ or �) of the edge (u; v). Let
N+(u) = fug [fv : e(u; v) = +g and N�(u) = fv :
e(u; v) = �g denote the positive and negative neighbors of
u respectively.

We let OPT denote the optimal clustering on this graph.
In general, for a clustering C, let C(v) be the set of vertices
in the same cluster as v. We will use A to denote the clus-
tering produced by our algorithms.

In a clustering C, we call an edge (u; v) a mistake if ei-
ther e(u; v) = + and yet u 62 C(v), or e(u; v) = � and
u 2 C(v). When e(u; v) = +, we call the mistake a pos-
itive mistake, otherwise it is called a negative mistake. We
denote the total number of mistakes made by a clustering
C by mC , and use mOPT to denote the number of mistakes
made by OPT.

For positive real numbers x, y and z, we use x 2 y�z to
denote x 2 [y � z; y+ z]. Finally, let X for X � V denote
the complement (V nX).

3 A Constant Factor Approximation for Min-
imizing Disagreements

We now describe our main algorithm: a constant-factor
approximation for minimizing the number of disagree-
ments.

The high-level idea of the algorithm is as follows. First,
we show (Lemma 1) that if we can cluster a portion of
the graph using clusters that each look sufficiently “clean”
(Definition 1), then we can charge off the mistakes made
within that portion to “erroneous triangles”: triangles with
two + edges and one � edge. Furthermore, we can do
this in such a way that the triangles we charge are nearly
edge-disjoint, allowing us to bound the number of these
mistakes by a constant factor of OPT. Second, we show
(Lemma 2) that there must exist a nearly optimal cluster-
ing OPT0 in which all non-singleton clusters are “clean”.
Finally, we show (Theorem 3 and Lemma 7) that we can al-
gorithmically produce a clustering of the entire graph con-
taining only clean clusters and singleton clusters, such that

2

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

mistakes that have an endpoint in singleton clusters are
bounded by OPT0, and mistakes with both endpoints in
clean clusters are bounded using Lemma 1.

We begin with a definition of a “clean” cluster and a
“good” vertex.

Definition 1 A vertex v is called Æ-good with respect to C,
where C � V , if it satisfies the following:

� jN+(v) \ Cj � (1� Æ)jCj
� jN+(v) \ (V n C)j � ÆjCj

If a vertex v is not Æ-good with respect to (wrt) C, then it is
called Æ-bad wrt C. Finally, a set C is Æ-clean if all v 2 C
are Æ-good wrt C.

We now present two key lemmas.

Lemma 1 Given a clustering of V in which all clusters are
Æ-clean for some Æ � 1=4, then the number of mistakes
made by this clustering is at most 8mOPT.

Proof: Let the clustering on V be (C1; � � � ; Ck). We will
bound the number of mistakes made by this clustering by 8
times the number of edge-disjoint “erroneous triangles” in
the graph, where an erroneous triangle is a triangle having
two+ edges and one� edge. We then use the fact thatOPT
must make at least one mistake for each such triangle.

First consider the negative mistakes. Pick a negative
edge (u; v) 2 Ci � Ci that has not been considered so far.
We will pick a w 2 Ci such that both (u;w) and (v; w)
are positive and associate (u; v) with the erroneous triangle
(u; v; w). We now show that for all (u; v), such a w can
always be picked such that no other negative edges (u0; v)
or (u; v0) (i.e. the ones sharing u or v) also pick w.

Since Ci is Æ-clean, neither u nor v has more than ÆjCij
negative neighbors inside Ci. Thus (u; v) has at least
(1 � 2Æ)jCij vertices w such that both (u;w) and (v; w)
are positive. Moreover, at most 2ÆjCij � 2 of these could
have already been chosen by other negative edges (u; v0) or
(u0; v). Thus (u; v) has at least (1 � 4Æ)s + 2 choices of
w that satisfy the required condition. Since Æ � 1=4, (u; v)
will always be able to pick such a w.

Note that any positive edge (v; w) can be chosen at most
2 times by the above scheme, once for negative mistakes
on v and possibly again for negative mistakes on w. Thus
we can account for at least a fourth (because only positive
edges are double counted) of the negative mistakes using
edge disjoint erroneous triangles.

Now, we consider the positive mistakes. Just as above,
we will associate mistakes with erroneous triangles. We
will start afresh, without taking into account the labelings
from the previous part.

Consider a positive edge between u 2 Ci and v 2 Cj . Let
jCij � jCj j. Pick a w 2 Ci such that (u;w) is positive and

(v; w) is negative. There will be at least jCij�Æ(jCij+ jCj j)
such vertices as before and at most Æ(jCij+jCj j) of them will
be already taken. Moreover only the positive edge (u;w)
can be chosen twice (once as (u;w) and once as (w; u)).
Repeating the above argument, we again see that we ac-
count for at least half (hence at least a quarter) of the posi-
tive mistakes using edge disjoint triangles.

Now depending on whether there are more negative mis-
takes or more positive mistakes, we can choose the triangles
appropriately, and hence account for at least 1/8 of the total
mistakes in the clustering.

Lemma 2 There exists a clustering OPT0 in which each
non-singleton cluster is Æ-clean, and mOPT0 � (9

Æ2 +
1)mOPT.

Proof: Consider the following procedure applied to the
clustering of OPT and call the resulting clustering OPT0.

Procedure Æ-Clean-Up: Let COPT1 ; COPT2 ; :::; COPTk be
the clusters in OPT.

1. Let S = ;.

2. For i = 1; � � � ; k do:

(a) If the number of Æ
3 -bad vertices in COPTi is more

than Æ
3 jCOPTi j, then, S = S [COPTi , C0i = ;. We

call this “dissolving” the cluster.

(b) Else, let Bi denote the Æ
3 -bad vertices in COPTi .

Then S = S [Bi and C0i = COPTi nBi.

3. Output the clustering OPT0: C01; C02; :::; C0k; fxgx2S.

We will prove that mOPT and mOPT0 are closely related.
We first show that each C0i is Æ clean. Clearly, this holds

if C0i = ;. Now if C0i is non-empty, we know that jCOPTi j �
jC0ij � jCOPTi j(1� Æ=3). For each point v 2 C0i, we have:

jN+(v) \ C0ij � (1� Æ=3)jCOPTi j � Æ=3jCOPTi j
= (1� 2Æ=3)jCOPTi j
> (1� Æ)jC0ij

Similarly, counting positive neighbors of v in COPTi \C0i and
outside COPTi , we get,

jN+(v) \ C0ij � (Æ=3)jCOPTi j+ (Æ=3)jCOPTi j
� 2Æ

3

jC0ij
(1� Æ=3)

< ÆjC0ij (as Æ < 1)

Thus each C0i is Æ-clean.
We now account for the number of mistakes. If we

dissolve some COPTi , then clearly the mistakes associated

3

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

with vertices in original COPTi is at least (Æ=3)2jCOPTi j2=2.
The mistakes added due to dissolving clusters is at most
jCOPTi j2=2.

If COPTi was not dissolved, then, the original mistakes in
COPTi were at least Æ=3jCOPTi jjBij=2. The mistakes added
by the procedure is at most jBijjCOPTi j. Noting that 6=Æ <
9=Æ2, the lemma follows.

For the clustering OPT0 given by the above lemma, we
use C0i to denote the non-singleton clusters and S to denote
the set of singleton clusters. We will now describe Algo-
rithm Cautious that tries to find clusters similar to OPT0.
Throughout the rest of this section, we assume that Æ = 1

44 .

Algorithm Cautious:

1. Pick an arbitrary vertex v and do the following:

(a) Let A(v) = N+(v).

(b) (Vertex Removal Step): While 9x 2 A(v) such
that x is 3Æ-bad wrt A(v), A(v) = A(v) n fxg.

(c) (Vertex Addition Step): Let Y = fyjy 2 V; y is
7Æ-good wrt A(v)g. Let A(v) = A(v) [Y .2

2. DeleteA(v) from the set of vertices and repeat until no
vertices are left or until all the produced sets A(v) are
empty. In the latter case, output the remaining vertices
as singleton nodes.

Call the clusters output by algorithm Cautious
A1; A2; � � �. Let Z be the set of singleton vertices
created in the final step. Our main goal will be to show that
the clusters output by our algorithm satisfy the property
stated below.

Theorem 3 8j, 9i such that C0j � Ai. Moreover, each Ai

is 11Æ-clean.

In order to prove this theorem, we need the following
two lemmas.

Lemma 4 If v 2 C0i, where C0i is a Æ-clean cluster in OPT0,
then, any vertex w 2 C0i is 3Æ-good wrt N+(v).

Proof: As v; w 2 Ci, jN+(v)\C0ij � (1�Æ)jC0ij, jN+(w)\
C0ij � (1� Æ)jC0ij and jN+(w) \ C0ij � ÆjC0ij.

Also, (1 � Æ)jC0ij � jN+(v)j � (1 + Æ)jC0ij. Thus, we
get the following two conditions.

jN+(w) \N+(v)j � (1� 2Æ)jC0ij � (1� 3Æ)jN+(v)j

jN+(w)\N+(v)j � 2ÆjC0ij �
2Æ

1� Æ
jN+(v)j � 3ÆjN+(v)j

Thus, w is 3Æ-good wrt N+(v).

2Observe that in the vertex addition step, all vertices are added in one
step as opposed to in the vertex removal step

Lemma 5 Given an arbitrary set X , if v1 2 C0i and v2 2
C0j , then v1 and v2 cannot both be 3Æ-good wrt X .

Proof: Firstly if v is 3Æ-good wrt some arbitrary set X , then
(1� 3Æ)jX j < N+(v) < (1 + 3Æ)jX j.

Suppose that v1 and v2 are both 3Æ-good with respect to
X . Then, jN+(v1)\X j � (1�3Æ)jX j and jN+(v2)\X j �
(1�3Æ)jX j, hence jN+(v1)\N+(v2)\X j � (1�6Æ)jX j,
which implies that jN+(v1) \N+(v2)j � (1� 6Æ)jX j.

Also, since v1 lies in a Æ-clean cluster C0i in OPT0,
jN+(v1)nC0ij � ÆjC0ij, jN+(v2)nC0j j � ÆjC0j j and C0i\C0j =
;. It follows that jN+(v1) \N+(v2)j � Æ(jC0ij+ jC0j j).

Now notice that jC0ij � jN+(v1) \ C0ij + ÆjC0ij �
jN+(v1) \ X \ C0ij + jN+(v1) \ X \ C0ij + ÆjC0ij �
jN+(v1)\X \ C0ij+3ÆjX j+ ÆjC0ij � (1+ 3Æ)jX j+ ÆjC0ij.
So, jC0ij � 1+3Æ

1�Æ jX j. The same holds for C0j . So, jN+(v1)\
N+(v2)j � 2Æ 1+3Æ1�Æ jX j.

However, since Æ < 1=9, 2Æ(1 + 3Æ) < (1� 6Æ)(1� Æ)
and we have a contradiction. Thus the result follows.

This gives us the following important corollary.

Corollary 6 After the remove phase of the algorithm, no
two vertices from distinct C0i and C0j can be present in A(v).

Now we go on to prove Theorem 3.

Proof of Theorem 3: We will first show that eachAi is either
a subset of S or contains exactly one of the clusters C0j . The
first part of the theorem will follow.

For a cluster Ai, let A0
i be the set produced after the ver-

tex removal phase such the cluster Ai is obtained by apply-
ing the vertex addition phase to A0

i. We have two cases.
First, we consider the case when A0

i � S. Now during the
vertex addition step, no vertex u 2 C0j can enter A0

i for any
j. This follows because, since C0j is Æ-clean and disjoint
from A0

i, for u to enter we need that ÆjC0j j � (1 � 7Æ)jA0
ij

and (1 � Æ)jC0j j � 7ÆjA0
ij, and these two conditions cannot

be satisfied simultaneously. Thus Ai � S.
In the second case, some u 2 C0j is present in A0

i. How-
ever, in this case observe that from Corollary 6, no vertices
from C0k can be present in A0

i for any k 6= j. Also, by the
same reasoning as for the case A0

i � S, no vertex from C0k
will enter A0

i in the vertex addition phase. Now it only re-
mains to show that C0j � Ai.

Since u was not removed from A0
i it follows that many

vertices from C0j are present in A0
i. In particular, jN+(u) \

A0
ij � (1 � 3Æ)jA0

ij and jN+(u) \ A0
ij � 3ÆjA0

ij. Now
(1 � Æ)jC0j j � jN+(u)j implies that jC0j j � 1+3Æ

1�Æ jA0
ij <

2jA0
ij. Also, jA0

i \ C0j j � jA0
i \N+(u)j � jN+(u) \ C0j j �

jA0
i\N+(u)j�ÆjC0j j. So we have jA0

i\C0j j � (1�5Æ)jA0
ij.

We now show that all remaining vertices from C0j will
enter Ai during the vertex addition phase. For w 2 C0j such

that w =2 A0
i, jA0

i \ C0j j � 5ÆjA0
ij and jN+(w) \ C0j j �

4

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

ÆjC0j j together imply that jA0
i\N+(w)j � 5ÆjA0

ij+ÆjC0j j �
7ÆjA0

ij. The same holds for jA0
i\N+(w)j. So w is 7Æ-good

wrt A0
i and will be added in the Vertex Addition step. Thus

we have shown that A(v) can contain C0j for at most one j
and in fact will contain this set entirely.

Next, we will show that for every j, 9i s.t. C0j � Ai.
Let v chosen in Step 1 of the algorithm be such that v 2
C0j . We show that during the vertex removal step, no vertex
from N+(v)\C0j is removed. The proof follows by an easy
induction on the number of vertices removed so far (r) in
the vertex removal step. The base case (r = 0) follows from
Lemma 4 since every vertex in C0j is 3Æ-good with respect to
N+(v). For the induction step observe that since no vertex
from N+(v) \ C0j is removed thus far, every vertex in C0j
is still 3Æ-good wrt to the intermediate A(v) (by mimicking
the proof of lemma 4 with N+(v) replaced by A(v)). Thus
A0
i contains at least (1 � Æ)jC0j j vertices of C0j at the end

of the vertex removal phase, and hence by the second case
above, C0j � Ai after the vertex addition phase.

Finally we show that every non-singleton cluster Ai is
11Æ-clean. We know that at the end of vertex removal phase,
8x 2 A0

i, x is 3Æ-good wrt A0
i. Thus, jN+(x) \ A0

ij �
3ÆjA0

ij. So the total number of positive edges leaving A0
i

is at most 3ÆjA0
ij2. Since, in the vertex addition step, we

add vertices that are 7Æ-good wrt A0
i, these can be at most

3ÆjA0
ij2=(1� 7Æ)jA0

ij < 4ÆjA0
ij. Thus jAij < (1 + 4Æ)jA0

ij.
Since all vertices v in Ai are at least 7Æ-good wrt A0

i,
N+(v) \ Ai � (1� 7Æ)jA0

ij � 1�7Æ
1+4Æ jAij � (1� 11Æ)jAij.

Similarly, N+(v) \ Ai � 7ÆjA0
ij � 11ÆjAij. This gives us

the result.

Now we are ready to bound the mistakes of A in terms of
OPT and OPT0. Call mistakes that have both end points
in some clusters Ai and Aj as internal mistakes and those
that have an end point in Z as external mistakes. Similarly
in OPT0, we call mistakes among the sets C0i as internal
mistakes and mistakes having one end point in S as external
mistakes. We bound mistakes of Cautious in two steps: the
following lemma bounds external mistakes.

Lemma 7 The total number of external mistakes made by
Cautious are less than the external mistakes made by OPT0.

Proof: From theorem 3, it follows that Z cannot contain
any vertex v in some C0i. Thus, Z � S. Now, any exter-
nal mistakes made by Cautious are positive edges adjacent
to vertices in Z. These edges are also mistakes in OPT0

since they are incident on singleton vertices in S. Hence
the lemma follows.

Now consider the internal mistakes of A. Notice that
these could be many more than the internal mistakes of
OPT0. However, we can at this point apply Lemma 1
on the graph induced by V 0 = [iAi. In particular, the
bound on internal mistakes follows easily by observing that

11Æ � 1=4, and that the mistakes of the optimal clustering
on the graph induced by V 0 is no more than mOPT . Thus,

Lemma 8 The total number of internal mistakes of Cau-
tious is � 8mOPT.

Summing up results from the lemmas 7 and 8, and using
lemma 2, we get the following theorem:

Theorem 9 mCautious � 9(1
Æ2 + 1)mOPT.

4 A PTAS for maximizing agreements

In this section, we give a PTAS for maximizing agree-
ments: the total number of positive edges inside clusters
and negative edges between clusters.

Let OPT denote the optimal clustering and A denote our
clustering. We will abuse notation and also use OPT to de-
note the number of agreements in the optimal solution. As
noticed in the introduction, OPT � n(n � 1)=4. So it suf-
fices to produce a clustering that has at least OPT � �n2

agreements, which will be the goal of our algorithm. Let
Æ+(V1; V2) denote the number of positive edges between
sets V1; V2 � V . Similarly, let Æ�(V1; V2) denote the num-
ber of negative edges between the two. Let OPT(�) denote
the optimal clustering that has all non-singleton clusters of
size greater than �n.

Lemma 10 OPT(�) � OPT� �n2=2.

Proof: Consider the clusters of OPT of size less than or
equal to �n and break them apart into clusters of size 1.
Breaking up a cluster of size s reduces our objective func-
tion by at most

�
s
2

�
, which can be viewed as s=2 per node in

the cluster. Since there are at most n nodes in these clusters,
and these clusters have size at most �n, the total loss is at
most �n

2

2 .

The above lemma means that it suffices to produce a
good approximation to OPT(�). Note that the num-
ber of non-singleton clusters in OPT(�) is less than 1

� .
Let COPT1 ; : : : ; COPTk denote the non-singleton clusters of
OPT(�) and let COPTk+1 denote the set of points which corre-
spond to singleton clusters.

4.1 A PTAS doubly-exponential in 1=�

If we are willing to have a run time that is doubly-
exponential in 1=�, we can do this by reducing our problem
to the General Partitioning problem of [13]. The idea is as
follows.

LetG+ denote the graph of only the + edges in G. Then,
notice that we can express the quality of OPT(�) in terms
of just the sizes of the clusters, and the number of edges in

5

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

G+ between and inside each of COPT1 ; : : : ; COPTk+1 . In par-
ticular, if si = jCOPTi j and ei;j = Æ+(COPTi ; COPTj), then
the number of agreements in OPT(�) is:

"
kX
i=1

ei;i

#
+

��
sk+1
2

�
� ek+1;k+1

�
+

2
4X
i6=j

(sisj � ei;j)

3
5 :

The General Partitioning property tester of [13] allows us
to specify values for the si and eij , and if a partition of G+

exists satisfying these constraints, will produce a partition
that satisfies these approximately. We obtain a partition that
has at least OPT(�)� �n2 agreements. The property tester
runs in time exponential in (1�)

k+1 and polynomial in n.
Thus if we can guess the values of these sizes and num-

ber of edges accurately, we would be done. It suffices, in
fact, to only guess the values up to an additive��2n for the
si, and up to an additive ��3n2 for the ei;j , because this
introduces an additional error of at most O(�). So, at most
O((1=�3)1=�

2

) calls to the property tester need to be made.
Our algorithm proceeds by finding a partition for each pos-
sible value of si and ei;j and returns the partition with the
maximum number of agreements. We get the following re-
sult:

Theorem 11 The General Partitioning algorithm returns a
clustering of graph G which has more than OPT � �n2

agreements with probability at least 1 � Æ. It runs in time
exponential in (1�)

1=� and polynomial in n and 1
Æ .

4.2 A singly-exponential PTAS

We will now describe an algorithm that is based on the
same basic idea of random sampling used by the General
Partitioning algorithm. The idea behind our algorithm is
as follows: Notice that if we knew the density of positive
edges between a vertex and all the clusters, we could put v
in the cluster that has the most positive edges to it. How-
ever, trying all possible values of the densities requires too
much time. Instead we adopt the following approach: We
select a small random subset W of vertices and cluster them
correctly into fWig with Wi � Oi 8i, by enumerating all
possible clusterings of W . Since this subset is picked ran-
domly, with a high probability, for all vertices v, the density
of positive edges between v and Wi will be approximately
equal to the density of positive edges between v and Oi.
So we can decide which cluster to put v into, based on this
information. However this is not sufficient to account for
edges between two vertices v1 and v2, both of which do not
belong toW . So, we consider subsets Ui of size m at a time
and try out all possible clusterings fUijg of them, picking
the one that maximizes agreements with respect to fWig.
This gives us the PTAS.

Firstly note that if jCOPTk+1 j < �n, then if we only consider
the agreements in the graphGnCOPTk+1 , it affects the solution
by at most �n2. For now, we will assume that jCOPTk+1 j < �n
and will present the algorithm and analysis based on this
assumption. Later we will discuss the changes required to
deal with the other case.

In the following algorithm � is a performance param-
eter to be specified later. Let m = 883�40

�10 (log 1
� + 2),

k = 1
� and �0 = �3

88 . Let pi denote the density of
positive edges inside the cluster COPTi and nij the den-
sity of negative edges between clusters COPTi and COPTj .

That is, pi = Æ+(COPTi ; COPTi)=
�
jCOPTi j

2

�
and nij =

Æ�(COPTi ; COPTj)=(jCOPTi jjCOPTj j).
We begin by defining a measure of goodness of a clus-

tering fUijg of some set Ui with respect to fWig, that will
enable us to pick the right clustering of the set Ui.

Definition 2 Ui1; : : : ; Ui(k+1) is �0-good wrt
W1; : : : ;Wk+1 if it satisfies the following for all
1 � j; l � k

(1) Æ+(Uij ;Wj) � p̂j
�
Wj

2

�� 18�0m2

(2) Æ�(Uij ;Wl) � n̂jljWj jjWlj � 6�0m2

and, for at least (1� �0)n of the vertices x and 8 j,

(3) Æ+(Uij ; x) 2 Æ+(Wj ; x) � 2�0m.

Our algorithm is as follows:

Algorithm Divide&Choose:

1. Pick a random subset W � V of size m.

2. For all partitions W1; : : : ;Wk+1 of W do

(a) Let p̂i = Æ+(Wi;Wi)=
�
jWij
2

�
, and n̂ij =

Æ�(Wi;Wj)=jWijjWj j.
(b) Let q = n

m � 1. Consider a random partition of
V nW into U1; : : : ; Uq, such that 8i, jUij = m.

(c) For all i do:

Consider all (k + 1)-partitions of Ui and
let Ui1; : : : ; Ui(k+1) be the partition that is
�0-good wrt W1; : : : ;Wk+1 (by definition 2
above). If there is no such partition, choose
Ui1; : : : ; Ui(k+1) arbitrarily.

(d) Let Aj = [iUij for all i. Let a(fWig) be the
number of agreements of this clustering.

3. Let fWig be the partition of W that maximizes
a(fWig). Return the clusters fAig; fxgx2Ak+1

cor-
responding to this partition of W .

6

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

We will concentrate on the ”right” partition of of W given
by Wi = W \ COPTi , 8i. We will show that the number of
agreements of the clustering A1; : : : ; Ak+1 corresponding
to this partition fWig is at least OPT(�)� 2�n2. Since we
pick the best clustering, this gives us a PTAS.

We will begin by showing that with a high probability,
for most values of i, the partition of Uis corresponding to
the optimal partition is good with respect to fWig. Thus
the algorithm will find at least one such partition. Next we
will show that if the algorithm finds good partitions for most
Ui, then it achieves at least OPT�O(�)n2 agreements.

We will need the following results from probability the-
ory. Please refer to [2] for a proof.

Fact 1: Let H(n;m; l) be the hypergeometric distribution
with parameters n;m and l (choosing l samples from n
points without replacement with the random variable tak-
ing a value of 1 on exactly m out of the n points). Let
0 � � � 1. Then

Pr[jH(n;m; l)� lm

n
j � �lm

n
] � 2e�

�2lm
2n

Fact 2: Let X1; X2; :::; Xn be mutually independent r.v.s
such that jXi � E[Xi]j < m for all i. Let S =

Pn
i=1Xi,

then

Pr[jS �E[S]j � a] � 2e�
a2

2nm2

We will also need the following lemma:

Lemma 12 Let Y and S be arbitrary disjoint sets and Z be
a set picked from S at random. Then we have the following:

Pr[jÆ+(Y; Z)� jZj
jSj Æ

+(Y; S)j > �0jY jjZj] � 2e
��02jZj

2 .

Proof: Æ+(Y; Z) is a sum of jZj random variables Æ+(Y; v)
(v 2 Z), each bounded above by jY j and having expected

value Æ+(Y;S)
jSj .

Thus applying Fact 2, we get

Pr[jÆ+(Y; Z)� jZjÆ+(Y; S)=jSjj > �0jZjjY j]
� 2e��

02jZj2jY j2=2jZjjY j2 � 2e��
02jZj=2

Now notice that since we picked W uniformly at ran-
dom from V , with a high probability the sizes of Wis are
in proportion to jCOPTi j. The following lemma formalizes
this.

Lemma 13 With probability at least 1 � 2ke��
02�m=2, 8i,

jWij 2 (1� �0)mn jCOPTi j

Proof: For a given i, using Fact 1 and since
jCOPTi j � �n, Pr[jjWij � m

n jCOPTi jj > �0mn jCOPTi j] �

2e��
02mjCOPTi j=2n � 2e��

02�m=2. Taking union bound over
the k values of i we get the result.

Using Lemma 13, we show that the computed values of p̂i
and n̂ij are close to the true values pi and nij respectively.
This gives us the following two lemmas3.

Lemma 14 If Wi � COPTi and Wj � COPTj , then

with probability at least 1 � 4e��
02�m=4, Æ+(Wi;Wj) 2

m2

n2 Æ
+(COPTi ; COPTj)� 3�0m2.

Proof Sketch: We can apply lemma 12 in two steps -
first to bound Æ+(Wi; COPTj) in terms of Æ+(COPTi ; COPTj)

by considering the process of picking Wi from COPTi , and
second to bound Æ+(Wi;Wj) in terms of Æ+(Wi; COPTj) by
fixing Wi and considering the process of picking Wj from
COPTj . Then using lemma 13, we combine the two and get
the lemma.

Lemma 15 With probability at least 1� 8
�02 e

��03�m=4, p̂i �
pi � 9�0

Proof Sketch: Note that we cannot use an argument simi-
lar to the previous lemma directly here since we are dealing
with edges inside the same set. We use the following trick:
consider the partition of COPTi into 1

�0 subsets of size �0n0

each, where n0 = jCOPTi j. The idea is to bound the number
of positive edges between every pair of subsets of COPTi us-
ing argument in the previous lemma and adding these up to
get the result.

Now let Uij = Ui \ COPTj . The following lemma shows
that for all i, with a high probability all Uijs are �0-good wrt
fWig. So we will be able to find �0-good partitions for most
Uis.

Lemma 16 For a given i, let Uij = Ui \ COPTj , then with

probability at least 1�32k 1
�02 e

��03�m=4, 8j � k, fUijg are
�0-good wrt fWjg.

Proof Sketch: The first and second conditions of Defini-
tion 2 can be obtained by applying an argument similar to
lemmas 15 and 14 respectively.

In order to obtain the third condition, we consider
Æ+(x; Uij) as a sum of m f0; 1g random variables (corre-
sponding to picking Ui from V), each of which is 1 iff the
picked vertex lies in COPTj and is adjacent to x. Then an ap-
plication of Chernoff bound followed by union bound gives
us the condition.

Now we can bound the total number of agreements of
A1; : : : ; Ak; fxgx2Ak+1

in terms of OPT:

3Please refer to [5] for full proofs of the lemmas.

7

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

Theorem 17 If jCOPTk+1 j < �n, then A � OPT� 3�n2 with
probability at least 1� �.

Proof: From lemma 16, the probability that we were not
able to find a �0-good partition of Ui wrt W1; � � � ;Wk is at
most 32 1

�02 e
��03�m=4. By our choice of m, this is at most

�2=4. So, with probability at least 1 � �=2, at most �=2 of
the Uis do not have an �0-good partition.

In the following calculation of the number of agree-
ments, we assume that we are able to find good partitions
of all Uis. We will only need to subtract at most �n2=2
from this value to obtain the actual number of agreements,
since each Ui can effect the number of agreements by at
most mn.

We start by calculating the number of positive
edges inside a cluster Aj . These are given byP

a

P
x2Aj

Æ+(Uaj ; x). Using the fact that Uaj is good wrt
fWig (condition (3)),P

x2Aj
Æ+(Uaj ; x)

�P
x2Aj

(Æ+(Wj ; x)� 2�0m)� �0njUaj j
=

P
b Æ

+(Wj ; Ubj)� 2�0mjAj j � �0njUaj j
�P

bfp̂j jWj j
2

2 � 18�0m2g � 2�0mjAj j � �0njUaj j
The last follows from the fact that Ubj is good wrt fWig
(condition (1)). From Lemma 13,P

x2Aj
Æ+(Uaj ; x) � P

bfm
2

n2 p̂j(1� �0)2
jCOPTj j2

2

�18�0m2g � 2�0mjAj j � �0njUaj j
� m

n p̂j(1� �0)2
jCOPTj j2

2 � 18�0mn
�2�0mjAj j � �0njUaj j

Thus we bound
P

a Æ
+(Aj ; Uaj) as

P
a Æ

+(Aj ; Uaj) �
p̂j(1� �0)2

jCOPTj j2

2 � 18�0n2 � 3�0njAj j.
Now using Lemma 15, the total number of agreements is at
leastP

jfp̂j(1� �0)2
jCOPTj j2

2 g � 18�0n2k � 3�0n2

�P
jf(pj � 9�0)(1� �0)2

jCOPTj j2

2 g � 18�0n2k � 3�0n2

Hence, A+ � OPT+ � 11�0kn2 � 21�0n2k � OPT+ �
32�0n2k.
Similarly, consider the negative edges in A. Using lemma
14 to estimate Æ�(Uai; Ubj), we get,

P
ab Æ

�(Uai; Ubj) � Æ�(COPTi ; COPTj)
�9�0n2 � 2�0njAij � �0njAj j

Summing over all i < j, we get the total number of negative
agreements is at least OPT� � 12�0k2n2.

So we have, A � OPT � 44�0k2n2 = OPT � �n2=2.
However, since we lose �n2=2 for not finding �0-good parti-
tions of every Ui (as argued before), �n2 due to COPTk+1 , and
�n2=2 for using k = 1

� we obtain A � OPT� 3�n2.

The algorithm can fail in four situations: more than �=2
Uis do not have an �0-good partition with probability at
most �=2, lemma 13 does not hold for some Wi with prob-
ability at most 2ke��

02�m=2, lemma 15 does not hold for
some i with probability at most 8k

�02 e
��03�m=4 or lemma 14

does not hold for some pair i; j with probability at most
4k2e��

02�m=4. The latter three quantities are at most �=2 by
our choice of m. So, the algorithm succeeds with probabil-
ity greater than 1� �.

Now we need to argue for the case when jCOPTk+1 j � �n.
Notice that in this case, using an argument similar to lemma
13, we can show that jWk+1j � �m

2 with a very high prob-
ability. This is good because, now with a high probability,
Ui(k+1) will also be �0-good wrt Wk+1 for most values of
i. We can now count the number of negative edges from
these vertices and incorporate them in the proof of Theo-
rem 17 just as we did for the other k clusters. So in this
case, we can modify algorithm Divide&Choose to consider
�0-goodness of the (k+1)th partitions as well. This gives us
the same guarantee as in Theorem 17. Thus our strategy will
be to run Algorithm Divide&Choose once assuming that
jCOPTk+1 j � �n and then again assuming that jCOPTk+1 j � �n,
and picking the better of the two outputs. One of the two
cases will correspond to reality and will give us the desired
approximation to OPT.

Now each Ui has O(km) different partitions. Each iter-
ation takes O(nm) time. There are n=m Uis, so for each
partition of W , the algorithm takes time O(n2km). Since
there are km different partitions ofW , the total running time
of the algorithm is O(n2k2m) = O(n2eO(

1

�10
log (1

�
))). This

gives us the following theorem:

Theorem 18 For any Æ 2 [0; 1], using � = Æ
3 , Algorithm

Divide&Choose runs in time O(n2eO(
1

Æ10
log (1

Æ
))) and with

probability at least 1� Æ
3 produces a clustering with number

of agreements at least OPT� Æn2.

5 Minimizing disagreements in [�1; 1]-
weighted graphs

In section 3, we developed an algorithm for minimizing
disagreements in a graph with +1 and �1 weighted edges.
Now we consider the situation in which edge weights lie in
the interval [�1; 1].

To address this setting, we need to define a cost model –
the penalty for placing an edge inside or between clusters.
One natural model is a linear cost function. Specifically,
given a clustering, we assign a cost of 1�x

2 if an edge of
weight x is within a cluster and a cost of 1+x

2 if it is placed
between two clusters. For example, an edge weighing 0:5
incurs a cost of 0:25 if it lies inside a cluster and 0:75 oth-

8

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

erwise. A 0�weight edge, on the other hand, incurs a cost
of 1=2 no matter what.

It turns out that any algorithm that finds a good cluster-
ing in a f�1; 1g�graph also works well in the [�1; 1] case
under a linear cost function.

Theorem 19 Let A be an algorithm that produces a clus-
tering on a f�1; 1g�graph with approximation ratio �.
Then, we can construct an algorithm A0 that achieves an
approximation ratio of (2� + 1) on a [�1; 1]�graph, with
the linear cost function.

Proof: Let G be a [�1; 1]�graph, and let G0 be the
f�1; 1g�graph obtained when we assign a weight of 1 to
all positive edges in G and �1 to all the negative edges (0
cost edges are weighted arbitrarily). Let OPT be the opti-
mal clustering onG andOPT0 the optimal clustering onG0.
Also, let m0 be the measure of cost (on G0) in the f�1; 1g
penalty model and m in the new [�1; 1] penalty model.

Then,m0
OPT0 � m0

OPT � 2mOPT. The latter is because
OPT incurs a greater penalty of 1 in m0 as compared to m
only when a positive edge is between clusters or a negative
edge inside a cluster. In both these situations, OPT incurs
a cost of at least 1=2 in m and at most 1 in m0. This gives
us the above equation.

Our algorithm A0 simply runs A on the graph G0 and
outputs the resulting clustering A. So, we have, m0

A �
�m0

OPT0 � 2�mOPT.
Now we need to bound mA in terms of m0

A. Notice that,
if a positive edge lies between two clusters in A, or a neg-
ative edge lies inside a cluster, then the cost incurred by A
for these edges in m0 is 1 while it is at most 1 in m. So, the
total cost due to such mistakes is at most m0

A. On the other
hand, if we consider cost due to positive edges inside clus-
ters, and negative edges between clusters, then OPT also
incurs at least this cost on those edges (because cost due to
these edges can only increase if they are clustered differ-
ently). So cost due to these mistakes is at most mOPT.

So we have,

mA � m0
A +mOPT � 2�mOPT +mOPT

= (2�+ 1)mOPT

Another natural cost model is one in which an edge of
weight x incurs a cost of jxj when it is clustered improperly
(inside a cluster if x < 0 or between clusters of x > 0) and
a cost of 0 when it is correct. We do not know of any good
approximation in this case (see Section 7).

6 Random noise

Going back to our original motivation, if we imagine
there is some true correct clustering OPT of our n items,

and that the only reason this clustering does not appear per-
fect is that our function f(A;B) used to label the edges has
some error, then it is natural to consider the case that the the
errors are random. That is, there is some constant noise rate
� < 1=2 and each edge, independently, is mislabeled with
respect to OPT with probability �. In the machine learning
context, this is called the problem of learning with random
noise. As can be expected, this is much easier to handle
than the worst-case problem. In fact, with very simple al-
gorithms one can (whp) produce a clustering that is quite
close to OPT, much closer than the number of disagree-
ments between OPT and f . The analysis is fairly standard
(much like the generic transformation of Kearns [16] in the
machine learning context, and even closer to the analysis
of Condon and Karp for graph partitioning [11]). In fact,
this problem nearly matches a special case of the planted-
partition problem of McSherry [18]. We present our analy-
sis anyway since the algorithms are so simple.

One-sided noise: As an easier special case, let us con-
sider only one-sided noise in which each true “+” edge is
flipped to “�” with probability �. In that case, if u and v are
in different clusters of OPT, then jN+(u) \ N+(v)j = 0
for certain. But, if u and v are in the same cluster, then
every other node in the cluster independently has proba-
bility (1 � �)2 of being a neighbor to both. So, if the
cluster is large, then N+(u) and N+(v) will have a non-
empty intersection with high probability. So, consider clus-
tering greedily: pick an arbitrary node v, produce a cluster
Cv = fu : jN+(u) \ N+(v)j > 0g, and then repeat on
V � Cv . With high probability we will correctly cluster all
nodes whose clusters in OPT are of size !(logn). The re-
maining nodes might be placed in clusters that are too small,
but overall the number of edge-mistakes is only ~O(n).

Two-sided noise: For the two-sided case, it is technically
easier to consider the symmetric difference of N+(u) and
N+(v). If u and v are in the same cluster of OPT, then
every node w 62 fu; vg has probability exactly 2�(1� �) of
belonging to this symmetric difference. But, if u and v are
in different clusters, then all nodesw in OPT(u)[OPT(v)
have probability (1��)2+�2 = 1�2�(1��) of belonging
to the symmetric difference. (For w 62 OPT(u)[OPT(v),
the probability remains 2�(1 � �).) Since 2�(1 � �) is a
constant less than 1=2, this means we can confidently de-
tect that u and v belong to different clusters so long as
jOPT(u) [OPT(v)j = !(

p
n logn). Furthermore, us-

ing just jN+(v)j, we can approximately sort the vertices
by cluster sizes. Combining these two facts, we can whp
correctly cluster all vertices in large clusters, and then just
place each of the others into a cluster by itself, making a
total of ~O(n3=2) edge mistakes.

9

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

7 Open Problems and Concluding Remarks

In this paper, we have presented a constant-factor ap-
proximation for minimizing disagreements, and a PTAS for
maximizing agreements, for the problem of clustering ver-
tices in a fully-connected graph G with f+;�g edge labels.
In Section 5 we extended some of our results to the case of
real-valued labels, under a linear cost metric.

One interesting open question is to find good approxi-
mations for the case when edge weights are in f�1; 0;+1g
(equivalently, edges are labeled + or � but G is not nec-
essarily fully-connected) without considering the 0-edges
as “half a mistake”. In that context it is still easy to clus-
ter if a perfect clustering exists: the same simple strategy
works of removing the � edges and producing each con-
nected component of the resulting graph as a cluster. The
random case is also easy if defined appropriately. However,
our approximation techniques do not appear to go through.
We do not know how to achieve a constant-factor, or even
logarithmic factor, approximation for minimizing disagree-
ments. Note that we can still use our Divide & Choose
algorithm to achieve an additive approximation of �n2 to
the number of agreements. However, this does not imply a
PTAS for maximizing agreements because OPT might be
o(n2) in this variant.

A further generalization of the problem is to consider un-
bounded edge weights (lying in [�1;+1]). For example,
the edge weights might correspond to the log odds of two
documents belonging to the same cluster. Here the num-
ber of disagreements could be defined as the total weight of
positive edges between clusters and negative edges inside
clusters, and agreements defined analogously. Again, we
do not know of any good algorithm for approximating the
number of disagreements in this case. We believe the prob-
lem of maximizing agreements should be APX-hard for this
generalization, but have not been able to prove it. We can
show, however, that a PTAS would give an n� approxima-
tion algorithm for k-coloring, for any constant k.4 The in-
complete f�1; 0;+1g graph model seems to be as hard as
this problem.

For the original problem on a fully connected f+;�g
graph, another question is whether one can approximate the
correlation: the number of agreements minus the number
of disagreements. It is easy to show that OPT must be
(n)
for this measure, but we do not know of any good approx-
imation. It would also be good to improve our (currently
fairly large) constant for approximating disagreements.

References

[1] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Ef-
ficient testing of large graphs. In Proceedings of the 40th

4For details refer to [5].

Annual Symposium on Foundations of Computer Science,
pages 645–655, 1999.

[2] N. Alon and J. H. Spencer. The Probabilistic Method. John
Wiley and Sons, 1992.

[3] S. Arora, A. Frieze, and H. Kaplan. A new rounding proce-
dure for the assignment problem with applications to dense
graph arrangements. In Proc. IEEE FOCS , pages 21–30,
1996.

[4] S. Arora, D. Karger, and M. Karpinski. Polynomial time ap-
proximation schemes for dense instances of np-hard prob-
lems. In ACM Symposium on Theory of Computing, 1995.

[5] N. Bansal, A. Blum, and S. Chawla. Correlation clustering
(http://www.cs.cmu.edu/˜shuchi/papers/clusteringfull.ps).
Manuscript, 2002.

[6] S. Ben-David, P. M. Long, and Y. Mansour. Agnostic boost-
ing. In Proceedings of the 2001 Conference on Computa-
tional Learning Theory, pages 507–516, 2001.

[7] M. Charikar and S. Guha. Improved combinatorial algo-
rithms for the facility location and k-median problems. In
Proceedings of the 40th Annual Symposium on Foundations
of Computer Science, 1999.

[8] W. Cohen and A. McCallum. Personal communication,
2001.

[9] W. Cohen and J. Richman. Learning to match and cluster
entity names. In ACM SIGIR’01 workshop on Mathemati-
cal/Formal Methods in IR, 2001.

[10] W. Cohen and J. Richman. Learning to match and clus-
ter large high-dimensional data sets for data integration. In
Eighth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD), 2002.

[11] A. Condon and R. Karp. Algorithms for graph partitioning
on the planted partition model. Random Structures and Al-
gorithms, 18(2):116–140, 1999.

[12] F. de la Vega. Max-cut has a randomized approximation
scheme in dense graphs. Random Structures and Algorithms,
8(3):187–198, 1996.

[13] O. Goldreich, S. Goldwasser, and D. Ron. Property testing
and its connection to learning and approximation. JACM,
45(4):653–750, 1998.

[14] D. Hochbaum and D. Shmoys. A unified approach to ap-
proximation algorithms for bottleneck problems. JACM,
33:533–550, 1986.

[15] K. Jain and V. Vazirani. Primal-dual approximation algo-
rithms for metric facility location and k-median problem. In
Proc. 40th IEEE FOCS, 1999.

[16] M. Kearns. Efficient noise-tolerant learning from statistical
queries. In Proceedings of the Twenty-Fifth Annual ACM
Symposium on Theory of Computing, pages 392–401, 1993.

[17] M. J. Kearns, R. E. Schapire, and L. M. Sellie. Toward ef-
ficient agnostic learning. Machine Learning, 17(2/3):115–
142, 1994.

[18] F. McSherry. Spectral partitioning of random graphs. In
FOCS, pages 529–537, 2001.

[19] M. Parnas and D. Ron. Testing the diameter of graphs. In
Proceedings of RANDOM, pages 85–96, 1999.

[20] L. Schulman. Clustering for edge-cost minimization. In
ACM STOC, pages 547–555, 2000.

10

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

