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Abstract

Random matrix theory is a maturing discipline with decades of research in multiple
fields now beginning to converge. Experience has shown that many exact formulas are
available for certain matrices with real, complex, or quaternion entries. In random
matrix jargon, these are the cases β = 1, 2 and 4 respectively. This thesis explores
the general β > 0 case mathematically and with symbolic software.

We focus on generalizations of the Hermite distributions originating in physics (the
“Gaussian” ensembles) and the Laguerre distributions of statistics (the “Wishart”
matrices). One of our main contributions is the construction of tridiagonal matrix
models for the general (β > 0) β-Hermite and (β > 0, a > β(m − 1)/2) β-Laguerre
ensembles of parameter a and size m, and investigate applications of these new en-
sembles, particularly in the areas of eigenvalue statistics.

The new models are symmetric tridiagonal, and with entries from real distribu-
tions, regardless of the value of β. The entry distributions are either normal or χ,
so “classical”, and the independence pattern is maximal, in the sense that the only
constraints arise from the symmetric/semi-definite condition.

The β-ensemble distributions have been studied for the particular 1, 2, 4 values
of β as joint eigenvalue densities for full random matrix ensembles (Gaussian, or
Hermite, and Wishart, or Laguerre) with real, complex, and quaternion entries (for
references, see [66] and [70]). In addition, general β-ensembles were considered and
studied as theoretical distributions ([8, 51, 50, 55, 56]), with applications in lattice gas
theory and statistical mechanics (the β parameter being interpreted as an arbitrary
inverse temperature of a Coulomb gas with logarithmic potential). Certain eigenvalue
statistics over these general β-ensembles, namely those expressible in terms of inte-
grals of symmetric polynomials with corresponding Hermite or Laguerre weights, can
be computed in terms of multivariate orthogonal polynomials (Hermite or Laguerre).

We have written a Maple Library (MOPs: Multivariate Orthogonal Polynomials
symbolically) which implements some new and some known algorithms for computing
the Jack, Hermite, Laguerre, and Jacobi multivariate polynomials for arbitrary β.
This library can be used as a tool for conjecture-formulation and testing, for statisti-
cal computations, or simply for getting acquainted with the mathematical concepts.
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Some of the figures in this thesis have been obtained using MOPs.
Using the new β-ensemble models, we have been able to provide a unified per-

spective of the previously isolated 1, 2, and 4 cases, and prove generalizations for
some of the known eigenvalue statistics to arbitrary β. We have rediscovered (in the
Hermite case) a strong version of the Wigner Law (semi-circle), and proved (in the
Laguerre case) a strong version of the similar law (generalized quarter-circle). We
have obtained first-order perturbation theory for the β large case, and we have rea-
son to believe that the tridiagonal models in the large n (ensemble size) limit will
also provide a link between the largest eigenvalue distributions for both Hermite and
Laguerre for arbitrary β (for β = 1, 2, this link was proved to exist by Johannson
[52] and Johnstone [53]). We also believe that the tridiagonal Hermite models will
provide a link between the largest eigenvalue distribution for different values of β (in
particular, between the Tracy-Widom [91] distributions for β = 1, 2, 4).

Thesis Supervisor: Alan Edelman
Title: Professor of Applied Mathematics
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Chapter 1

Foreword

For a long time, the random matrix community has seen the cases β = 1, 2 and

sometimes 4 as special – quite often, as the only interesting cases – in the study of

β-Hermite (Gaussian), β-Laguerre (Wishart), and β-Jacobi (MANOVA) ensembles.

One reason for this discrimination is that interesting matrix models were known only

for these cases. Another reason is that for these three particular cases, there is a large

variety of available methods of approach (which are parameter-specific, even among

the {1, 2, 4} values). One may even argue that the existence of these three different

sets of methods is what created the impression that we are dealing with a “discrete”

set of ensembles.

We show that “continuous” β > 0 is not “exotic”, indeed, that it is merely a

general case for which methods of approach can be devised, based on the matrix

models. While the cases β = 1, 2, and 4 have some properties which may indeed be

seen as special, we shall advance the idea that there exists a unified, general-β theory

from which these cases stem, a theory which we are only starting to discover.
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Chapter 2

The β-ensembles

2.1 Introduction

For close to a century now, researchers in all branches of science have used randomiza-

tion as a tool for modeling large-scale systems. From studying populations to studying

atomic interactions, randomization has been used whenever the size and complexity

of the problem made a systematic, deterministic approach virtually impossible.

The study of random matrices emerged in the late 1920’s (with the publishing of

Wishart’s most important work in 1928) and 1930’s (with Hsu’s work [41]), and they

are a very quickly growing field of research, with communities like nuclear physics

[23, 33, 94], multivariate statistics [14, 47, 70], algebraic and enumerative combina-

torics [20, 36, 39], algorithms [84] and random graph theory [65], numerical analysis

[2, 17, 26], and of late, computational biology and genomics [29], and wireless com-

munications [93, 98].

Sometimes, different threads in this intricate web come together to produce very

surprising connections. Such a result is the numerical evidence concerning the zeros

of the Riemann zeta function on the x = 1/2 line; it was conjectured that ζ( 1
2

+ iλ)

has real roots because they correspond to a Hermitian operator. Much progress has

been made in investigating the spacings of the zeros of the ζ function by Montgomery

[69], and relating them to the spacings of a random Hermitian matrix (GUE). A

tremendous computational effort by Odlyzko [72] provided enough numerical evi-

14



dence to bolster Montgomery’s conjecture; this phenomenon is now known as the

Montgomery-Odlyzko law.

Another point of confluence for the different threads of random matrix theory is the

Baik-Deift-Johansson [7] proof that one of the important problems in combinatorics,

the distribution of the longest increasing subsequence of a random permutation of

length n is the same as the distribution of the largest eigenvalue of an n × n GUE

matrix. The asymptotic value of this distribution, as n → ∞, is also known as the

Tracy-Widom law for the GUE, since Tracy and Widom were the first to compute it

[91], and has since been identified as a limiting distribution for other combinatorics

problems.

Of the many possible “nice”, “classical” distributions that the entries of a random

matrix could have, one model is prevalent in the literature: the normal distribution.

This model is preferred not only because of its simplicity, but also (or mostly) be-

cause of two very important properties that distinguish it: invariance with respect

to orthogonal transformations, and the Central Limit Theorem (which makes it a

“natural” choice).

Many of the matrix models have thus standard normal entries, which are indepen-

dent up to a symmetry/positive definiteness condition (since the spectrum, whether

it corresponds to the energy levels of a Schrödinger operator or to the components

of a sample covariance matrix, is real). There are two approaches to symmetrizing

the matrix of standard, independent normal entries: in physics, the symmetric part

of the matrix (A + AT )/2 is extracted, and the resulting symmetric random matrix

is defined to be from a Gaussian ensemble. In statistics, the matrix is symmetrized

by multiplying by the transpose, AAT , and the resulting ensemble of positive definite

matrices was named after the researcher who first computed the joint element density

of (AAT ): the Wishart ensemble.

Later, statisticians defined another type of positive definite random matrix, which

essentially encodes two independent Wishart matrices, A and B, and named it a

MANOVA1) (a.k.a. Jacobi) matrix: (C ≡ A1/2BA1/2).

1from Multivariate ANalysis Of VAriance.
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The first normal distribution to be considered for the entries of the random ma-

trix was real; shortly after, the complex normal distribution was investigated, and a

question arose: what other types of normal entries could be considered, in terms of

the field over which they were distributed?

This lead Dyson [23] to the classification of matrix ensembles, and the threefold

way. To summarize, Dyson argued that in order for the random matrix model to be

consistent with the physical model, the entries had to be distributed over a division

algebra over R; and since the only three division algebras over the real numbers are

R, C, and H (the quaternions2), the only three types of normal variables were real,

complex and quaternion.

Later, Zirnbauer [99] and Ivanov [43] extended Dyson’s classification by studying

symmetric spaces. Their taxonomies include some Laguerre and Jacobi cases, and

also Dyson’s circular ensembles [22]; however, each and every one of these cases is not

outside of the “threefold way” realm, since they do not consider any other β values

(they always work with real, complex, or quaternion entries).

Ever since Dyson’s paper was published in 1963, the physics community has inves-

tigated closely the three Gaussian ensembles: Gaussian Orthogonal (GOE), unitary

(GUE), and symplectic (GSE), thus named for the type of “orthogonal” invariance.

These correspond, as in (2.1) to a choice of parameter β in the joint eigenvalue distri-

bution (β can be seen as counting the number of real Gaussians in each entry, that is,

1 for the reals, 2 for the complexes, and 4 for the quaternions). Many statistics were

thoroughly investigated for this triad of ensembles, starting with 1- and 2-point cor-

relation functions (also known as the level density, respectively, the nearest neighbor

spacing), determinants, and extremal eigenvalues. The approaches were somewhat

different (though also somewhat similar) for each of the three cases, which perhaps

contributed to the idea of a discrete set of ensembles.

On the other side, statisticians, though very interested in the real and complex

Wishart and MANOVA models, were less so in the quaternion ones. Similar statistics

2Dyson used Q instead of H, but since Q is more often identified with the rationals, the notation

was later changed to H (from Hamilton, the “father” of the quaternion division algebra).
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as in the case of the Gaussian ensembles were studied, sometimes with better success,

as it seems that the Wishart and MANOVA ensembles are more tractable. The meth-

ods used were virtually the same in every case, which permitted a more homogeneous

approach, and faster progress in the study of the eigenvalue statistics. Connections

were quickly established with other fields, like special functions (through connec-

tions with Schur and zonal polynomials, hypergeometric functions, and multivariate

orthogonal polynomials).

Many studies of integrals over the general β ensembles focused on the connection

with Jack polynomials; of these we note the ones inspired by Selberg’s work, like

Aomoto [4], Kaneko [56], Kadell [55], and others. The last two authors also worked

with multivariate Jacobi polynomials.

Another source of general β came in connection with the theory of Schrödinger

operators of arbitrary (inverse temperature) parameter β; in particular we refer to

the eigenvalues and eigenfunctions of these operators.

Finally, there are now instances of arbitrary β in algebraic geometry, which is one

of the fields whose connection with random matrices is perhaps the most surprising,

as random matrix integrals arise in the context of counting discrete things, like maps

on certain surfaces [36].

This work continues in the same (arbitrary β) pattern of thinking. The results

we prove here work in the general setting, and we believe they constitute strong

grounds for the existence of a unifying theory, which would explain the similarities

and differences between the different values of β, provide new insights on seemingly

discrete patterns of behavior, and thus help advance the study of random matrices

beyond the confines of the threefold way.

2.2 The Hermite (Gaussian) ensembles

The Gaussian ensembles were introduced by Wigner in the 1950’s. Though he started

with a simpler model for a random matrix (entries from the uniform distribution on

{−1, 1}, [94]), he noted without proving that the (limiting level density) theory applies
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in a more general setting. Wigner also derived the joint eigenvalue distribution for

the Gaussian ensembles.

Aside from the limiting level density, finite n exact level densities for each one

of the three ensembles are known, due to Gaudin [33] and Mehta [67]; asymptotics

for the level densities have also been explored by Basor, Tracy, and Widom [9]. For

a more in-depth history of the limiting level densities, see Chapter 6. Finally, the

extremal eigenvalue asymptotics were computed by Tracy and Widom [91].

The three Gaussian ensembles have joint eigenvalue p.d.f. (probability density

function)

HERMITE: fβ(λ) = cβH
∏

i<j

|λi − λj|βe−
Pn

i=1 λ2
i /2 , (2.1)

where

cβH = (2π)−n/2

n
∏

j=1

Γ(1 + β
2
)

Γ(1 + β
2
j)

. (2.2)

Until the ’80s, this topic was mostly studied by (mathematical) physicists (except,

arguably, for Tracy and Widom). The ’80s have marked the beginnings of a large

body of work on the subject by algebraic combinatorialists. A significant number of

combinatorial problems was found to be related to random matrix theory (mostly to

statistics of the GOE and GUE). These include the longest increasing subsequence in

a random permutation (Baik, Deift, Johansson [7], Okounkov [74]), plane partitions

(Borodin and Olshanski [12]), magic squares (Diaconis and Gamburd [32]), growth

models (Gravner, Tracy and Widom [37]), and counting maps on conformal surfaces

(Goulden and Jackson [36]).

Throughout this thesis, we will refer to the Gaussian ensembles (for general or

particular β) as Hermite ensembles (this is a technically more accurate description,

related to the type of weight function).
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2.3 The Laguerre (Wishart) and Jacobi (MANOVA)

ensembles

The Wishart ensembles were introduced by statisticians, and are older than the Gaus-

sian ones. In a statistics paper from 1928 [96], Wishart proposed a matrix model

which came to be known as the Wishart real model; he was also the first to compute

the joint element distribution of this model.

The study of the Wishart models intensified in the late 1960’s and 1970’s, taking

a different direction than the study of the Gaussian ensembles. The breakthrough

for the limiting level densities came in the paper of Marcenko and Pastur [64], in an

even larger context than the Wishart models.

Another breakthrough came through the work of James, who, in his study of the

Wishart real distribution, defined and described zonal polynomials [47], and started

the study of eigenvalue statistics in terms of special functions. Constantine [14]

generalized the univariate hypergeometric functions, in terms of zonal polynomials.

Eventually, this line of approach lead Jack to define what are now known as Jack

polynomials [44].

A significant amount of work towards computing eigenvalue statistics in terms of

special functions was done by Muirhead [71] and Chikuse [13]. Muirhead is also the

author of a reference book for the study of real and complex Wishart ensembles [70].

Finally, from the study of extremal eigenvalues for the Wishart ensembles we

mention the work of Krishnaiah and Chang [58], Silverstein [80], and Edelman [24].

Recently, Johnstone [53] and Johansson [52] have found a very interesting connec-

tion between the Gaussian ensembles and the Wishart ones: the distribution of the

scaled largest eigenvalue in either case is given by the same Tracy-Widom law (F1 for

the real case, F2 for the complex one, see [89, 90, 91]).

The Wishart (or Laguerre) m× n models have joint eigenvalue p.d.f.

LAGUERRE: fβ(λ) = cβ,a
L

∏

i<j

|λi − λj|β
m
∏

i=1

λa−p
i e−

Pn
i=1 λi/2 , (2.3)

with a = β
2
n and p = 1 + β

2
(m − 1). Again, β = 1 for the reals, β = 2 for the
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complexes, and β = 4 for the quaternions. The constant is

cβ,a
L = 2−ma

m
∏

j=1

Γ(1 + β
2
)

Γ(1 + β
2
j)Γ(a− β

2
(m− j)))

. (2.4)

Though this thesis does not use them explicitly, to complete the triad of classical

orthogonal polynomials (Hermite-Laguerre-Jacobi), we mention here the β-MANOVA

ensembles. They are better known in the literature as the Jacobi ensembles, with joint

eigenvalue p.d.f.

JACOBI: fβ(λ) = cβ,a1,a2

J

∏

i<j

|λi − λj|β
m
∏

j=1

λa1−p
i (1 − λi)

a2−p , (2.5)

with a1 = β
2
n1, a2 = β

2
n2, and p = 1 + β

2
(m− 1). As usual, β = 1 for real and β = 2

for complex; also

cβ,a1,a2

J =

m
∏

j=1

Γ(1 + β
2
)Γ(a1 + a2 − β

2
(m− j))

Γ(1 + β
2
j)Γ(a1 − β

2
(m− j))Γ(a2 − β

2
(m− j))

. (2.6)

The MANOVA real and complex cases (β = 1 and 2) have been studied by statisti-

cians (for a good reference on the β = 1 and β = 2 cases, see [70]). For our purposes,

they are relevant in the study of the general β context, as we will see in the next

section.

For reasons similar to the ones described in Section 2.2, throughout this thesis, we

will refer to the Wishart ensembles (for general or particular β) as Laguerre ensembles,

and to the MANOVA ensembles as Jacobi ensembles.

2.4 General β-ensembles as theoretical distribu-

tions

One of the first (if not the first) researcher to consider general values as the power

of the repulsion factor
∏

i6=j

|λi − λj| was Selberg [79]. One of his most important

contributions to random matrix theory was to compute the normalization constants

for the general β-Jacobi distribution. From this single integral, one can obtain many
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others (through changes of variables, and taking limits). For an extensive list, see

[66].

In the early ’80s, Askey and Richards [6] simplified the proof, and a few years later,

Aomoto generalized the Selberg integral [4]. Related to this, there is a conjecture of

Macdonald [62] involving Coxeter groups, which in certain special cases takes on the

Selberg integral form.

The first to obtain multivariate Jacobi polynomials as polynomial eigenfunctions

of (Jacobi forms of) the Schrödinger operator were Beerends and Opdam [10]. In

particular, they showed orthogonality with respect to the multivariate (general β)

Jacobi distribution.

Lasalle [59, 60, 61] pushed the study of multivariate orthogonal polynomials as

eigenfunctions of Schrödinger operators even further, by defining and describing the

multivariate Hermite and Laguerre polynomials as limiting cases of Jacobi.

Yan [97] generalized the Laguerre polynomials for every β and n (the number of

variables) equal to 2.

The next important step was taken by Forrester and Baker [8]. They proved the

orthogonality of the Hermite and Laguerre multivariate polynomials with respect to

the general β-Hermite and β-Laguerre distributions, and computed certain arbitrary β

eigenvalue statistics (such as the “ground state global density”, i.e. the level density)

in terms of them.

Finally, two important general β results were proved by Johansson; he showed

that the eigenvalues of general β-Hermite ensembles [51] and β-Jacobi ensembles [50]

obey a Central Limit Theorem (more about the former can be found in Chapter 6).

2.5 Contributions of this thesis

The most important contribution of this thesis is that it provides real tridiagonal

matrix models for any β-Hermite ensemble with β > 0, and for any β-Laguerre

ensemble of any parameter a ≥ (m − 1)β/2, where m is the size of the ensemble.

Almost all the results in this thesis are applications of these models.
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The Maple Library (MOPs: Multivariate Orthogonal Polynomials (symbolically))

was written for users in the many areas of application. We provide a complexity anal-

ysis of the main routines in Chapter 9. Even though the computational complexities

are inherently superpolynomial, today’s computers, because of the memory and speed

available, make it possible to evaluate all the quantities mentioned in this thesis in a

reasonable amount of time.

Below is the list of the main results of this thesis.

• We provide symmetric tridiagonal random matrix models for all β-Hermite en-

sembles. These models have classical entry distributions (standard normal and

χ distributions) over the real numbers, and their entries are mutually inde-

pendent up to the symmetry constraints. The joint eigenvalue p.d.f.s of these

models are exactly given by (2.1), for any β > 0. For the explicit format see

Table 2.1; for the proof, see Chapter 5, Section 5.2.

• We provide positive definite tridiagonal random matrix models for all β-Laguerre

ensembles. These models have χ distributed entries over the real numbers,

and their entries are mutually independent up to the positive definiteness con-

straints. The joint eigenvalue p.d.f.s of these models are exactly given by (2.3),

for any β > 0, and for any value of the parameter a ≥ (m − 1)β/2. This is

a natural restriction arising from the integrability of the p.d.f.Ṗreviously, the

known matrix models restricted a to be of the form nβ/2. For the explicit

format see Table 2.1; for the proof, see Chapter 5, Section 5.3.

• We prove a strong semi-circle law for all β-Hermite ensembles (Strong Law of

Large Numbers). While this result is subsumed by Johansson’s Central Limit

Theorem, our proof is combinatorial and uses the matrix models (it is similar

to Wigner’s proof and Arnold’s proof). For statement and proof, see Chapter

6.

• We prove a strong type of semi-circle law for all β-Laguerre ensembles (Strong

Law of Large Numbers). We believe that this result is new for the general β,

general a case. For statement and proof, once again see Chapter 6.
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• We obtain zero and first-order approximations for the large β eigenvalues of β-

Hermite and β-Laguerre ensembles of constrained parameter a. The zero-order

approximations (which are limiting values as β → ∞) turn out to be roots of

Hermite, respectively, Laguerre polynomials, while the first-order approxima-

tions (which are limiting distributions for the scaled eigenvalues) are Gaussian

variables with mean 0 and explicitly computed variance (see Chapter 7).

• We obtain zero- and first-order approximations for the level densities of the

β-Hermite and β-Laguerre ensembles of constrained a parameter, as weighted

sums of Gaussian variables. These become exact as β → ∞, but in fact β no

larger than 6, 8, or 10 provide good approximations (see Chapter 7, Section

7.2).

• We obtain a duality principle (between β and 2/β) for the (normalized) Jack

polynomial average over the corresponding β-Hermite ensemble; we also obtain

a simple proof for a conjecture of Goulden and Jackson [36], first proved by

Okounkov [73]. We compute the second moment of the determinant of a general

β-Hermite matrix, and provide 3− and 4−term recurrences for the third and

fourth moments. All these results are in Chapter 8, Section 8.5.

• We present the algorithms used in our Maple Library MOPs, and analyze their

complexities; we present both theoretical results and performance in practice;

see Chapter 9.

• We present some immediate generalizations for β-Laguerre eigenvalue statistics.

We display our random matrix constructions in Table 2.1.

Along the way, we obtain various other results: we compute some (we believe) new

Jacobians of matrix factorizations, including the Jacobian the symmetric tridiagonal

eigenvalue decomposition, we rediscover the Selberg integral in Hermite and Laguerre

form, and we prove that the expected value of a symmetric polynomial independent

of β over either the β-Hermite and β-Laguerre distributions are polynomials in β.
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Hermite Matrix

n ∈ N
Hβ ∼ 1√

2























N(0, 2) χ(n−1)β

χ(n−1)β N(0, 2) χ(n−2)β

. . .
. . .

. . .

χ2β N(0, 2) χβ

χβ N(0, 2)























Laguerre Matrix Lβ = BβB
T
β , where

m ∈ N

a ∈ R

a > β
2
(m− 1)

Bβ ∼

















χ2a

χβ(m−1) χ2a−β

. . .
. . .

χβ χ2a−β(m−1)

















Table 2.1: Random Matrix Constructions.

We emphasize that in this thesis we systematically treat the β = 1, 2, 4 in a unified

case, by providing formulas which are β-dependent, rather than listing three different

cases.

The final contribution to the understanding of the unified, general β principle,

even in the “threefold way” perspective, is given in the table of Figure 2-1.
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β
2
β
2

(n  − m+1) − 1

H
  C
R

H
  C
R

  C

H

R

A

A S   ASD

TQ  AQ
HA U  AU

A S   ASD
A
A TQ  AQ

U  AUH

−  λ / 2 

β
2

Decomposition
Singular  Value

Eigenvalue  Problem
Symmetric

∆| V( λ  )i
 
Π

n

 i=1
|

β

       

GOE Symmetric
GUE Hermitian 
GSE Self−Dual

Laguerre ensembles Wishart ensembles

Jacobi ensembles

   1
   2

MANOVA ensembles

  
a = 

  

b = 

 1

MANOVA  real

   2

    1
   2

     4

  4

      4

Hermite ensembles Gaussian ensembles

Technical name             Traditional name                    β Invariance

b a 
(QZ)

V(λ ) = e

V(λ

V(λ ) = 

) = λ
a

a = (n − m+1) − 1

Positive
Semi−Definite

Positive   1

Semi−Definite    Eigenvalue  Problem 

e

 −  λ  / 2 2

 Generalized  Symmetric

Wishart  complex
Wishart  quaternion

Wishart  real

MANOVA  complex

MANOVA  quaternion

(SVD)

(EIG)

Joint Eigenvalue Distributions:

Random Matrix Ensembles

    Field Property

λ  (1−λ)

  
  2

(n  − m+1) − 1

T
T

H
H

D

X
Y Q  YQ
X
Y U  YU
X S   XS
Y S   YS

D

4
2

1
2

1

4

 
 

  

A = [X   Y;   −conj(Y)   conj(X)];     A = (A+A’) / 2; 

A = randn(n) + i * randn(n);     A = (A+A’) / 2;   

A = randn(m, n);     A = A * A’; 

 Type of ensemble 

Hermite 

Laguerre

Jacobi

1

4

2

X = randn(n) + i * randn(n);     Y = randn(n) + i * randn(n);

  
 

A = randn(m, n) + i * randn(m, n);     A = A * A’; 

   1

   1  1     2    2X  = randn(m, n  ) + i * randn(m, n  );     Y  = randn(m, n  ) + i * randn(m, n  );    A = (X * X’) / (X * X’ + Y * Y’);

   2    2     2

   1      2 11

1Y  = randn(m, n  ) + i * randn(m, n  );     Y  = randn(m, n  ) + i * randn(m, n  );   

X  = randn(m, n  ) + i * randn(m, n  );     X  = randn(m, n  ) + i * randn(m, n  );   

 2 2    11  2  1  2   1X  = [X     X  ;   −conj(X  )   conj(X  )];     Y  = [Y     Y  ;   −conj(Y  )   conj(Y  )];

A  = (X * X’) / (X * X’ + Y * Y’);

    1    1

   2  2

X = randn(m, n) + i * randn(m, n);     Y = randn(m, n) + i * randn(m, n);
A = [X   Y;   −conj(Y)   conj(X)];      A = A * A’;

β

X  = randn(m, n  );   Y = randn(m, n  );   A  = (X * X’) / (X * X’ + Y * Y’);  2

Q  XQ  

U  XU 

   1

   1

   1

   1

   1

   1

A = randn(n);     A = (A+A’) / 2;
MATLAB code
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Chapter 3

Random Matrix concepts,

notation, and terminology

3.1 Basic distributions and random matrix models

One of the most important univariate (single variable) distributions in statistics and

random matrix theory is the normal (or Gaussian) distribution N(µ, σ2), of mean

µ and variance σ2. This distribution has a complex version which we denote by

N2(µ, σ2), of the form x+ iy, where x and y are i.i.d. real variables with distribution

N(µ, σ2). Similarly, one can define the quaternion complex version N 4(µ, σ2), with

form x+iy+jz+kw, where x, y, z, and w are all real i.i.d. variables with distribution

N(µ, σ2).

The normal (real, complex, quaternion) distribution easily generalizes to multi-

variate form, as a vector or matrix of normal (real, complex, quaternion) variables.

Throughout this thesis, we will denote a random Gaussian matrix as described below.

We will always use m≤n.

G(m,n) for an m × n matrix of real independent standard Gaussians (entries i.i.d.

with distribution N(0, 1)).

G2(m,n) for an m × n matrix of complex independent standard Gaussians (entries

i.i.d. with distribution N2(0, 1)).
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G4(m,n) for an m×n matrix of quaternion independent standard Gaussians (entries

i.i.d. with distribution N4(0, 1)).

The most important property of the multivariate Gaussian, be it real, complex,

or quaternion, is the orthogonal invariance. This makes the distribution impervi-

ous to multiplication by an orthogonal (unitary, symplectic) matrix, provided that

the two are independent. We offer for example the following MATLAB experiment.

A real matrix A ∼ G(m,n) is produced in MATLAB by making the assignment

A =randn(m,n); if orthogonal matrices Q1 (m×m) and Q2 (n× n) are produced in

whichever way the user might want, provided that A is not used at all in constructing

them1, no test can be devised that would differentiate between Q1A, A, and AQ2.

This property, as we will later see, is the key in analyzing the random matrices

which are constructed using the Gaussian distribution.

Many other important distributions are derived from the univariate Gaussian; of

these, the most useful for our purposes is the χr distribution (also known as the square

root of the χ2
r distribution). If the parameter r is a positive integer n, one definition

of χn is given by ||G(n, 1)||2, in other words, the 2-norm of a vector of independent

standard normals. The probability density function of χn can then be extended to

fr(x) =
1

2r/2−1 Γ
(

1
2
n
) xr−1 e−x2/2 ,

where r is any real number (the number of “degrees of freedom”). It is not hard to

see that a variable x with distribution χr has mean

µ =
√

2
Γ
(

1
2
(n + 1)

)

Γ
(

1
2
n
)

and variance

σ2 = 2
Γ
(

1
2
n
)

Γ
(

1
2
n+ 1

)

− Γ2
(

1
2
(n + 1)

)

Γ2
(

1
2
n
) .

Our sparse (bidiagonal, tridiagonal) matrix models are defined later in this thesis

with the use of the χ distribution; we will also use the p.d.f. of the χ distribution

in asymptotic approximations. However, we only need the Gaussian to define the

1One possible way is [Q1, R1] =qr(randn(n)), [Q2, R2] =qr(randn(n)).
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following two lists which capture the two types of full random matrices we will use

from now on. By way of construction, all matrix ensembles below are orthogonally

invariant.

Gaussian Orthogonal Ensemble (GOE);

symmetric m×m matrix obtained as (A + AT )/2 where A is G(m,m). The

diagonal entries are i.i.d. with distribution N(0, 1), and the off-diagonal entries

are i.i.d. (subject to the symmetry) with distribution N(0, 1
2
).

Gaussian Unitary Ensemble (GUE);

hermitian m×m matrix obtained as (A+AH)/2 where A is G2(m,m) and H

denotes the hermitian transpose of a complex matrix. The diagonal entries are

i.i.d with distribution N(0, 1), while the off-diagonal entries are i.i.d. (subject

to being hermitian) with distribution N 2(0, 1
2
).

Gaussian Symplectic Ensemble (GSE);

self-dual m×m matrix obtained as (A+ AD)/2 where A is G4(m,m) and D

denotes the dual transpose of a quaternion matrix. The diagonal entries are

i.i.d with distribution N(0, 1), while the off-diagonal entries are i.i.d. (subject

to being self-dual) with distribution N 4(0, 1
2
).

Wishart real ensemble (W (m,n), m ≤ n);

symmetric m×m matrix which can be obtained as AAT where A is G(m,n).

Wishart complex ensemble (W 2(m,n), m ≤ n);

hermitian m×m matrix which can be obtained as AAT where A is G2(m,n).

Wishart quaternion ensemble (W 4(m,n), m ≤ n);

self-dual m×m matrix which can be obtained as AAT where A is G4(m,n).

As might have become apparent, we use the superscripts 2 and 4 to indicate the

presence of 2 or 4 real Gaussians in each entry of the matrix. The normalizations have

been chosen so as to agree with the distributions described Chapter 2; the literature

contains these normalizations together with others.
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To complete the list of random matrices we investigate in this thesis, we present

below the sparse (bidiagonal, tridiagonal) matrix models we constructed for general

β. To define these, we use the (perhaps familiar) MATLAB notation [a : −t : a− kt]

to indicate a descending arithmetic progression of length k + 1 starting at a and

having step −t.

Gβ, a(m); a lower bidiagonal m × m matrix, with diagonal χ[2a : −β : 2a−(m−1)β] and

subdiagonal χ[(m−1)β : −β : β]; all entries are mutually independent.

β-Hermite ensemble (β > 0) (Hβ(n));

symmetric tridiagonal matrix with diagonal G(n, 1) and subdiagonal

1√
2
χ[(n−1)β : −β : β]; all entries are mutually independent subject to the

symmetry condition.

β-Laguerre ensemble of parameter a (β > 0, a > β(m− 1)/2) (Lβ, a(n));

symmetric matrix which can be obtained as BBT where B is Gβ, a(m).

3.2 Element and eigenvalue densities

In this section we list the joint element and joint eigenvalue densities of the six matrix

models (three Gaussian and three Wishart) we enumerated in the previous section.

These can be found in any book on random matrix theory (for good references, see

[66], [70]).

We also include the joint element and joint eigenvalue densities of the two types

of models (Hermite/Gaussian and Laguerre/Wishart) that we construct in Section 5

(we also refer to that section for the computation of the joint eigenvalue densities).

Before we proceed, we will need to define the multivariate Gamma function for

arbitrary β; the real and complex versions are familiar from the literature, and the

arbitrary β case represents an immediate extension:

Γβ
m(a) = πm(m−1)β/4

m
∏

i=1

Γ

(

a+
β

2
(i− 1)

)

. (3.1)
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Just as the univariate Gamma function generalizes to the multivariate one, the

shifted factorial (Pochhammer symbol, rising factorial (a)k = Γ(a+k)
Γ(a)

) becomes the

generalized multivariate shifted factorial.

We call

(a)β
κ =

length(κ)
∏

i=1

(

a− (i− 1)
β

2

)

κi

=

length(κ)
∏

i=1

Γ
(

a− (i− 1)β
2

+ κi

)

Γ
(

a− (i− 1)β
2

) (3.2)

the generalized shifted factorial, or generalized Pochhammer symbol.

In Tables 3.1 and 3.2 we list the joint element and joint eigenvalue densities for

the three Gaussian ensembles of the preceding section; the constants correspond to

the normalization we have chosen.

We recall the orthogonal invariance property; this is easily seen in the joint element

and eigenvalue density, since all matrices are symmetric. We use the notation etr(A)

for the exponential of the trace of A.

orthogonal β = 1

Gaussian unitary β = 2

symplectic β = 4

1

2n/2

1

πn/2+n(n−1)β/4
etr(−A2/2)

Table 3.1: Joint element density of an n× n matrix A from a Gaussian ensemble.

Below we denote by Λ the diagonal matrix of eigenvalues λ1, λ2, . . . , λn. We use

the notation ∆(Λ) =
∏

1≤i<j≤n(λi − λj).

orthogonal β = 1

Gaussian unitary β = 2

symplectic β = 4

πn(n−1)β/4

(2π)n/2

(Γ(1 + β
2
))n

Γβ
n(1 + β

2
)

|∆(Λ)|β etr(−Λ2/2)

Table 3.2: Joint eigenvalue density (Λ) of the n× n Gaussian ensembles.

Tables 3.3 and 3.4 contain joint element and joint eigenvalue densities for the

Wishart ensembles.

Finally, we present the joint element and joint eigenvalue densities for the two

tridiagonal models (β-Hermite and β-Laguerre) described in Table 2.1. For an n× n
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orthogonal β = 1

Wishart unitary β = 2

symplectic β = 4

1

2mnβ/2

1

Γβ
m (nβ/2)

etr(−W/2) (detW )β(n−m+1)/2−1

Table 3.3: Joint element density of an m× n matrix W from a Wishart ensemble.

orthogonal β = 1

Wishart unitary β = 2

symplectic β = 4

πm(m−1)β/2

2mnβ/2

Γ(1 + β
2
)m

Γβ
m(1 + β

2
)Γβ

m((n−m+ 1)β
2
)

× |∆(Λ)|β etr(−Λ/2) (det Λ)β(n−m+1)/2−1

Table 3.4: Joint eigenvalue density (Λ) of the m× n Wishart ensembles.

symmetric tridiagonal matrix, we use the following notation:

T =





























an bn−1

bn−1 an−1 bn−2

bn−2 an−2 . . .
...

. . . . . .
... a2 b1

b1 a1





























(3.3)

and for a bidiagonal matrix we use the notation

B =























xn

yn−1 xn−1

. . .
. . .

y2 x2

y1 x1























. (3.4)
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Consequently, an n× n tridiagonal positive semidefinite matrix L = BBT will have

an = x2
n , (3.5)

an−i = x2
n−i + y2

n−i , ∀ 1 ≤ i ≤ n− 1 , (3.6)

bn−i = xn−i+1yn−i , ∀ 1 ≤ i ≤ n− 1 . (3.7)

Tables 3.5 and 3.6 summarize the joint element and joint eigenvalue densities for

the β-Hermite ensembles and β-Laguerre ensembles.

Hβ(n) β > 0

π(n−1)(n−2)β/4−n/2

21−n/2

1

Γβ
m−1(

β
2
)

×
n−1
∏

i=1

biβ−1
i e−

Pn
i=1 a2

i /2 e−
Pn−1

i=1 b2i

Lβ, a(m)
β > 0

a > β(m− 1)/2

22m−2 π(m−1)2β/2

Γβ
m−1(

β
2
) Γβ

m(a− (m− 1)β
2
)
x

2(a−1)−β(m−1)
1 e−x2

1/2

×
m
∏

i=2

x
2a−(m−1)β−3
i e−x2

i /2

m−1
∏

i=1

yiβ−1
i e−y2

i /2

Table 3.5: Joint element densities for the β-Hermite and β-Laguerre ensembles.

3.3 Level densities

Many statistics of the Gaussian and Wishart ensembles have been calculated exactly

or asymptotically (as the size of the matrix models grows to infinity) in the half of

century that followed their discovery. Of these, arguably the most important ones

are level densities, spacing distributions, and extremal eigenvalue distributions.
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Hβ(n) β > 0
πn(n−1)β/4

(2π)n/2

(Γ(1 + β
2
))n

Γβ
n(1 + β

2
)

|∆(Λ)|β etr(−Λ2/2)

Lβ, a(m)
β > 0

a > β(m− 1)/2

πm(m−1)β/2

2ma

Γ(1 + β
2
)m

Γβ
m(1 + β

2
)Γβ

m(a− (m− 1)β
2
)

× |∆(Λ)|β etr(−Λ/2) (det Λ)a−β(m−1)/2−1

Table 3.6: Joint eigenvalue (Λ) densities for the β-Hermite and β-Laguerre ensembles.

Once the β-Hermite and β-Laguerre ensembles were introduced as theoretical

distributions for arbitrary β, there were many attempts at generalizing the known

results for these three types of statistics for β = 1, 2, 4. Perhaps the most notable

discoveries are those of Forrester and Baker [8], and of Johannson [50, 51]. Forrester

and Baker provide a closed-form expression for the level densities of the β-Hermite

ensembles, in terms of a multivariate Hermite polynomial. Johansson proves a very

strong type of asymptotic convergence of the level densities of β-Hermite and β-Jacobi

ensembles to given distributions (in the β-Hermite case, the semi-circle distribution).

Neither the spacings nor the extremal eigenvalues of the β-ensembles have been in-

vestigated much. We provide distributions for the extremal eigenvalues of β-Laguerre

ensembles in Chapter 10.

The notion of level density or one-point correlation function [66, Chapter4] comes

from nuclear physics, and the word “level” is meant to signify “energy level” of an

electron.

Definition 3.3.1. Let A be a matrix with eigenvalues λ1, . . . , λn. The empiri-

cal distribution function for the eigenvalues of A is the distribution given by p.d.f.

1
n

∑n
i=1 δ(x− λi).

If a probability measure is placed on A (and thus, on the eigenvalues of A), we

can talk about the distribution of a random eigenvalue of a random matrix of the

ensemble; in other words, of a random empirical distribution.
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If we average the random empirical density over the probability measure imposed

on A, we obtain the distribution of a random eigenvalue of the ensemble; this is known

as the level density of the ensemble.

Definition 3.3.2. The level density of an n × n ensemble is the distribution of a

random eigenvalue chosen from the ensemble. Equivalently, it is the average (over

the ensemble) empirical density.

There is another way to understand the level density. If one integrates out all but

one of the variables in the joint (unordered) eigenvalue distribution of an ensemble,

what is left is the level density.

For example, the level density (or one-point correlation function) of a Hermite

ensemble is

ρN,β(λ1) = cβH

∫

Rn−1

|∆(Λ)|βe
−

n
P

i=1
λ2

i /2
dλ2 . . . dλn .

The level densities have been computed exactly for β = 1, 2, 4 for the Gaussian

and Wishart ensembles; for β = 2 they depend in a simple way on the (univariate)

orthonormal Hermite (respectively Laguerre) polynomials, while for β = 1 and 4 they

have slightly more complicated forms (see [66]).

Level densities in a more general setting (β an even integer) have been considered

by Forrester and Baker [8].
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Chapter 4

Jacobians and Perturbation Theory

4.1 Jacobians of matrix factorizations

One of the primary functions of Numerical Linear Algebra is that to provide direct

and iterative algorithms for matrix operations; of these, a very important role is

played by matrix factorizations.

Up to some sign-restricting conventions and orderings, a matrix factorization can

be seen as a change of variables. Thus it has a Jacobian, which is the determinant of

the linearization of this change of variables.

Many of the Jacobians of matrix factorizations were first computed by researchers

of Random Matrix Theory, for the simple reason that they were needed in finding

an eigenvalue or singular value distribution. For a survey of some of the matrix

factorizations that occur in Random Matrix Theory, together with their Jacobians,

see [76].

Wigner [95] was the first to compute the Jacobian of the QΛQT factorization for a

symmetric matrix. On the statistics part, the Jacobian for the UΣV T transformation

of a real rectangular matrix was needed in computing the joint eigenvalue density for

the Wishart matrix; a derivation of this Jacobian can be found in [70].

Later, other matrix factorizations were considered, such as QR, LU , LL′, etc. In

what follows, we list some of the more important factorizations and their Jacobians,

for all three cases (real β = 1, complex β = 2, quaternion β = 4). First we need
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to define matrix differentials. Note that for a complex variable x + iy, if there is no

dependence between x and y, we have d(x + iy) = dx dy; in other words, when we

take differentials, we consider only the real parameters, as we will work over Rmn,

R2mn, R4mn. Similarly d(x+ iy + jz + kt) = dx dy dz dt.

If S is an n × n symmetric matrix, it has a total of n(n + 1)/2 parameters, and

its differential is defined as

dS =
∏

i≤j

dsij .

Similarly, if H is n×n hermitian, then the strictly upper triangular part contains

n(n−1) parameters (the real and the imaginary parts), while the diagonal contributes

an additional n (since the diagonal is real). Finally, if D is n×n quaternion self-dual,

the off-diagonal part contributes 2n(n − 1) parameters, and the real diagonal adds

another n, making the total of 2n2 − n.

If N is a non-symmetric rectangular matrix, it contains βmn parameters, and

dN =
∏

i,j

dnij =
∏

i,j

β
∏

k=1

dnk
ij ,

with
∏β

k=1 dn
k
ij the product of differentials of the β real parameters contained in nij.

If L is lower triangular, then it has a total of βn(n + 1)/2 parameters, and its

differential is the product of differentials of all:

dL =
∏

i≤j

dlij =
∏

i≤j

β
∏

k=1

dlkij ,

with the understanding that
∏β

k=1 dl
k
ij is the product of differentials of the real pa-

rameters contained in lij.

If Λ is a diagonal matrix, it has βn parameters, and

dΛ =
n
∏

i=1

β
∏

k=1

dλk
ii .

Differentials of orthogonal/unitary/symplectic matrices are slightly more compli-

cated, because the matrix property includes a special (and intricate) interdependence

among the matrix entries.

36



Let Q be an m × n orthogonal/unitary/symplectic matrix; the group of such

matrices defines a submanifold V β
m,n of dimension (βmn − βm(m − 1)/2 − m) over

Rβmn. This is called a Stiefel manifold (see [28, 70]). The correct differential on this

manifold is Q′dQ, where ′ stands for conjugate transpose. This differential represents

the surface element on this manifold. It can be shown that

∫

V β
m,n

(Q′dQ) =
2m πmnβ/2

Γβ
m(nβ

2
)

, (4.1)

where Γβ
m is defined as in 3.1. For β = 1, 2 we have multiple references, for example

Edelman [24]; we have computed the β = 4 case ourselves, though we believe it

probably appears in the literature.

The cases m = 1 and m = n are special; V β
1,n represents the unit sphere in Rβn

(Q′dQ is in this case the surface element), and when m = n, Q′dQ/Volume(V β
n,n)

is called the (real, complex, or quaternion) Haar measure. The Haar measure is

invariant under orthogonal/unitary/symplectic transformations.

We now have all the definitions that we need; first we list those factorizations which

are well-known enough to be included in virtually any comprehensive book on Random

Matrices. The originality of this approach comes from the fact that, to the best of

our knowledge, this is the first attempt to provide a unified treatment for all three

cases, using the β parameter, where appropriate. We have also included parameter

counts and clear descriptions of the matrix properties. Most of the references we list

are for the real and complex cases; most of the quaternion cases we have computed

ourselves because, though similar to the real and complex, they do not appear in the

literature.

Notation. Throughout this chapter, we use the notation ′ for conjugate transpose.

This follows MATLAB notation.

• LU decomposition (A = LU).

Valid for all three cases (β = 1, 2, 4). All matrices are n × n, L and UT are
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lower triangular, lii = 1, for all 1≤ i≤ n. Parameter count:

βn2 = β
n(n− 1)

2
+ β

n(n + 1)

2
.

Jacobian:

dA =

n
∏

i=1

|uii|β(n−i) dL dU.

References: real and complex cases, Muirhead [70].

• LL′ (Cholesky) decomposition (A = LL′).

Valid for all three cases (β = 1, 2, 4). A must be square n × n and positive

definite, and L is lower triangular with lii real for all 1 ≤ i ≤ n. Parameter

count:

β
n(n− 1)

2
+ n = β

n(n− 1)

2
+ n

(the diagonals of A and L are real).

Jacobian:

dA = 2n
n
∏

i=1

|lii|β(n−i)+1 dL.

References: real and complex cases, Edelman [24].

• QR (least squares) decomposition (A = QR).

Valid for all three cases (β = 1, 2, 4). Q is orthogonal/unitary/symplectic, R is

upper triangular. A and Q are m × n (assume m≥n), R is n × n. Parameter

count:

βmn = βmn− β
n(n− 1)

2
− n+ β

n(n − 1)

2
+ n

The parameter count for the orthogonal matrix is the dimension of the Stiefel

manifold Vn,m, since this time m≥n.

Jacobian:

dA =
n
∏

i=1

r
β(n−i+1)−1
ii dR (Q′dQ) .

References: real and complex cases, Edelman [24].
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• LQ (transpose least squares) decomposition (A = LQ).

Valid for all three cases (β = 1, 2, 4). Q is orthogonal/unitary/symplectic, L is

lower triangular. A and Q are m× n (assume m≤n), L is m ×m. Parameter

count:

βmn = βmn− β
m(m− 1)

2
−m + β

m(m− 1)

2
+m .

Jacobian:

dA =

m
∏

i=1

l
β(m−i+1)−1
ii dL (Q′dQ) .

Reference: real and complex cases, Edelman [24].

• QΛQ′ (symmetric eigenvalue) decomposition (A = QΛQ′).

Valid for all three cases (β = 1, 2, 4). A is n×n symmetric/hermitian/self-dual,

Q is n × n and orthogonal/unitary/symplectic, Λ is n × n diagonal and real.

To make the decomposition unique, we must fix the phases of the columns of

Q (that eliminates (β − 1)n parameters) and order the eigenvalues. Parameter

count:

β
n(n− 1)

2
+ n = β

n(n + 1)

2
− n− (β − 1)n+ n .

Jacobian:

dA =
∏

i<j

(λi − λj)
β dΛ (Q′dQ) .

References: real, complex, and quaternion cases, Mehta [66].

• UΣV′ (singular value) decomposition (A = UΣV ′).

Valid for all three cases (β = 1, 2, 4). A is m × n, U is m × n orthogo-

nal/unitary/symplectic, V is n × n orthogonal/unitary/symplectic, Σ is n × n

diagonal, positive, and real (suppose m≥n). Again, to make the decomposition

unique, we need to fix the phases on the columns of U (getting rid of (β − 1)n

parameters) and order the singular values. Parameter count:

βmn = βmn− β
n(n− 1)

2
− n− (β − 1)n+ n+ β

n(n + 1)

2
− n
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Jacobian:

dA =
∏

i<j

(σ2
i − σ2

j )
β

n
∏

i=1

σ
β(m−n+1)−1
i (U ′dU) dΣ (V ′dV ) .

References: real and complex cases, Muirhead [70].

In addition to these Jacobians, we include a few that are less familiar from the

literature. Though it stands to reason that these might have been computed before,

we found no references for them, and recomputed them ourselves, and we briefly

indicate how below.

• LDL′ (generalized Cholesky) decomposition (A = LDL′).

Valid for all three cases (β = 1, 2, 4). Amust be square n×n real/hermitian/self-

dual, L is lower triangular with lii = 1 for all 1 ≤ i≤ n, and D is n × n real

diagonal. Parameter count:

β
n(n− 1)

2
+ n = β

n(n− 1)

2
+ n

(the diagonals of A and L are real). Note that A is not required to be positive

definite.

Jacobian:

dA =
n
∏

i=1

|dii|β(n−i) dL dD.

The proof follows immediately from the LL′ decomposition.

• QS (polar) decomposition (A = QS).

Valid for all three cases (β = 1, 2, 4). A is m× n (m≤n), Q is m× n orthogo-

nal/unitary/symplectic, S is n× n positive definite. Parameter count

βmn = βmn− β
n(n− 1)

2
− n + β

n(n− 1)

2
+ n .

Jacobian:

dA =
∏

i<j

(σi + σj)
β

m
∏

i=1

σ
β(n−m+1)−1
i (Q′dQ) dS ,
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where σi are the singular values of A and the eigenvalues of S.

The proof follows from the fact that, if A = UΣV ′ is the singular value decom-

position for A, then Q = UV ′ and S = V ΣV ′, which also explains why the

Jacobian is written in terms of the singular values σi of A.

• CS decomposition (see [35]).

Valid for all three cases (β = 1, 2, 4). Q is n×n orthogonal/unitary/symplectic.

Then for any k + j = n, p = k − j ≥ 0, the decomposition is

Q =











U11 U12 0

U21 U22 0

0 0 U2





















Ip 0 0

0 C S

0 S −C





















V ′
11 V ′

12 0

V ′
21 V ′

22 0

0 0 V ′
2











,

such that U2, V2 are j × j orthogonal/unitary/symplectic,





U11 U12

U21 U22



 and





V ′
11 V ′

12

V ′
21 V ′

22



 are k×k orthogonal/unitary/symplectic, with U11 and V11 being

p× p, and C and S are j × j real, positive, and diagonal, and C2 + S2 = Ij.

Parameter count:

β
n(n + 1)

2
− n =

(

βj(j + 1) − (β − 1)j
)

+ j +

+
(

βk(k + 1) − k − β
p(p+ 1)

2
+ p
)

This count is a little special, and so we will give it in detail. The first part in

the right hand side counts the number of parameters in U2 and V2 (which are

independent), and accounts for the choice of phases, since U2CV
′
2 is the SVD of

the bottom j × j part of Q. The second term accounts for the j parameters of

C (which are the same in S).

Finally, the last parenthesis counts the number of parameters in





U11 U12

U21 U22





and





V ′
11 V ′

12

V ′
21 V ′

22



, and accounts for the fact that





U11

U21





(

V ′
11 V ′

12

)

is
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determined by the other matrices in the decomposition and thus, one has to

subtract the missing number of parameters. Since the number of parameters in

either





U11

U21



 or
(

V ′
11 V ′

12

)

, given the rest of the orthogonal matrices, is

βp(p+ 1)/2 − p, the count follows.

Note that the choice of phases in U2, V2 determines all phases in the decompo-

sition.

Now let θi ∈ (0, π
2
), q≤ i≤j be the angles such that C =diag(cos(θ1), . . . ,cos(θj)),

and S =diag(sin(θ1), . . . ,sin(θj)). To ensure uniqueness of the decomposition

we order the angles, θi≥θj , for all i≤j.

For notational purposes, let U1 =





U11 U12

U21 U22



, and V ′
1 =

(

V ′
21 V ′

22

)

.

Jacobian:

(Q′dQ) =
∏

i<j

sin(θi − θj)
β sin(θi + θj)

β

j
∏

i=1

cos(θi)
β−1 sin(θi) dθ ×

× (U ′
1dU1) (U ′

2dU2) (V ′
1dV1) (V ′

2dV2) .

The proof follows from the decomposition itself. Note that V1 ∈ V β
j,k.

• Tridiagonal QΛQ′ (eigenvalue) decomposition (T = QΛQ′).

Valid for real matrices. T is an n× n tridiagonal symmetric matrix as in (3.3),

Q is an orthogonal n× n matrix, and Λ is diagonal. To make the factorization

unique, we impose the condition that the first row of Q is all positive. The

number of independent parameters in Q is n−1 and the can be seen as being all

in the first row q of Q. The rest of Q can be determined from the orthogonality

constraints, the tridiagonal symmetric constraints on A, and from Λ. Parameter

count:

2n− 1 = n− 1 + n .

Jacobian:

dT =

∏n−1
i=1 bi

∏n
i=1 qi

(dq) dΛ.
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Note that the Jacobian is written as a combination of parameters from T and

q, the first row of Q, and (dq) is the surface element on the sphere.

For a proof, the reader is referred to Section 4.3.

• Tridiagonal BB′ (Cholesky) decomposition (T = BB ′).

Valid for real matrices. T is an n × n real positive definite matrix following

notation (3.3), B is an n × n real bidiagonal matrix as in (3.4). Parameter

count:

n− 1 = n− 1 .

Jacobian:

dT = 2mx1

n
∏

i=2

x2
i dB . (4.2)

The proof follows from (3.5, 3.6, 3.7).

4.2 An expression for the Vandermonde

Given a tridiagonal matrix T defined by the diagonal a = (an, . . . , a1) and sub-

diagonal b = (bn−1, . . . , b1), with each bi positive, let T = QΛQ′ be the eigendecom-

position of T . Let q be the first row of Q and λ = diag (Λ).

Lemma 4.2.1. Under the assumptions above, starting from q and λ, one can uniquely

reconstruct Q and T .

This is a special case of a more general result (Theorem 7.2.1, Parlett [77]).

Our next result establishes a formula for the Vandermonde determinant of the

eigenvalues of a tridiagonal matrix (denoted by ∆(Λ), and equal to
∏

i<j

(λi − λj)).
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Lemma 4.2.2. The Vandermonde determinant for the ordered eigenvalues of a sym-

metric tridiagonal matrix with positive sub-diagonal b = (bn−1, . . . , b1) is given by

∆(Λ) =
∏

i<j

(λi − λj) =

n−1
∏

i=1

bii

n
∏

i=1

qi

,

where (q1, . . . , qn) is the first row of the eigenvector matrix.

Proof. Let λ
(k)
i , i = 1 . . . k, be the eigenvalues of the k×k lower right-corner submatrix

of T . Then Pk(x) =
∏k

i=1(x−λ
(k)
i ) is the associated characteristic polynomial of that

submatrix.

For k = 1, . . . , n we have the three-term recurrence

Pk(x) = (x− ak)Pk−1(x) − b2k−1Pk−2(x) , (4.3)

and the two-term identity

∏

1 ≤ i ≤ k

1 ≤ j ≤ k − 1

|λ(k)
i − λ

(k−1)
j | =

k
∏

i=1

|Pk−1(λ
(k)
i )| =

k−1
∏

j=1

|Pk(λ
(k−1)
j )| . (4.4)

From (4.3) we get

|
k−1
∏

i=1

Pk(λ
(k−1)
i )| = b

2(k−1)
k−1 |

k−1
∏

i=1

Pk−2(λ
(k−1)
i )| . (4.5)

By repeatedly applying (4.3) and (4.4) we obtain

n−1
∏

i=1

|Pn(λ
(n−1)
i )| = b

2(n−1)
n−1

n−2
∏

i=1

|Pn−1(λ
(n−2)
i )|

= b
2(n−1)
n−1 b

2(n−2)
n−2 |

n−2
∏

i=1

Pn−3(λ
(n−2)
i )|

= . . .

=

n−1
∏

i=1

b2i
i .

Finally, we use the following formula due to Paige, found in [77] as the more

general Theorem 7.9.2:

q2
i =

∣

∣

∣

∣

Pn−1(λi)

P ′
n(λi)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Pn−1(λ
(n)
i )

P ′
n(λ

(n)
i )

∣

∣

∣

∣

∣

.
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It follows that

n
∏

i=1

q2
i =

n
∏

i=1

|Pn−1(λ
(n)
i )|

∆(Λ)2
=

n−1
∏

i=1

b2i
i

∆(Λ)2
,

which proves the result.

Remark 4.2.3. The Vandermonde determinant formula of Lemma 4.2.2 can also

be obtained from the Heine formula for the square of the Vandermonde determinant,

integrated against a weight function, as presented in Szegö [78, page 27, (2.2.11)].

4.3 Derivation of the tridiagonal T = QΛQ′ Jaco-

bian

This section presents a Random Matrix derivation for the Jacobian of the transfor-

mation T = QΛQ′, where T is a symmetric tridiagonal matrix. This result is found

in Lemma 4.3.1.

The derivation is done by relating the tridiagonal and diagonal forms of a GOE

matrix, as illustrated in Figure 4-1.

In this section, we will use the notations given in (3.3).

Lemma 4.3.1. The Jacobian J of the tridiagonal transformation T = QΛQ′ can be

written as

J =

n−1
∏

i=1

bi

n
∏

i=1

qi

.

Proof. To obtain the Jacobian, we shall study the transformation from GOE to 1-

Hermite ensemble (see Figure 4-1).

Let T be a 1-Hermite matrix (distributed like (2.1) with β = 1). The eigenvalues

of T are distributed as the eigenvalues of a symmetric GOE matrix A, from which T

can be obtained by tridiagonal reduction (for an explicit proof, see [21]).

We recall the notation of (3.3): denote by a = (an, an−1, . . . , a1) the diagonal of

T , and by b = (bn−1, bn−2, . . . , b1) the subdiagonal of T . The joint element density for
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as inλq, 

(q, )λT
Bijection

  Tridiagonal 

Reduction First Eigenvector Row
Tridiagonal    Eigenvalues &

Λ QT

Theorem 4.3.1

A = Q
[GOE]

ensemble
            1−Hermite

Figure 4-1: A dense symmetric matrix T can be tridiagonalized (left side) or diago-

nalized (right side). In brackets, we provide the distributions starting with that of A

(GOE).

T is then

µ(a, b) = ca,b e
− 1

2

n
P

i=1
a2

i

n
∏

i=1

bi−1
i e

−
n

P

i=1
b2i

, where ca,b =
2n−1

(2π)n/2
n−1
∏

i=1

Γ( i
2
)

.

Let

da = ∧n
i=1dai, db = ∧n−1

i=1 dbi, dλ = ∧n
i=1λi, (4.6)

and (dq) be the surface element of the n-dimensional sphere. Let µ(a(q, λ), b(q, λ))

be the expression for µ(a, b) in the new variables q, λ. We have that

µ (a, b) da db = µ (a(q, λ), b(q, λ)) J (dq) dλ ≡ ν(q, λ) (dq) dλ. (4.7)

We recall that matrices from the GOE have the following properties:

Property 1. The joint eigenvalue density is c1H |∆(Λ)|e
− 1

2

P

i
λ2

i
[66];

Property 2. The first row of the eigenvector matrix, q, is distributed uniformly

on the sphere, and it is independent of the eigenvalues.

We combine Properties 1 and 2 to get the joint p.d.f. ν(q, λ) of the eigenvalues

and first eigenvector row of a GOE matrix, and rewrite it as

ν(q, λ) dq dλ = n! c1H
2n−1Γ(n

2
)

πn/2
∆(Λ) e

− 1
2

P

i
λ2

i
dq dλ.
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We have introduced the n! and removed the absolute value from the Vandermonde

determinant, because the eigenvalues are ordered. We have also included the distri-

bution of q (as mentioned in Property 2, it is uniform, but only on the all-positive

2−nth of the sphere because of the condition qi ≥ 0).

Since orthogonal transformations do not change the Frobenius norm ||A||F =
n
∑

i,j=1

a2
ij of a matrix A, from (4.7), it follows that

J =
ν(q, λ)

µ(a, b)
=
n! c1H

2n−1Γ( n
2
)

πn/2

ca,b

∆(Λ)
n
∏

i=1

bi−1
i

.

All constants cancel, and by Lemma 4.2.2 we obtain

J =

n−1
∏

i=1

bi

n
∏

i=1

qi

.

Note that we have not expressed µ(a, b) in terms of q and λ in the above, and

have thus obtained the expression for the Jacobian neither in the variables q and λ,

nor a and b, solely; but rather in a mixture of the two sets of variables. The reason

for this is that of simplicity.

Remark 4.3.2. Our derivation of the Jacobian is a true Random Matrix derivation.

Alternate derivations of the Jacobian can be obtained either via symplectic maps or

through direct calculation. We thank Percy Deift and Peter Forrester, respectively,

for having shown them to us.

4.4 Perturbation Theory

In Chapter 7, we make use of perturbation theory in order to compute the first-order

asymptotics for the eigenvalues of the large β, fixed n, β-Hermite and β-Laguerre

ensembles. We give here the lemma we need in order to do that. For a reference

on perturbation theory, in particular to a more general form of the result below, see

Demmel’s book [18, Section 4.3].
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Lemma 4.4.1. Let A and B be n× n symmetric matrices, and let ε > 0. Assume A

has all distinct eigenvalues. Let M = A+ εB + o(ε), where by o(ε) we mean a matrix

in which every entry goes to 0 faster than ε. Let λi(X) denote the ith eigenvalue of

X, for every 1≤ i≤n. Finally, let Q be an eigenvector matrix for A. Then

lim
ε→0

1

ε
(λi(M) − λi(A)) = Q(:, i)TBQ(:, i) ,

where, following MATLAB notation, Q(:, i) represents the ith column of Q.

Remark 4.4.2. Equivalently, for every 1≤ i≤n,

λi(M) = λi(A) + εQ(:, i)TBQ(:, i) + o(ε) .
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Chapter 5

Matrix Models for general

β-Hermite (Gaussian) and

β-Laguerre (Wishart) ensembles

In this Chapter we present the two new random matrix models, and we prove that

the eigenvalue distributions are those given by (2.1) and (2.3). The results in this

chapter, together with some of the results of Chapter 4 were published in [21].

We make use of the lemmas we proved in Section 4. We begin with a motivation

for the tridiagonal models.

5.1 Bidiagonalization and tridiagonalization

Most efficient algorithms for computing eigenvalues of symmetric matrices or singu-

lar values of general rectangular matrices consist of two steps. The first step is a

“sparsification” of the matrix; in the symmetric case, it involves the reduction of the

matrix to symmetric tridiagonal form (“tridiagonalization”), and in the case of the

rectangular matrix, it involves the reduction of the matrix to bidiagonal form (“bidi-

agonalization”). This step is “finite”, that is, in perfect arithmetic, it is achievable in

finite time.

The second step is to use an iterative method to compute the eigenvalues/singular
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values of the sparse model, and it is “infinite”, i.e. in perfect arithmetic, in finite time,

it can obtain infinitely good approximations, but no exact answer.

The bidiagonalization method is due to Golub and Kahan [34], while the tridiag-

onalization method is due to Householder [40].

Because of the orthogonality invariance property of the multivariate Gaussian,

these two linear algebra algorithms can be applied stochastically, and it is not very

hard to compute the distributions of the resulting tridiagonal/bidiagonal matrix. The

following two theorems illustrate this.

Theorem 5.1.1. If A is an n × n matrix from the GOE (β = 1), GUE (β = 2),

or GSE (β = 4), then reduction of A to tridiagonal form shows that the matrix Hβ

from the β-Hermite ensemble (see below) has joint eigenvalue p.d.f. given by (2.1)

with β = 1, 2, 4.

We recall that the 1, 2 and 4 β-Hermite ensembles have the joint element distri-

bution illustrated below (tridiagonal, symmetric, and real):

Hβ ∼ 1√
2























N(0, 2) χ(n−1)β

χ(n−1)β N(0, 2) χ(n−2)β

. . .
. . .

. . .

χ2β N(0, 2) χβ

χβ N(0, 2)























.

Since the tridiagonal reduction is done by symmetric orthogonal multiplication

by a sequence of orthogonal Householder matrices, each of which only depends on the

current first column, the subdiagonal elements have the distribution of the norms of

the multivariate Gaussians (real, complex, quaternion).

Theorem 5.1.2. If W is from G(m,n) (β = 1), G2(m,n) (β = 2), or G4(m,n)

(β = 4), then reduction of W to bidiagonal form shows that the matrix Bβ from the

Gβ,a(m) distribution of parameter a = nβ/s (see below) has joint singular value p.d.f.

given by (2.3) with β = 1, 2, 4 and a = nβ/2.
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Remark 5.1.3. Implicitly, this shows that the Wishart real, complex, and quater-

nion ensembles have the same eigenvalue distributions as the β-Laguerre ensembles

of parameter a = nβ/2.

References for the real, complex and quaternion cases are [80] and [92].

The reasons why bidiagonalization yields the χ structures on the diagonal and

subdiagonal are again the orthogonal invariance of the multivariate Gaussian, and

the distribution of the integer-valued χ.

5.2 β-Hermite (Gaussian) model

LetHβ be a random real symmetric, tridiagonal matrix whose distribution we schemat-

ically depict as

Hβ ∼ 1√
2























N(0, 2) χ(n−1)β

χ(n−1)β N(0, 2) χ(n−2)β

. . .
. . .

. . .

χ2β N(0, 2) χβ

χβ N(0, 2)























By this we mean that the n diagonal elements and the n−1 sub-diagonal elements

are mutually independent, with standard normal variables on the diagonal, and 1√
2
χkβ

on the sub-diagonal.

Theorem 5.2.1. Let Hβ = QΛQT be the eigendecomposition of Hβ; fix the signs of

the first row of Q to be non-negative and order the eigenvalues in increasing order on

the diagonal of Λ. Let λ be the diagonal of Λ. Then λ and q, the first row of Q, are

independent. Furthermore, the joint density of the eigenvalues is

fβ(λ) = cβH
∏

i<j

|λi − λj|β e
− 1

2

n
P

i=1
λ2

i
= cβH |∆(Λ)|β e

− 1
2

n
P

i=1
λ2

i
,

and q = (q1, . . . , qn) is distributed as (χβ, . . . , χβ), normalized to unit length; cβh is

given by (2.2).
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Proof. Just as before, we denote by a = (an, . . . , a1) the diagonal of Hβ, and by

b = (bn−1, . . . , b1) the sub-diagonal. The differentials da, db, dq, dλ are the same as in

statement (4.6). For general β, we have that

(dHβ) ≡ µ(a, b) da db = ca,b

n−1
∏

k=1

bkβ−1
k e−

1
2
||T1||F da db = ca,b J

n−1
∏

k=1

bkβ−1
k e−

1
2
||T1||F dq dλ ,

where

ca,b =
2n−1

(2π)n/2
∏n−1

k=1 Γ
(

β
2
k
) .

With the help of Lemmas 4.2.1 and 4.3.1 this identity becomes

(dHβ) = ca,b

∏n−1
k=1 bk

∏n
k=1 qk

n−1
∏

k=1

bkβ−1
k e−

1
2
||T1||F dq dλ (5.1)

= ca,b

∏n−1
k=1 b

kβ
k

∏n
i=1 q

β
i

n
∏

i=1

qβ−1
i e−

1
2

P

i λ2
i dq dλ . (5.2)

Thus

(dHβ) =

(

cβq

n
∏

i=1

qβ−1
i dq

)

(

n! cβH ∆(Λ)βe−
1
2

P

i λ2
i dλ

)

.

Since the joint density function of q and λ separates, q and λ are independent.

Moreover, once we drop the ordering imposed on the eigenvalues, it follows that

the joint eigenvalue density of Hβ is cβH |∆(Λ)|βe− 1
2

P

i λ2
i , and q is distributed as

(χβ, . . . , χβ), normalized to unit length. From (5.2), it also follows that

cβq =
2n−1Γ(β

2
n)

[

Γ(β
2
)
]n . (5.3)

5.3 β-Laguerre (Wishart) model

Let

Bβ ∼

















χ2a

χβ(m−1) χ2a−β

. . .
. . .

χβ χ2a−β(m−1)

















,
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by this meaning that all of the 2m−1 diagonal and subdiagonal elements are mutually

independent with the corresponding χ distribution.

Let Lβ = BβB
T
β be the corresponding tridiagonal matrix.

Theorem 5.3.1. Let Lβ = QΛQT be the eigendecomposition of Lβ; fix the signs of

the first row of Q to be non-negative and order the eigenvalues increasingly on the

diagonal of Λ. Let λ be the diagonal of Λ. Then λ and the first row q of Q are

independent. Furthermore, the joint density of the eigenvalues is

fβ(λ) = cβ,a
L |∆(Λ)|β

m
∏

i=1

λa−p
i e−

Pn
i=1 λi/2 ,

where p = 1+ β
2
(m−1), and q is distributed as (χβ, . . . , χβ) normalized to unit length;

cβ,a
L is given by (2.4).

Proof. We will use throughout the proof the results of Lemma 4.2.1, Lemma 4.3.1,

and(4.2), which are true in the context of tridiagonal symmetric matrices with positive

sub-diagonal entries. By definition, Lβ is such a matrix.

We will again use the notations of Lemma 4.3.1, (4.2), and (4.6) for the differentials

da, db, dq, dλ, dx, and dy.

We define (dBβ) to be the joint element distribution on Bβ

(dBβ) ≡ µ(x, y) dx dy = cx,y

m−1
∏

i=0

xa−βi−1
m−i e−x2

i /2

m−1
∏

i=1

yβi−1
i e−y2

i /2 dx dy .

By (4.2), the joint element distribution on Lβ is

(dLβ) ≡ J−1
B→Tµ(x, y) dx dy (5.4)

= 2−mcx,y x
2a−β(m−1)−2
1 e−x2

1/2
m−2
∏

i=0

xa−βi−3
m−i e−x2

i /2
m−1
∏

i=1

yβi−1
i e−y2

i /2 dx dy ,(5.5)

where

cx,y =

∏m−1
i=1 Γ(iβ

2
)
∏m

i=1 Γ(a− β
2
(i− 1))

22m−1
.
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We rewrite (5.5) in terms of x, y, λ, and q:

(dLβ) = 2−mcx,y e
−

m
P

i=1
x2

i /2
e
−

m−1
P

i=1
y2

i /2
∏m−1

i=1 (xi+1yi)
∏m

i=1 qi
x

2a−β(m−1)−2
1 ×

×
m−2
∏

i=0

x
2a−β(m−i)−3
m−i

m−1
∏

i=1

yβi−1
i dq dλ

= 2−mcx,y e
−

m
P

i=1
x2

i /2
e
−

m−1
P

i=1
y2

i /2
∏m−1

i=0 x
2a−β(m−i)−2
m−i

∏m−1
i=1 yβi

i
∏m

i=1 qi
dq dλ.

Since the Vandermonde with respect to b and q and the ordered eigenvalues λ can

be written as

∆(Λ) =

∏m−1
i=1 bii
∏m

i=1 qi
,

it follows that

∆(Λ) =

∏m−1
i=1

(

xi+1yi

)i

∏m
i=1 qi

.

Then

(dLβ) = 2−mcx,y e
−

m−1
P

i=0
x2

n−i/2
e
−

m−1
P

i=1
y2

i /2

∏m−1
i=1

(

xi+1yi

)βi

∏m
i=1 q

β
i

m−1
∏

i=1

qβ−1
i

m−1
∏

i=0

x
2a−β(m−1)−2
m−i dq dλ

= 2−mcx,y e
−

m−1
P

i=0
x2

n−i/2
e
−

m−1
P

i=1
y2

i /2
∆(Λ)β

m−1
∏

i=1

qβ−1
i

(

m−1
∏

i=0

xm−i

)2a−β(m−1)−2

dq dλ .

The trace and the determinant are invariant under orthogonal similarity transfor-

mations, so tr(Lβ) = tr(Λ), and det(Lβ) = det(Λ). This is equivalent to

m−1
∑

i=0

x2
m−i +

m−1
∑

i=1

y2
i =

m
∑

i=1

λi ,

m−1
∏

i=0

x2
m−i =

m
∏

i=1

λi .

Using this, and substituting p for 1 + β
2
(m− 1), we obtain

(dLβ) =

(

cβq

m−1
∏

i=1

qβ−1
i dq

) (

m! cβ,a
L e

−
m
P

i=1
λi/2

∆(Λ)β
m
∏

i=1

λa−p
i dλ

)

,

where cβq is given in (5.3).
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From the above we see that q and λ are independent, and once we drop the

ordering the joint eigenvalue density is given by the β-Laguerre ensemble of parameter

a, while q is distributed like a normalized vector of χβ’s.

This concludes the proof of Theorem 5.3.1.

5.4 A few immediate applications

5.4.1 A new proof for Hermite and Laguerre forms of the

Selberg Integral

Here we present a quick proof for the Hermite and Laguerre forms of the Selberg

Integral [66], using the β-Hermite, respectively, β-Laguerre ensembles.

The Hermite Selberg integral is

IH(β, n) ≡
∫

Rn

|∆(Λ)|βe−
Pn

i=1 λ2
i /2 dλ

We have that

IH(β, n) = n!

(
∫

0≤λ1≤...≤λn<∞
∆(Λ)βe−

Pn
i=1 λ2

i /2 dλ

)

(

cβq

∫

Sn−1
+

n
∏

i=1

qβ−1
i dq

)

,

where cβq is as in (5.3). We introduce the n! because in the first integral we have

ordered the eigenvalues; Sn−1
+ signifies that all qi are positive.

Note that cβq can easily be computed independently of the β-Hermite ensembles.

Using the formula for the Vandermonde given by Lemma 4.2.2, the formula for

the Jacobian J given in Lemma 4.3.1, and the fact that the Frobenius norm of a

matrix in the tridiagonal 1-Hermite ensemble is the same as the Frobenius norm of

its eigenvalue matrix, one obtains

IH(β, n) = n! cβq

∫

Rn×(0,∞)n−1

∏n
i=1 qi

∏n−1
i=1 bi

∏n−1
i=1 b

βi
i

∏n
i=1 q

β
i

n
∏

i=1

qβ−1
i e−

Pn
i=1 b2i−

Pn
i=1 a2

i /2 da db

= n! cβq (2π)n/2

n−1
∏

i=1

∫

(0,∞)

bβi−1
i e−b2i dbi

= n!
2n−1Γ(β

2
n)

(

Γ(β
2
)
)n (2π)n/2

n−1
∏

i=1

Γ(β
2
i)

2
=

1

cβH
.
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The same reasoning yields the Laguerre Selberg Integral formula

Iβ,a,n
L =

1

cβ,a
L

.

5.4.2 The expected characteristic polynomial

The result below might be seen as an extension of the classical Heine theorem (see

Szegö [78, page 27, (2.2.11)] and Deift [15, Proposition 3.8]) which has β = 2. Note

that for β 6= 2, ∆(Λ)β can no longer be written as the determinant of a Vandermonde

matrix times its transpose, and the proof cannot be adapted.

The same result is found in a slightly more general form in [24], and its Jacobi

case was first derived by Aomoto [4].

Theorem 5.4.1. The expected characteristic polynomial Pn(y) = det(yIn − S) over

S in the β-Hermite and β-Laguerre ensembles are proportional to

Hn

(

y√
2β

)

, and L
2a
β
−n

n

(

y

2β

)

,

respectively. Here Hn and L
2a
β
−n

n are the Hermite, respectively Laguerre, polynomials,

and the constant of proportionality accounts for the fact that Pn(y) is monic.

Proof. Both formulas follow immediately from the 3-term recurrence for the character-

istic polynomial of a tridiagonal matrix (see formula (4.3)) and from the independence

of the variables involved in the recurrence.

5.4.3 Expected values of symmetric polynomials

Using the three-term recurrence for the characteristic polynomial of a tridiagonal

matrix, we obtain Theorem 5.4.2.

Theorem 5.4.2. Let p be any fixed (independent of β) multivariate symmetric poly-

nomial on n variables. Then the expected value of p over the β-Hermite or β-Laguerre

ensembles is a polynomial in β.

We remark that it is difficult to see this from the eigenvalue density.
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Proof. The elementary symmetric functions

ei(x1, x2, . . . , xn) =
∑

1≤j1<...<ji≤n

xj1xj2 . . . xji
i = 0, 1, . . . , n ,

can be used to generate any symmetric polynomial of degree n (in particular p).

The ei evaluated at the eigenvalues of a matrix are the coefficients of its char-

acteristic polynomial, and hence they can be written in terms of the matrix entries.

Thus p can be written as a polynomial of the n× n tridiagonal matrix entries.

To obtain the expected value of p over the β-Hermite or β-Laguerre ensemble,

one can write p in terms of the corresponding matrix entries, use the symmetry

to condense the expression, then replace the powers of the matrix entries by their

expected values.

The diagonal matrix entries are either normal random variables in the Hermite

case or sums of χ2 random variables in the Laguerre case. The subdiagonal entries

appear only raised at even powers in the ei and hence in p (this is an immediate

consequence of the three-term recurrence for the characteristic polynomial, (4.3)).

Since all even moments of the involved χ distributions are polynomials in β/2, it

follows that the expectation of p is a polynomial in β.

As an easy consequence we have the following corollary.

Corollary 5.4.3. All moments of the determinant of a β-Hermite matrix are integer-

coefficient polynomials in β/2.

Proof. Note that even moments of the χβi distribution are integer-coefficient polyno-

mials in β/2, and that the determinant is en.

5.4.4 Moments of the discriminant

The discriminant of a polynomial equation of order m is the square of the Vander-

monde determinant of the m zeroes of the equation. Thus, the discriminant of the

characteristic polynomial of a β-Hermite or β-Laguerre ensemble matrix is simply

D(Λ) = ∆(Λ)2.
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A simple calculation shows that the kth moments of D(Λ) in the two cases are,

respectively,

cβH
cβ+2k
H

=

n
∏

j=1

(1 + β
2
j)kj

(1 + β
2
)k

,

and

cβ,a
L

c
β+2k, a+k(m−1)
L

= 2km(m−1)
m
∏

j=1

(1 + β
2
j)kj (a− β

2
(m− j))k(j−1)

(1 + β
2
)k

.

where n and m are the matrix sizes for the Hermite and Laguerre cases, respectively.

Recall the Pochhammer symbolor shifted factorial (x)k ≡ Γ(x + k)/Γ(x).

Using the Jacobi form of the Selberg integral, one obtains that the moments of

the discriminant for the β-Jacobi case are

cβ, a1, a2

J

c
β+2k, a1+k(m−1), a2+k(m−1)
J

=

m
∏

j=1

(1 + β
2
j)kj (a1 − β

2
(m− j))k(j−1) (a2 − β

2
(m− j))k(j−1)

(1 + β
2
)k (a1 + a2 − β

2
(m− j))k(m+j−2)

.
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Chapter 6

Limiting empirical distributions for

β-Hermite and β-Laguerre

ensembles

As mentioned in Section 3.3, exact level densities have been computed for the Gaus-

sian ensembles for fixed n in terms of orthogonal polynomials [66]. Similar methods

apply to the study of Wishart matrices.

The asymptotic (scaled, and with n→ ∞) limiting shape of the empirical distribution

has been determined to be the semi-circle distribution of density (6.1) for the Gaus-

sian ensembles and the compactly supported distribution corresponding to density

(6.2) for the Wishart real and complex ensembles.

Most of the work covers the cases β = 1, 2, though β = 4 has also been considered

in some cases.

The convergence was first determined (in a simpler format) by the method of

moments in the Gaussian case by Wigner [94]. This result establishes that the level

densities converge to the semi-circle distribution. Later the result was improved to

convergence in probability of the underlying empirical distributions to the semi-circle

distribution by Grenander [38], and then strengthened by Arnold [5] to almost sure

convergence of the empirical distributions. Later, Trotter [92] found a different proof

for the same type of convergence proved by Grenander, using the tridiagonal matrix
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model in Chapter 5, for β = 1.

For the Wishart ensembles, convergence (again by the method of moments) was

investigated in a larger context by Marcenko-Pastur [64]; later Jonsson [54] strength-

ened the result to convergence in probability, and Silverstein and Bai [82] proved

almost sure convergence for a larger class of matrices.

Recall from Section 3.3 that the density of the empirical distribution function for

the eigenvalues λ1, . . . , λn of an n×n matrix A is 1
n

∑n
i=1 δ(x−λi), and that the level

density ρ for an n × n ensemble is the p.d.f. of a random eigenvalue of a random

matrix from the ensemble. Equivalently, the level density is the the expected (over

the ensemble) empirical density

ρ(x) = EA

[

1

n

n
∑

i=1

δ(x− λi)

]

.

There are multiple possibilities for convergence as n→ ∞, if one considers all three

layers: the random eigenvalue, the empirical distribution (or the uniform (discrete)

measure on the set of eigenvalues), and the level density. To illustrate this, we propose

the following thought experiment.

Suppose we have an infinite sequence of matrices, the first being of size 1, the

second of size 2, the third of size 3, . . . , which we denote by (A1, A2, . . . , An, . . .).

Suppose we choose a random eigenvalue (uniformly) from the eigenvalues of A1, one

eigenvalue (uniformly) from the eigenvalues of A2, etc; we denote these eigenval-

ues (λ1(A1), λ2(A2), . . . , λn(An), . . .). These are random variables with the empirical

distributions of the eigenvalues of A1, A2, etc, which we denote by (FA1 , FA2 , . . . , FAn , . . .).

In addition to this, we place a probability measure on the set of sequences

(A1, A2, . . . , An, . . .), which is the tensor product of a measure on 1 × 1 matrices

with a measure on 2 × 2 matrices, etc.

The level densities are then the p.d.f.s of the expected distributions (over the

probability measures we placed on A1, A2, . . .) of (λ1(A1), λ2(A2), . . . , λn(An), . . .).

We denote by (λ1, λ2, . . . , λn, . . .), a set of variables with c.d.f. corresponding to the

level density.

Let F be a distribution uniquely determined by its set of moments.
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To have convergence of moments of the level density to µ is to have that for every

k ∈ N, limn→∞E[λk
n] = E[Xk], where X is a variable distributed according to µ (see

[11]). Note that, by the symmetry of the eigenvalues,

En[λk
n] =

1

n
EAn[

n
∑

i=1

λi(An)k] =
1

n
E[tr(Ak

n)] .

Note that 1
n
tr(Ak

n) is the kth moment of the empirical distribution function of the

matrix An.

Convergence of moments is equivalent to convergence in distribution (pointwise,

see [11]), hence the above is equivalent to convergence of the expected empirical

distribution (i.e. the c.d.f. of the level density) to F , in the limit as n → ∞.

In other words, if one averages over (A1, . . . , An, . . .) the empirical distributions

FA1 , . . . , FAn, . . ., the obtained sequence of distributions converges to F .

Convergence in probability is stronger; it says that not only the average empirical

distribution converges, but that given ε, given any sequence of matrices

(A1, A2, . . . , An, . . .), with probability 1−ε, there is an N = Nε such that the empirical

distributions µAn themselves, for all n ≥ N , are “within ε” of µ.

This is equivalent to saying that for every k ∈ N, the sequence of kth moments of

the empirical distributions, that is, ( 1
1
tr(Ak

1),
1
2
tr(Ak

2), . . . ,
1
n
tr(Ak

n), . . .) converges in

probability to the kth moment of µ, E[Xk]).

To prove this, it is enough to show that Var( 1
n
tr(Ak

n)) → 0 for all k, as n → ∞
(this is immediate; for more on this see [38]).

Finally, almost sure convergence is even stronger; it says that with probabil-

ity 1, given any sequence of matrices (A1, A2, . . . , An, . . .), the distributions µAn

converge to µ. This is equivalent to saying that for every k ∈ N, the sequence

(1
1
tr(Ak

1),
1
2
tr(Ak

2), . . . ,
1
n
tr(Ak

n), . . .) converges almost surely to the kth moment of µ,

E[Xk]). Once again this is immediate [38].

The Borel-Cantelli Lemma (for a reference, see for example [11]) provides a tech-

nical condition for almost sure convergence; one needs to show that for every k and

ε,
∑

n≥1Pr(| 1
n
tr(Ak

n) − E[Xk]| > ε) < ∞. Note that since we already have that

E[ 1
n
tr(Ak

n)] → E[Xk], it is enough to show that
∑

n≥1 Pr(| 1
n
tr(Ak

n) − E[ 1
n
tr(Ak

n)]]| >
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ε) <∞.

But by Chebyshev’s inequality, for this to happen for every ε it is enough to have

that for every k,
∑

n≥1 Var( 1
n
tr(Ak

n)) <∞.

In Table 6 we illustrate these three types of convergence. We use the notation

µn,k for 1
n
tr(Ak

n), σk for E[Xk], F β
n for the empirical distribution of the eigenvalues of

An, and F for the limiting distribution. The technical and sufficient conditions must

be fulfilled for all k ∈ N.

Convergence Notation Technical Condition Sufficient condition

Of moments E[µn,k] −→ σk

In probability







µn,k
p−→ σk

F
β
n

p−→ F
Pr[|µn,k − E[µn,k]| > ε] → 0 Var(µk

n) → 0

Almost sure







µn,k
a.s.−→ σk

F
β
n

a.s.−→ F

∞
∑

n=1
Pr[|µn,k − E[µn,k]| > ε] < ∞

∞
∑

n=1
Var(Xk

n) < ∞

Table 6.1: Three types of convergence for our distributions; convergence of moments

refers to the level density, while convergence in probability and almost sure conver-

gence refer to the empirical distribution.

The two theorems below gather the main results mentioned in the papers cited.

Theorem 6.0.4. Let β ∈ {1, 2, 4}. Let An be a matrix from the β-Gaussian ensemble,

scaled by 1/
√

2nβ. Let F β
n be the empirical distribution function for the eigenvalues

of An. Then, as n → ∞, F β
n (x)

a.s.−→ S(x), where S(x) is the distribution (c.d.f.)

of the semi-circle

s(x) ≡







2
π

√
1 − x2, for x ∈ [−1, 1] ,

0, for x /∈ [−1, 1] .
(6.1)
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Theorem 6.0.5. Let β ∈ {1, 2, 4}. Let Bn be a matrix from the W β(m,n) Wishart

ensemble, scaled by
√

γ/(mβ). Let F β
m,n be the empirical distribution function for

the eigenvalues of An. Suppose that lim m → ∞
mβ
n

= γ≤ 1. Let a = (
√
γ − 1)2, b =

(
√
γ + 1)2. Then, as m→ ∞, F β

m,n(x)
a.s.−→ Eγ(x), where Eγ(x) is the distribution

(c.d.f.) corresponding to the density

eγ(x) ≡







1
2πγ

√
(x−a)(x−b)

x
, for x ∈ [a, b] ,

0, for x /∈ [a, b] .
(6.2)

When γ = 1 in the above, by making the change of variables x = y2, one obtains

the well-known quarter-circle law for the singular values of a matrix from Gβ(n, n).

Note that in both cases, the β parameter only influences the scaling, not the

limiting distribution law.

The two theorems above can be thought of as illustrating the Strong Law of

Large Numbers for the eigenvalues of a β-Hermite (Gaussian) or β-Laguerre (Wishart)

ensemble, with β = 1, 2, 4.

In 1998, Johansson [51] has proved that these two laws hold true in a more general

setting, and in a stronger form, for all β. Roughly speaking, Johansson proved that

a “Central Limit Theorem” is true for the eigenvalues of an arbitrary β-Hermite

ensemble. We present a weaker version of his result in Theorem 6.0.6.

Theorem 6.0.6. For any continuous function h : R → R,

∫

R

h(x) d(F β
n (x)) −→

∫ 1

−1

h(x)s(x)dx ,

where s(x) is given by (6.1). Moreover, there exists a distribution ν on [−1, 1] (inde-

pendent of β) such that

log

(
∫

R

eh(x) d(F β
n (x))

)

− n

∫ 1

−1

h(x)s(x)dx) −→
(

1 − 2

β

)
∫ 1

−1

h(x)ν(x)dx +
2

β
A(h) ,

where A(h) is a quadratic functional independent of β.

In recent work, Silverstein and Bai [83] have proved a similar result for a more

general class of Wishart-type matrices, for the real and complex case.
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Unlike the proofs of Theorem 6.0.4, which consist mainly of combinatorial counting

techniques (based on the full matrix models for β = 1, 2, 4), Johanssen’s proof makes

use of analysis tools (based only on the p.d.f. of the arbitrary β-Hermite ensembles).

In this chapter we use basic combinatorial methods, together with our new matrix

models, to obtain a generalization of Theorem 6.0.4 (which is not as strong as the

Johansson result for the β-Hermite ensembles) and a generalization of Theorem 6.0.5

for the general β case.

First we will need to show some combinatorial identities involving counting weighted

paths; we do this in Section 6.1. These identities will be used in the following sections.

To prove convergence, we use the “classical” approach of examining traces of

powers of the random matrix model in order to study the empirical distribution.

Remark 6.0.7. Many of the results mentioned above were obtained by examining

traces of powers of the random matrix model; it is also the method employed by Sosh-

nikov and Sinai [85] for proving a central limit theorem for traces of high powers of

the (full) matrix model.

In Sections 6.2 and 6.3, we show, starting from the models, that after the scaling,

the moments of the β-Hermite and β-Laguerre ensembles converge to those of the

limiting distribution (independent of β).

In Section 6.4 and 6.5, we compute the asymptotics of the variance for the vari-

ables 1
n
tr(Ak

n), and use them to show that almost sure convergence to the limiting

distribution occurs.

6.1 Dyck and alternating Motzkin paths, Catalan

and Narayana numbers

In this section we develop some combinatorial identities involving Dyck and Motzkin

paths, which will be used in the remaining sections of this chapter. To prove al-

most sure convergence, we will be looking at products of elements of the random

matrix models, the indices of which form integer sequences corresponding to Dyck
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and Motzkin paths. The identities we develop here will be used for counting the

number of asymptotically relevant terms.

The relationship between Dyck paths, Catalan and Narayana numbers, and level

densities of random matrix ensembles has been known to some researchers for quite

a while, starting with Wigner [94]. We explore here this relationship to what we

believe to be a new depth, by finding and proving new combinatorial identities which

are crucial to our proofs of almost sure convergence for the level densities.

A good reference for Dyck paths, Catalan numbers, and Narayana numbers, is

Stanley [87].

We start by giving a number of definitions.

Definition 6.1.1. The nth Catalan number Cn is defined as

Cn =
1

n+ 1

(

2n

n

)

.

The Catalan numbers count many different combinatorial structures; in particular,

they count Dyck paths.

Definition 6.1.2. A Dyck path of length 2n is a lattice path consisting of “rise”

steps or “rises” (↗) and “fall” steps or “falls” (↘), which starts at (0, 0) and ends

at (2n, 0), and stays above the x-axis (see Figure 6-1).

Figure 6-1: A Dyck path of length 24.

Lemma 6.1.3. The number of Dyck paths of length 2n is Cn.
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Proof. Consider a Dyck path; add at the end a fall step (from (2n, 0) to (2n+1,−1)).

The new path has n+ 1 falls, and n rises. Choose one of the n+ 1 falls, label it, and

cut the path into 2 pieces: before the labeled step and after (including the labeled

step). Translate the second piece to (0, 0), and glue the first piece at the end of it.

Now one has a path from (0, 0) to (2n+ 1,−1), on which the first step is a fall.

Consider any path from (0, 0) to (2n + 1,−1), on which the first step is a fall.

Find the leftmost minimum, cut the path in two (before the leftmost minimum and

after). Translate the second part to (0, 0), and glue the first part at the end of it –

the result is a Dyck path with an extra fall step at the end.

The above constructs a bijection between the set of Dyck paths with an extra fall

at the end and with a labeled fall, and the set of paths from (0, 0) to (2n+1,−1), on

which the first step is a fall. It follows that the number N of Dyck paths satisfies

(n+ 1)N =

(

2n

n

)

,

and so N = Cn.

Motzkin paths are relatively well-known to combinatorialists; we will need a spe-

cial type of Motzkin path, which we call an alternating Motzkin path. The definitions

are below.

Definition 6.1.4. A Motzkin path is a path consisting of “rise” steps or “rises”

(↗), “fall” steps or “falls” (↘), and “level” steps (→), which starts at (0, 0), ends

at (2k, 0), and stays above the x-axis.

Definition 6.1.5. An alternating Motzkin path of length 2k is a Motzkin path in

which rises are allowed only on even numbered steps, and falls are only allowed on

odd numbered steps. See Figure 6-2.

Remark 6.1.6. It follows from the definition that an alternating Motzkin path starts

and ends with a level step.

We count the alternating Motzkin paths with a given number r of rises, and prove

two simple lemmas.
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Figure 6-2: An alternating Motzkin path of length 24, with a total of 7 rises.

Lemma 6.1.7. The number of alternating Motzkin paths of length 2k with r rises is

the Narayana number N(k, r) = 1
r+1

(

k
r

)(

k−1
r

)

.

Proof. The proof follows very closely the proof of Lemma 6.1.3. Given an alternating

Motzkin path of length 2k with r rises, we delete the initial level step, and add at the

end of it a fall; we obtain a path from (1, 0) to (2k+ 1,−1) which has r+ 1 falls and

r rises; we label one of the falls and cut the path, translate the second part to (0, 0),

and glue the first part at the end. We obtain a path from (0, 0) to (2k,−1) which

starts with a fall step; the initial path can be recovered by cutting this new path at

the leftmost minimum and reassembling the two parts in inverse order.

Note that the “new” path from (0, 0) to (2k,−1) which starts with a fall still has

the alternating property, because we have deleted the initial level step: falls only on

odd numbered steps, rises only on even numbered steps. Therefore the number of

such paths is
(

k
r

)(

k−1
r

)

, since the first step is pre-determined.

Just as before, this operation constructs a bijection; it follows that the number of

alternating Motzkin paths of length 2k which have exactly r rises is

N(k, r) =
1

r + 1

(

k

r

)(

k − 1

r

)

.

Lemma 6.1.8. The number of level steps taken at altitude i is even, and exactly half

of them are on even-numbered steps.

Proof. Let us examine a “maximal” sequence of level steps at altitude i; we use

“maximal” to express the fact that the steps preceding and succeeding the sequence

of level steps (if they exist) are rises or falls. For the benefit of the reader, we include

Figure 6-3).

67



Assume i > 0, so that there are steps preceding and succeeding the sequence of

level steps.

If the sequence of level steps has even length, then half of them are on even-

numbered steps. Moreover, due to the alternating constraint, they have to either be

preceded by a rise and succeeded by a fall, or the reverse (see regions B,D in Figure

6-3).

A B DC

Figure 6-3: Looking at the four types of level sequences found at some level i in an

alternating Motzkin path: even-length ones (B, D) and odd-length ones (A,C).

If the sequence has odd length, there are two possibilities: either both the preced-

ing and the succeeding steps are rises (region A in Figure 6-3), or they are both falls

(region C). It is enough to examine the first case (region A).

In the first case, the path climbs to a higher altitude, and since it ends at (2k, 0),

it will have to eventually go below altitude i. Look at the closest place where the

path does that. The only way in which it can come back and leave level i is by a

sequence “fall, level, level, . . ., level, fall” (see region C). This sequence will also have

odd length; moreover, because of the alternating property, this pair of maximal length

level sequences will have exactly half of its steps on odd-numbered steps.

Note that the path cannot have two regions A without a region C between them

(nor the converse), since a region A implies that a descent to altitude i−1 has already

taken place and the only way in which this can happen is by passing through a region

C. So the regions A and C alternate in the path, with a region A being first and a

region C being last.

Thus, we can pair all the odd-length maximal level sequences at altitude i (each

region A gets paired with the following region C), so that each pair has exactly half
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of its steps on odd-numbered steps; this shows the claim for i > 0.

Assume now i = 0. If there are both preceding and succeeding steps, they can

only be a fall and a rise (in this order); in this case the sequence of level steps has

even length. Suppose that either the preceding or the succeeding step is missing (i.e.

we are at one end of the path or at the other). In the first case, the succeeding step

can only be a rise, so the path has odd length, and one more odd-numbered step

than even-numbered steps. We thus know that any alternating Motzkin path starts

with an odd-length sequence of level steps. Similarly, it ends with an odd-length

sequence of level steps; this sequence has one more even-numbered step. Hence the

pair formed by the first and last maximal sequences of level steps has exactly as many

odd-numbered steps as even-numbered steps. This concludes the proof.

Suppose we associate to each alternating Motzkin path of length 2k with r rises

a weight γr for some γ > 0.

Definition 6.1.9. We define the Narayana polynomial Nk(γ) to be the total weight

of the alternating Motzkin paths of length 2k (this is a generating series in γ). In

other words,

Nk(γ) =
k−1
∑

r=0

γr 1

r + 1

(

k

r

)(

k − 1

r

)

.

We have now the ingredients to prove the three main results of this section, which

are technical results and will be used in Sections 6.4 and 6.5.

Lemma 6.1.10. Let p and q be two Dyck paths of length 2k. For i ≥ 0, let ki(p)

(respectively ki(q)) be the number of rises p (respectively q) take from altitude i to

altitude i + 1. Then
∑

p,q

∑

i≥0

ki(p)ki(q) = C2k − C2
k .

Proof. Note that the right hand side of the equality counts the Dyck paths of length

4k which do not cross the x-axis in the middle; it is not hard to see that such paths

are at an even altitude 2i in the middle.

We prove the lemma by constructing a bijection between the set

(p, q, i, {1, . . . , ki(p)}, {1, . . . , ki(q)}) ,
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and the paths of length 4k which do not cross the x-axis in the middle. Since the size

of the first set is given by the right-hand side of the equality, while the size of the

second set is given by the left-hand side of the equality, constructing this bijection is

enough to prove the lemma.

Note that ki(q) is also the number of falls from altitude i to altitude i− 1.

Given p and q, choose an i ≥ 0. Choose a rise x in p from altitude i−1 to altitude

i, and one fall y in q from altitude i to altitude i − 1 (Figure 6-4). From now on,

every operation we perform on p is accompanied by a mirror-reversed operation in

q (“left” becomes “right”, “rise” becomes “fall”). We only describe the moves on p;

however, we illustrate both the moves on p and on q.

4
3
2
1
0

Figure 6-4: Choosing a rise from altitude 2 in p (left) and a fall from altitude 3 in q

(right).

In the path p, start at x, mark it, and go left; mark the first rise from altitude

i − 2 to altitude i − 1, then go left and mark the first rise from i − 3 to i − 2, etc.

Each of these i marked edges has a “closing” fall on the right side of x (see Figure

6-5).

4
3
2
1
0

Figure 6-5: Finding the “first rise” steps from 0 to 2 in p (left), and the “first fall”

steps from 2 to 0 in q (right); the curved arrows mark them, and the horizontal double

arrows find their respective “closing” steps.

We will be interested in these i “closing” fall steps. Flip them all to rises; each flip

increases the final altitude of the path by 2, for a total of 2i final altitude increase.
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Note that the flipped edges correspond to the rightmost rise from altitude i, the

rightmost rise from altitude i + 1, the rightmost rise from altitude i + 2, etc; hence,

given a path of length 2k made of k + i rises and k − i falls, which stays above the

x-axis, there is a simple transformation which flips the rightmost rises from altitude

i+1, i+2, etc, to falls, to get a Dyck path. Thus this process is reversible (see Figure

6-6).

8
7
6
5
4
3
2
1
0

Figure 6-6: Flipping the rises in p and the falls in q. The flipped edges correspond to

the rightmost rise from altitude i, the rightmost rise from altitude i+1, the rightmost

rise from altitude i+ 2, etc in the new path; the converse is true for q.

We concatenate the two paths obtained from p and q to obtain a Dyck path of

length 4k which is at altitude 2i in the middle (see Figure 6-7).

Figure 6-7: Concatenating the two paths from Figure 6-6; the resulting path is a

Dyck path of double length and altitude 6 = 2 × 3 in the middle.

Everything we did is reversible, and hence what we have in fact constructed is a

bijection from the set

(p, q, i, {1, . . . , ki(p)}, {1, . . . , ki(q)}) ,
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and the paths of length 4k which do not cross the x-axis in the middle.

Thus the lemma is proved.

Lemma 6.1.11. Let p and q be two Dyck paths of length 2k, and let mi(p) and mi(q)

be the number of vertices at altitude i in p, respectively q. Then

∑

p,q

∑

i≥0

mi(p)mi(q) = C2k+1 .

Proof. The proof is similar and involves constructing a bijection between the set

{(p, q, i, x ∈ {1, . . . , mi(p)}, y ∈ {1, . . . , mi(q)})} and the Dyck paths of length 4k+2.

Note that concatenation is no longer enough, because the total length increases

by 2. Also note that Dyck paths of length 4k+2 are at an odd altitude in the middle.

We use the same method of construction as in the previous lemma; given p, q, i,

we choose a vertex x at altitude i in p and a vertex y at altitude i in q. Then in p we

look left and identify the closest rises from altitude i− 1 to altitude i, from altitude

i − 2 to altitude i − 1, etc; we mark their “closing” falls on the right, and then flip

them. This increases the final altitude by 2i; we insert an additional rise from i to

i+1 starting from vertex x, so that the total increase in altitude is 2i+1. We do the

mirror-image operation for q, and glue the resulting paths together; we have a Dyck

path of length 4k + 2 which is at altitude 2i+ 1 in the middle.

To recover the paths we started with, cut the Dyck path of length 4k + 2 in the

middle, and then identify (on the left) the rightmost rises from altitude i to i + 1,

i+ 1 to i+ 2, etc; delete the one from i to i+ 1, and flip the others to falls to get p;

do the mirror-image transformation on the right to obtain q.

Since the size of the set {(p, q, i, x ∈ {1, . . . , mi(p)}, y ∈ {1, . . . , mi(q)})} is the

left hand side of the equation, the lemma is proved.

The last lemma of this section is similar to the ones preceding it.

Lemma 6.1.12. Let p and q be two alternating Motzkin paths of length 2k, p with

r1 rises, and q with r2 rises. For i ≥ 0, let ki(p) (respectively ki(q)) the number of

rises p (respectively q) take from altitude i to altitude i + 1. Also for i ≥ 0, let li(p)
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(respectively li(q)) be the number of level steps p (respectively q) takes from altitude i

to altitude i, on odd-numbered steps. Then

∑

p,q

(

γr1+r2

∑

i≥0

ki(p)ki(q) + γr1+r2+1
∑

i≥0

li(p)li(q)

)

= N2k(γ) −Nk(γ)
2 .

Proof. The proof is very similar to the one given for Lemma 6.1.10, and it once again

consists of finding a bijection. The right-hand side represents the total weight of the

alternating Motzkin paths of length 4k which do not have two level steps at altitude

0 in the middle. Such paths can be at both even or odd altitude in the middle.

On the left-hand side, we have two terms in the sum; the first term of which,
∑

p,q γ
r1+r2

∑

i≥0 ki(p)ki(q), we prove to correspond to the total weight of the alter-

nating Motzkin paths of length 4k which are at an even altitude in the middle.

The construction is the same as in Lemma 6.1.10, with a simple change: we can

not just simply flip falls to rises edges, because of the alternating property (see Figure

6-8)! Instead, for each fall z from altitude l to altitude l− 1 we choose the first level

step from altitude l − 1 to altitude l − 1 to the right of it (see Figure 6-9), switch

them, and then flip the falls to rises (see Figure 6-10)).

4
3
2
1
0

Figure 6-8: Choosing the rise; finding the corresponding ascending sequence, the

“closing” one, and the next level steps. The thick lines represent the ascending

sequence, the tripled lines – the “closing” one, and the “hatched” lines are the next

level steps.

We claim that this move is allowable, since the first level step will necessarily be

on an even-numbered step, because it must have been preceded by a fall.
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4
3
2
1
0

Figure 6-9: Putting each of the “closing” fall steps in correspondence with its next

level step.

Indeed, by definition it can not have been preceded by a level step. If it had been

preceded by a rise, we would have already visited altitude l − 2 again, so we must

have descended there somehow after z, and any descent implies the existence of a

sequence of the form “fall, an odd number of level steps, fall” – but this implies we

have already had some level steps before our “first” level step.

Hence the level step must have been preceded by a fall, and thus it is on an

even-numbered step.

4
3
2
1
0

Figure 6-10: Switching each “closing” fall with the corresponding level step, and then

flipping the falls to rises.

This is the construction for the left path; for the right path, we do the transforma-

tion in the mirror (instead of a rise, we choose a fall, because they are just as many;

instead of looking left to find the closest rises, we look to the right, etc). Note that

this preserves the alternating structure.

By the same reasoning as in Lemma 6.1.10, everything is reversible; also, the

weight of the pair of paths (given by γr1+r2) is preserved (the total number of up steps

is unchanged). Hence this transformation represents a weight-preserving bijection to
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the set of alternating Motzkin paths of length 4k which are at an even altitude in the

middle.

For the second term, we use a similar argument. Given two paths, p and q, we

examine p and choose a level step at altitude i that is on an odd-numbered step. Then

we perform the same “search-and-mark-then-flip” as before, except that we change

one more step, namely, the level step we started with - we replace it by an rise (which

is allowable). Just as before, we do the mirror-transformation to the right hand side

path.

We obtain thus a bijection to the set of alternating Motzkin paths of length 4k

which are at odd altitude in the middle; moreover, the bijection increases the weight

of the two paths by exactly γ (since we get rid of two level steps, and create a rise on

the left path, and a fall on the right one).

The statement of the lemma follows.

6.2 Convergence of moments: β-Hermite

We prove that for arbitrary β the level density of the n×n β-Hermite ensemble (scaled

by 1/
√

2nβ) converges to the semi-circle distribution S; we also find the first-order

asymptotics.

First, we prove an easy lemma.

Lemma 6.2.1. Let the vector q = (q1, . . . , qn) have distribution as in Theorems 5.2.1

and 5.3.1, that is, that of a vector of n independent χβ variables, normalized to unit

length. Then

E[q2
i ] =

1

n
, ∀ 1 ≤ i ≤ n

E[q4
i ] =

β + 2

n(nβ + 2)
, ∀ 1 ≤ i ≤ n

E[q2
i q

2
j ] =

β

n(nβ + 2)
, ∀ 1 ≤ i 6= j ≤ n .

Proof. Let x = (x1, . . . , xn) be a vector of n independent χβ variables.

We make the change of variables x = rq, and note that dx = rn−1 dq dr, and that

r and q separate. Moreover r is a χnβ variable.
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The calculations follow.

Remark 6.2.2. One can get any joint moments λ = (λ1, . . . , λn) of the qi variables

by the method sketched above.

Let Xn be a random eigenvalue of the matrix A from the scaled n× n β-Hermite

ensemble (scaled by 1/
√

2nβ). Then the distribution of Xn is the distribution of 1/n

tr(A) = 1/n
∑n

i=1 λi, and the kth moment µn,k of Xn is the same as the expected

value of 1/n tr(Ak) = 1/n
∑n

i=1 λ
k
i .

Theorem 6.2.3. Let β be arbitrary. Then µn,k → µk, as n → ∞, for all k ∈ N.

Here

µk =







1
4k

1
k/2+1

(

k
k/2

)

, if k is even ,

0, if k is odd ,

are the moments of the semi-circle.

First we need to prove the following easy lemma.

Lemma 6.2.4.

E

[

1

n
tr(Ak)

]

= E
[

(Ak)11

]

,

where (Ak)11 is the (1, 1) element of the kth power of A.

Proof. Let A = QΛQ′ be the eigenvalue decomposition of A. The scaling on A

translates into a scaling of the eigenvalues; Q is the same as in Theorem 5.2.1. We

have

(Ak)11 =

n
∑

i=1

λk
i q

2
i .

By Theorem 5.2.1, by the symmetry of q and independence of q and Λ, and by Lemma

6.2.1,

E[(Ak)11] = E[q2
1] E[

n
∑

i=1

λk
i ] =

1

n
tr(Ak) .

Now we are ready to prove Theorem 6.2.3.
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Proof. It is enough to show that

E[(Ak)11] → µk ,

as n→ ∞.

We denote the variables on the diagonal of A by (an, . . . , a1), and those on the sub-

diagonal by (bn−1, . . . , b1). From the model, for 1≤ i≤dk/2e, bn−i ∼ 1√
2nβ

1√
2
χ(n−i)β =

1
2

χ(n−1)β√
nβ

. Hence

E[b2j
n−i] →

1

4j
, ∀ 1 ≤ j ≤ bk

2
c and ∀ 1 ≤ i ≤ dk

2
e . (6.3)

On the other hand, for all 1≤ i≤dk/2e, an−i is a Gaussian scaled by 1√
2nβ

, and

hence

E[a2j+1
n−i ] = 0 , ∀ 1 ≤ j ≤ bk − 1

2
c , (6.4)

E[a2j
n−i] =

(2j − 1)!!

(2βn)j
→ 0, ∀ 1 ≤ j ≤ bk

2
c . (6.5)

Let us now examine E[(Ak)11]. We find that

Ak
11 =

∑

A1i1Ai1i2 . . . Aik−2ik−1
Aik−11 ,

where the sum is taken over all sequences i0 = 1, i1, i2, . . . , ik−1, ik = 1. Note that a

term in the sum is nonzero if and only if |ij − ij+1| ∈ {0, 1}, for all 0≤ j≤k − 1 (all

other entries are 0).

Consequently

E[Ak
11] =

∑

E[A1i1Ai1i2 . . . Aik−2ik−1
Aik−11] ,

over all sequences i0 = 1, i1, i2, . . . , ik−1, ik = 1 with |ij − ij+1| ∈ {0, 1}, for all 0≤j≤
k − 1.

Note that for k fixed, the sum above has a finite number of terms, depending only

on k. Also note that since the sequence starts with 1 and must return to 1, ij ≤bk
2
c.

Associate to each sequence a lattice path starting at (0, 0) such that a rise occurs

when ij+1 − ij = 1, a fall occurs when ij+1 − ij = 1, and a level step occurs when

ij = ij+1.
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Remark 6.2.5. Note that the path always stays above the x-axis (the indices are

always greater than or equal to 1). This is a Motzkin path (note the that we have no

alternation requirement). Such paths have the same number of rises and falls.

Consider a term Ai1i2Ai2i3 . . . Aiki1 = al1
n b

l2
n−1a

l3
n−1 . . . a

l
2b k

2 c+1

(n−b k
2
c)b

l
2b k

2 c+2

(n−b k
2
c−1)

.

By (6.4), (6.5), and (6.3), if one of l1, l3, . . . , l2b k
2
c+1 is non-zero (i.e. the corre-

sponding path has at least one level step), the expectation of such a term goes to

0.

Hence the only terms whose expected value will survive, asymptotically, are the

ones that contain no diagonal terms; those corresponding to Dyck paths (with only

rises and falls). Such sequences must then have even length.

If k = 2v+1 is odd, there are no such sequences. Moreover, by Remark 6.2.5, the

total number of level steps is odd, and hence the total number of level steps at some

altitude i is odd. But this implies that there is an i such that the sequence contains

a(n−i) to some odd power; since a(n−i) is independent from all the other entries, it

follows that the expectation of such a term is exactly 0. Thus µn,2v+1 = 0.

If k = 2v is even, the number of such sequences is exactly the number of Dyck

paths of size 2v. Let us now examine a term corresponding to such a sequence.

First, note that each entry bn−i must appear an even number of terms (because each

entry corresponds to either a rise or a fall between altitudes i − 1 and i, and the

number of steps between i and i − 1 is even). Hence we can write such a term as

b2k1
n−1b

2k2
n−2 . . . b

2kv
n−v, with

∑v
i=1 ki = 2v. Since the bn−i’s are independent, by (6.3), it

follows that each path contributes asymptotically 1/4v to the expectation, and thus

µn,2v → 1
4vCv = 1

4v
1

v+1

(

2v
v

)

.

Hence we obtain convergence of moments.

We will now look at the first-order behavior of the expectation. To do this, we

have to examine more carefully the moments of the variables involved.
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First, note that if b(n−i) ∼ 1
2
√

nβ
χ(n−i)β, then

E[b2j
(n−i)] =

1

4j

1

(nβ)j
2j

Γ
(

(n−i)β+2j
2

)

Γ
(

(n−i)β
2

) (6.6)

=
1

4j

(

1 − i

n

)(

1 − i

n
+

2

βn

)

. . .

(

1 − i

n
+

2(i− 1)

βn

)

(6.7)

=
1

4j

(

1 − j
i

n
+

2

βn

(

j

2

)

+O

(

1

n2

))

. (6.8)

Let k = 2v be even. There is a source of first-order terms from the highest-order

terms, corresponding to Dyck paths (with the sequence 1, i1, . . . , i2v−1, 1 describing

a Dyck path). Let Dv be the set of Dyck paths of length 2v. This source can be

obtained as

∑

p∈Dv

E[ b2k1
n−1b

2k2
n−2 . . . b

2kv
n−v ] =

∑

p∈Dv

E[b2k1
n−1] . . . E[b2kv

n−v] (6.9)

=
∑

p∈Dv

1

4v

v
∏

i=1

(

1 − iki

n
+

2

βn

(

ki

2

)

+O(n−2)

)

(6.10)

=
1

4v
Cv −

1

4vn

∑

p∈Dv

(

∑

0≤i≤v

i ki +
2

βn

∑

0≤i≤v

(

ki

2

)

)

(6.11)

The variables ki in the above count the number of even rises (or the number of

falls) between altitudes i− 1 and i.

There is another source of first-order terms. Let us consider paths that take level

steps (corresponding to sequences which contain diagonal terms). Since k = 2v and

the paths have the same number of rises and falls, it follows that the total number of

level steps is always even (and thus at least 2).

The presence of a power of a diagonal term is described by equations (6.4) and

(6.5). Hence we have a source of first-order terms from the generalized paths with

exactly 2 level steps, both at the same altitude (because they must correspond to the

same diagonal term), as in Figure 6-11. One can think of these paths as Dyck paths of

length 2v−2, with two level steps inserted at the same altitude. In expectation, such

a term will contribute asymptotically 1
4v−1

1
2nβ

, since the moments of the χ variables

are as given by (6.3).
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A
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32

A
22

A
21

sequence:

3
2
1
0

Figure 6-11: An example of path with exactly 2 level steps, both at the same altitude

(altitude 1); such a path accounts for a first-order term in the expectation of the 2vth

moment.

To count these paths, we note that for each Dyck path p of length 2v − 2, there

are
∑

i≥0

(

mi(p)+1
2

)

ways of choosing two places at the same altitude to insert level

steps, where mi(p) is the number of times altitude i is visited (that is, the number of

“vertices” on the path at altitude i).

For example, for the Dyck path of length 8 implicitly present in Figure 6-11, we

have
(

4
2

)

= 6 ways of inserting two level steps at altitude 0,
(

4
2

)

= 6 ways of inserting

two level steps at altitude 1,
(

3
2

)

= 3 ways of inserting two level steps at altitude 2,

and finally
(

2
2

)

= 1 way of inserting two level steps at altitude 3, for a total of 16

possibilities.

Hence the total first-order contribution coming from such steps is

1

2nβ

1

4v−1

∑

p∈Dv−1

∑

i≥0

(

mi(p) + 1

2

)

.

Adding this to the first-order term in equation (6.11), we get that

µn,2v =
1

4v
Cv −

Dv

4vn
+ 2

Ev

4vnβ
+O(n−2), with (6.12)

Dv =
∑

p∈Dv

∑

0≤i≤v

i ki , and (6.13)

Ev =





∑

p∈Dv

∑

0≤i≤v

(

ki

2

)

+
∑

p∈Dv−1

∑

i≥0

(

mi(p) + 1

2

)



 . (6.14)

If k = 2v + 1, since µn,2v+1 = 0, there are no first-order terms.
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6.3 Convergence of moments: β-Laguerre

We prove that for fixed β and γm = (mβ)/2a → γ ≤ 1, the level density of the

m×m β-Laguerre ensemble of parameter a (scaled by
√

γm/(mβ)) converges to the

Eγ distribution in moments, and we compute the second-order terms.

We use some of the results from Section 6.2, like the Lemmas 6.2.1 and 6.2.4.

Let Ym be a random eigenvalue of the matrix L = BBT from the scaled m × m

β-Laguerre ensemble of parameter a = mβ
2γm

(recall that the scaling is
√

γm/(mβ)).

Then the distribution of Ym is the distribution of 1/m tr(L) = 1/m
∑m

i=1 λi, and

the kth moment µm,k of Ym is the same as the expected value of 1/m tr(Lk) =

1/m
∑m

i=1 λ
k
i .

Theorem 6.3.1. Let β be arbitrary, and γm, a, and γ as above. Then µm,k,γm → µk,γ,

as m→ ∞, for all k ∈ N. Here

µk,γ =

k−1
∑

r=0

1

r + 1

(

k

r

)(

k − 1

r

)

γr

is the kth moment of the distribution eγ (see Theorem 6.0.5).

Proof. Let L = QΛQ′. Since by Theorem 5.3.1, the distribution of the first row q of

Q has the same distribution as for the β-Hermite ensembles, it follows that Lemma

6.2.4 still applies, and we only need to compute the asymptotics for E[(Lk)11].

Since L = BBT , with B diagonal, it follows that

E[(Lk)11] = E[((BBT )k)11] = E[(BBTBBT . . . BBT )11] =
∑

B1i1Bi1i2 . . . Bi2k−11 ,

where once again the sum is over all allowable sequences (i0 = 1, i1, . . . , i2k−1, i2k = 1).

Since B is bidiagonal, it follows that

1. |ij − ij+1| ∈ {0, 1}, for all 0≤j≤2k − 1, and

2. i2j − i2j+1 ∈ {0, 1}, for all 0≤j≤k − 1, while

3. i2j+1 − i2j+2 ∈ {−1, 0}, for all 0≤j≤k − 1.
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Thus the sequences (i0 = 1, i1, i2, . . . , i2k−1, i2k = 1) which produce non-zero terms

in the above sum correspond to alternating Motzkin paths of length 2k.

As before, we will use the notation a = (am, am−1, . . . , a1) for the diagonal of B,

and b = (bm−1, bm−2, . . . , b1) for the subdiagonal of B.

Note that since k is fixed, and the matrix B is scaled by
√

γm/(mβ),

E[b2j
(m−i)] ∼ γj

m → γj, ∀1 ≤  ≤ k , (6.15)

while

E[a2j
(m−i)] → 1, ∀1 ≤  ≤ k . (6.16)

If we think of the a’s in term corresponding to the sequence (i0 = 1, i1, . . . , i2k−1, i2k =

1) as level steps, and of the b’s as rises/falls steps (rises if they are on the odd-

numbered places – since they come from BT , falls if they are not – since they must

come fromB), then the summand corresponding to sequence (i0 = 1, i1, i2, . . . , i2k−1, i2k =

1) has highest-order term γr
m, where r is the total number of rises.

Since we have as many summands with highest order term γr
m as the number of

alternating Motzkin paths, it follows that

µm,k,γm ∼ Nk(γm) → Nk(γ) =
k−1
∑

r=0

1

r + 1

(

k

r

)(

k − 1

r

)

γr = µk,γ .

This proves convergence of moments.

We want to examine this in more detail, and find first-order terms in the above.

As before, for an alternating Motzkin path p, let ui(p) be the number of rises between

altitudes i and i− 1, and let li(p) be the number of level steps p takes from altitude i

to altitude i, on odd-numbered steps. Let AGDk,r be the set of alternating Motzkin

paths of length 2k with r rises.

Then the expectation becomes

E[((BBT )k)11] =

k−1
∑

r=0

∑

p∈AGDk,r

E[b
2u1(p)
m−1 ] . . . E[b

2uk(p)
m−k ] E[a2l1(p)

m ] . . . E[a
2lk(p)
m−k ] .

When we examine the b terms above more in detail we obtain that for all 1 ≤ i ≤ k,

E[b
2ui(p)
(m−i)] ∼ γui(p)

m

(

1 − 1

m
iui +

2

mβ

(

ui

2

)

+O(m−2)

)

, (6.17)
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while for all 0 ≤ i ≤ k,

E[a
2li(p)
(m−i)] ∼

(

1 − γm

m
ili + 2

γm

mβ

(

li
2

)

+O(m−2)

)

. (6.18)

It then follows that the first-order terms are given by

µm,k,γ = µk,γm − 1

m
Dk +

2

mβ
Ek + O(m−2), with (6.19)

Dk =

k−1
∑

r=0

∑

p∈AGDk,r

γr
m

∑

i≥0

i (ui + γmli) , and (6.20)

Ek =

k−1
∑

r=0

∑

p∈AGDk,r

γr
m

∑

i≥0

((

ui

2

)

+ γm

(

li
2

))

. (6.21)

6.4 Almost sure convergence: β-Hermite

In Section 6.2, we have examined the asymptotical behavior of the moments of the

level density, obtaining a weak convergence of moments. Now we will look at the

variance of those moments, and show that the first-order terms disappear – in other

words, that the variance Var(Xk
n) = E[(Xk

n − µn,k)
2] = O(n−2) asymptotically, which

implies that for every k,
∑∞

n=1 Var(Xk
n) <∞.

We will thus prove the following theorem:

Theorem 6.4.1. The set of moments (µn,k)k=1,...,∞ converges almost surely to

(µk)k=1,...,∞. Thus the distribution function F β
n converges almost surely to the semi-

circle distribution S.

We need to examine Var(Xk
n) = E[(Xk

n − µn,k)
2] = E[(Xk

n)2] − µ2
n,k for k fixed.

Since we already know the zero- and first-order expansion of µn,k for all k, we only

nee to look at E[(Xk
n)2].

We need the following lemma.

Lemma 6.4.2.

E[(Xk
n)2] =

nβ + 2

nβ
E[((Ak)11)

2] − 2

nβ
E[(A2k)11] .
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Proof. Note that

E[(Xk
n)2] = E

[

1

n2
(tr(Ak))2

]

=
1

n2
E[(

n
∑

i=1

λk
i )

2] (6.22)

=
1

n2

(

E[

n
∑

i=1

λ2k
i ] + E[

∑

i6=j

λk
i λ

k
j ]

)

(6.23)

=
1

n
E[(A2k)11] +

1

n2
E[
∑

i6=j

λk
i λ

k
j ] . (6.24)

As before, let A = QΛQ′ and q be the first row of Q; write

E[((Ak)11)
2] = E[(

n
∑

i=1

q2
i λ

k
i )

2] = E[

n
∑

i=1

q4
i λ

2k
i ] + E[

∑

i6=j

q2
i q

2
jλ

k
i λ

k
j ] .

By the independence of q and Λ, symmetry of q, and linearity of expectation,

applying Lemma 6.2.1 yields

E[((Ak)11)
2] = E[q4

1 ] E[
n
∑

i=1

λ2k
i ] + E[q2

i q
2
2 ] E[

∑

i6=j

λk
i λ

k
j ] (6.25)

=
β + 2

n(nβ + 2)
E[(A2k)11] +

β

n(nβ + 2)
E[
∑

i6=j

λk
i λ

k
j ] . (6.26)

From (6.24) and (6.26) it follows that

E[(Xk
n)2] =

nβ + 2

nβ
E[((Ak)11)

2] − 2

nβ
E[(A2k)11] .

Remark 6.4.3. It is not hard to see that using the same kind of reasoning, one could

get all the moments of 1
n
tr(Ak) in terms of moments of (Ajk)11 with j ∈ N .

Now we can prove Theorem 6.4.1.

Proof. Assume k = 2v + 1. We need to show that

nβ + 2

nβ
E[((A2v+1)11)

2] − 2

nβ
E[(A4v+2)11] = O(n−2) .

Note that

((A2v+1)11)
2 = (

∑

A1i1Ai1i2 . . . Ai2v1)
2 ,
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with i0 = 1, i1, . . . , i2v, i2v+1 = 1 describing a Motzkin path.

So

((A2v+1)11)
2 =

∑

A1i1Ai1i2 . . . Ai2v1A1j1 . . . Aj2v1 ,

with both i0 = 1, i1, . . . , i2v, i2v+1 = 1 and j0 = 1, j1, . . . , j2v, j2v+1 = 1 describing

Motzkin paths.

Note that since the length of the paths is 2v + 1, each path has at least one level

step, and in fact each path has an odd number of level steps. A level step, as before,

corresponds to the presence of a diagonal term Aii = an+1−i in the product.

Since the powers of the diagonal terms have expectations described by (6.4) and

(6.5), it follows that the highest-order term is given by exactly one level step in

the left path (i0 = 1, i1, . . . , i2v, i2v+1 = 1) and one level step in the right path

(j0 = 1, j1, . . . , j2v, j2v+1 = 1), both at the same altitude (i.e. corresponding to the

same diagonal term). Indeed if the altitudes are different, then one has two different

Gaussians in the sum, and the expectation of the summand will be 0 since the two

Gaussians are independent from the rest of the terms in the summand.

Hence the terms that are asymptotically relevant are those terms which can be

described by a pair of Dyck paths, an altitude, and two places at that altitude for

the two level steps (one in the left path, on in the right path).

The expectation of such a term can be obtained from (6.4) and (6.5) as 1
2nβ

1
42v .

Hence

E[((A2v+1)11)
2] =

1

42v

1

2nβ

∑

p,q∈Dv

∑

i≥0

mi(p)mi(q) +O(n−2) . (6.27)

We know by (6.12) that E[(A4v+2)11] = 1
42v+1C2v+1 +O(n−1).

Hence

E[(X2v+1
n )2] =

nβ + 2

nβ
E[((A2v+1)11)

2] − 2

nβ
E[(A4v+2)11] (6.28)

=
1

42v

1

2nβ

∑

p,q∈Dv

∑

i≥0

mi(p)mi(q) −
2

nβ

1

42v+1
C2v+1 +O(n−2)(6.29)

=
1

242v

(

∑

p,q∈Dv

∑

i≥0

mi(p)mi(q) − C2v+1

)

+O(n−2) (6.30)

= O(n−2) , (6.31)
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where the last equality uses Lemma 6.1.11 .

Assume now k = 2v.

We examine E[((A2v)11)
2]; as before,

((A2v)11)
2 =

∑

A1i1Ai1i2 . . . Ai2v−11A1j1 . . . Aj2v−11 ,

with both i0 = 1, i1, . . . , i2v−1, i2v = 1 and j0 = 1, j1, . . . , j2v−1, j2v = 1 describing

Motzkin paths.

Just as before, the presence of level steps in the Motzkin path (i.e. the presence of

diagonal terms in the two sequences) determines the order of the summand; moreover,

since k is even, the number of level steps in each path has to be even.

The zero-order terms will be given by the summands that contain no diagonal

terms; these summand will also yield some first-order terms. An additional source

of first-order terms will come from pairs of paths (p, q) such that exactly one has no

level steps, and the other one has exactly two level steps, both at the same altitude.

Assume p is a true Dyck path, and q a Dyck path to which we add two level steps,

both at the same altitude. Note that from an expectation point of view, it makes no

difference at what altitude we add the level steps, i.e. which Gaussian we insert in

the sequence, because the Gaussians are i.i.d., and the contribution from the square

of a Gaussian to the expectation of the summand is 1/(2nβ) by (6.5).

As usual, let ki(p) and ki(q) be the number of rises at altitude i (corresponding

to how many times we choose b2(n−i) in our summand), and let mi(q) be the number

of vertices in the path q, at altitude i. Then the number of ways in which one can

insert two level steps at the same altitude in q is

∑

i≥0

(

mi(q) + 1

2

)

.

We obtain that the highest order terms are given by

E[
∑

p,q∈Dv

b
2k1(p)+2k1(q)
n−1 b

2k1(p)+2k2(q)
n−2 . . . b

2kv(p)+2kv(q)
n−v ] ;

by (6.3), following the same line of thought that lead to the equation (6.12), the above
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is equal to

1

42v
C2

v − Dv

42vn
+ 2

Ev

42vnβ
+O(n−2) , where (6.32)

Dv =
∑

p,q∈Dv

∑

i≤0

i (ki(p) + ki(q)) , and (6.33)

Ev =

(

∑

p,q∈Dv

∑

i≤0

(

ki(p) + ki(q)

2

)

)

. (6.34)

The second source of first-order terms, as mentioned, comes from summands that

correspond to choosing a Dyck path and a Dyck path plus two level steps; the first-

order contribution from those terms is

1

2nβ
2E[

∑

p∈Dv

∑

q∈Dv−1

(

∑

i≥0

(

mi(q) + 1

2

)

)

b
2k1(p)+2k1(q)
n−1 . . . b

2kv(p)+2kv(q)
n−v ] , (6.35)

the above is equal to

2

2nβ

1

42v−1

∑

p∈Dv

∑

q∈Dv−1

(

∑

i≥0

(

mi(q) + 1

2

)

)

.

Putting (6.32) and (6.35) together we obtain that

E[((A2v)11)
2] =

1

42v
C2

v − Dv

42v−1n
+ 2

Ev

42vnβ
+

Fv

42vnβ
+O(n−2) where (6.36)

Dv =
∑

p,q∈Dv

∑

i≤0

i (ki(p) + ki(q)) , and (6.37)

Ev =
∑

p,q∈Dv

∑

i≤0

(

ki(p) + ki(q)

2

)

, and (6.38)

Fv =
∑

p∈Dv

∑

q∈Dv−1

∑

i≤0

(

mi(q) + 1

2

)

. (6.39)

On the other hand, when we square µn,k (see 6.12), we obtain

µ2
n,k =

1

42v
C2

v − D̃v

42vn
+

Ẽv

42vnβ
+

F̃v

42vnβ
+O(n−2) where (6.40)

D̃v = 2Cv

∑

p∈Dv

∑

i≤0

i ki(p) , and (6.41)

Ẽv = 2Cv

∑

p∈Dv

∑

i≤0

(

ki(p)

2

)

, and (6.42)

F̃v = 4Cv

∑

q∈Dv−1

∑

i≥0

(

mi(q) + 1

2

)

. (6.43)
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Note that Dv = D̃v, and that Fv = F̃v.

Hence, when we compute nβ+2
nβ

E[((A2v)11)
2]−µ2

n,k, we get some cancellations; what

remains is

nβ + 2

nβ
E[((A2v)11)

2] − µ2
n,k =

2

nβ

1

42v

(

C2
v + Ev − Ẽv

)

. (6.44)

But

Ev − Ẽv =
∑

p,q∈Dv

∑

i≥0

(

ki(p) + ki(p)

2

)

− 2Cv

∑

p∈Dv

∑

i≤0

(

ki(p)

2

)

(6.45)

=
∑

p,q∈Dv

∑

i≥0

((

ki(p) + ki(p)

2

)

−
(

ki(p)

2

)

−
(

ki(q)

2

))

(6.46)

=
∑

p,q∈Dv

∑

i≥0

ki(p)ki(q) . (6.47)

On the other hand,

E[(A4v)11] =
1

42v
C2v +O(n−1) . (6.48)

Putting (6.44), (6.47), (6.48) together, it follows that

E[(Xk
n)2] − µ2

n,k =
nβ + 2

nβ
E[((Ak)11)

2] − 2

nβ
E[(A2k)11] − µ2

n,k (6.49)

=
2

nβ

1

42v

(

C2
v +

∑

p,q∈Dv

∑

i≥0

ki(p)ki(q) − C2v

)

+O(n−2) .(6.50)

By Lemma 6.1.10, the quantity between parentheses is 0, and hence

V ar[Xn, k] = E[(Xk
n)2] − µ2

n,k = O(n−2) .

6.5 Almost sure convergence: β-Laguerre

In Section 6.3, we have examined the asymptotical behavior of the moments of the

level density, obtaining a weak convergence of moments. Now we will look at the

variance of those moments, and show that the first-order terms disappear – in other

words, that the variance Var(Y k
m) = E[(Y k

m − µm,k,γm)2] = O(m−2) asymptotically,

which implies that for every k,
∑∞

m=1 Var(Y k
m) <∞.

We will thus prove the following theorem:
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Theorem 6.5.1. The set of moments (µm,k,γm)k=1,...,∞ converges almost surely to

(µk,γ)k=1,...,∞. Thus the distribution function F β
m,γm

converges almost surely to the

distribution eγ.

Proof. We need to examine Var(Y k
m) = E[(Y k

m − µ2
m,k,γm

] = E[(Y k
m)2] − µ2

m,k,γm
for k

fixed.

Note that Lemma 6.4.2 still applies (the distribution of q, the first row of the

eigenvector matrix for L, is the same as in the Hermite case, and symmetry and

independence of q and the eigenvalues of L still apply).

Thus

V ar[(Y k
m)] =

mβ + 2

mβ
E[((Lk)11)

2] − 2

mβ
E[(L2k)11] − µ2

m,k,γm
;

hence we need to find zero- and first-order behavior for E[((Lk)11)
2] and µ2

m,k,γm
, and

zero-order behavior for E[(L2k)11]. The latter two we obtain from (6.19).

As usual, ui(p) is the number of rises in a path p ∈ AGD at level i and li(p) is the

number of level steps at altitude i on odd-numbered steps.

We obtain

E[(L2k)11] = µ2k,γm +O(m−1) , (6.51)

µ2
m,k,γm

= µ2
k,γm

− Dv

m
+
Ev

mβ
+O(m−2) , with (6.52)

Dv = 2µk,γm

k−1
∑

r=0

γr
m

∑

p∈AGDk,r

∑

i≥0

i (ui(p) + γmli(p)) , and (6.53)

Ev = 2µk,γm

k−1
∑

r=0

∑

p∈AGDk,r

γr
m

∑

i≥0

((

ui(p)

2

)

+ γm

(

li(p)

2

))

. (6.54)

Let us now turn our attention to E[((Lk)11)
2]. We have that

E[((Lk)11)
2] = E[(((BBT )k)11)

2] = E[
∑

(B1i1Bi1i2 . . . Bi2k−11B1j1Bj1j2 . . . Bj2k−11)] ,

where i0 = 1, i1, . . . , i2k−1, i2k = 1 and j0 = 1, j1, . . . , j2k−1, j2k = 1 are sequences cor-

responding to alternating Motzkin paths. Hence, following the notational conventions
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for ui and li,

E[((Lk)11)
2] =

k−1
∑

r1,r2=0

∑

p ∈ AGDk,r1

q ∈ AGDk,r2

E
[

b
2u1(p)+2u1(q)
n−1 b

2u2(p)+2u2(q)
n−2 . . . b

2uk(p)+2uk(q)
n−k

]

×(6.55)

× E
[

a2l1(p)+2l1(q)
n a

2l2(p)+2l2(q)
n−2 . . . a

2lk(p)+2lk(q)
n−k

]

, (6.56)

and using (6.17) and (6.18) we obtain

E[((Lk)11)
2] = µ2

k,γm
− D̃v

m
+ 2

Ẽv

mβ
+O(m−2) , with (6.57)

D̃v =
k−1
∑

r1,r2=0

∑

p ∈ AGDk,r1

q ∈ AGDk,r2

γr1+r2
m

∑

i≥0

(ui(p) + ui(q) + γm(li(p) + li(q))) , (6.58)

Ẽv =

k−1
∑

r1,r2=0

∑

p ∈ AGDk,r1

q ∈ AGDk,r2

γr1+r2
m

∑

i≥0

(

ui(p) + ui(q)

2

)

+ γm

(

li(p) + li(q)

2

)

. (6.59)

Since, upon examination, D̃v = Dv, using (6.51 - 6.54) and (6.57-6.59), we can

write

E[(Y k
m)2] =

mβ + 2

mβ
E[((Lk)11)

2] − 2

mβ
E[(L2k)11] − µ2

m,k,γm

=
2

mβ
(µk,γm + Ẽv − Ev − µ2k,γm) +O(m−2) .

But we can write

Ẽv − Ev =

k−1
∑

r1,r2=0

∑

p ∈ AGDk,r1

q ∈ AGDk,r2

γr1+r2
m

(

∑

i≥0

(

ui(p) + ui(q)

2

)

−
(

ui(p)

2

)

−
(

ui(q)

2

)

+

+ γm

((

li(p) + li(q)

2

)

−
(

li(p)

2

)

−
(

li(q)

2

)))

=

k−1
∑

r1,r2=0

∑

p ∈ AGDk,r1

q ∈ AGDk,r2

γr1+r2
m

∑

i≥0

ui(p)ui(q) + γmli(p)li(q) ;

by Lemma 6.1.12 this means that

Ẽv − Ev = N2k(γm) −Nk(γm)2 ;
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and since µk,γm = Nk(γm), for all k, it follows that

E[(Y k
m)2] = O(m−2) ,

for all k.
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Chapter 7

Eigenvalue distributions for large β

In Chapter 6, we study the asymptotics of the empirical distribution of the β-Hermite

and β-Laguerre ensembles when β is fixed and n→ ∞. The approach we use in that

chapter is combinatorial; we use path-counting methods to prove our results.

In this chapter, we switch the focus from n to β, and study the individual eigen-

value asymptotics of the β-Hermite and β-Laguerre ensembles at fixed n and β → ∞.

We use perturbation theory and probability results to prove these asymptotics. As

a bonus, we also obtain level density asymptotics for the β-Hermite and β-Laguerre

ensembles.

Remark 7.0.2. It is worth noting that while the approaches we take in Chapters 6

and 7 are quite different, both approaches are based on the matrix models.

As we mentioned in Chapter 2, the β parameter in either the Hermite case or the

Laguerre case can be thought of as an inverse temperature, while the presence of the

Vandermonde determinant ∆(Λ) functions as a repelling factor. As β goes to 0, the

strength of this repelling factor decreases until it is annihilated; the interdependence

disappears, and the randomness (in a certain sense) increases (as the temperature

1/β increases to ∞, the entropy reaches its maximum).

In the Hermite case, at β = 0, the eigenvalues become i.i.d. variables with stan-

dard normal distribution, whereas in the Laguerre case they become i.i.d variables

with distribution χ2
2a.
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What about when β increases to ∞? As one might guess, the effect is opposite:

the eigenvalues “freeze”, randomness decreases. For n fixed, the eigenvalues approach

the roots of the corresponding Hermite polynomial, respectively, the roots of the

corresponding Laguerre polynomial. At β = ∞ (1/β = 0) we are at a “freezing

point”; the eigenvalues are no longer random, but fixed at the roots of the Hermite

or Laguerre polynomial.

In this chapter, we use our matrix models to study the way in which this con-

vergence occurs at large β. We find zero- and first-order approximations for any

eigenvalue at large β, and we use these approximations to estimate the level densities

at large β; we find that these approximations work surprisingly well for relatively

small values of β.

7.1 Eigenvalue distributions for β large; zero- and

first-order approximations

In this section we show how, for fixed n and β large, we can obtain zero- and first-order

approximations for the eigenvalues.

Throughout this section, we will use the concept of variables on the same proba-

bility space; intuitively, and from a computational point of view, this is equivalent to

random variable generation from the same group of random bits.

To provide an example, assume that we are able to generate a variable t from

the uniform distribution on [0, 1]. Then we can generate any variable X with known

c.d.f. F , by the following process: we generate Y = t, then solve F (r) = t, and return

X = r.

Remark 7.1.1. Note that with probability 1, the solution is unique (if it is not, it fol-

lows that there exists a smallest rmin such that F (rmin) = t, and a largest rmax such

that F (rmin) = t (because F is non-decreasing, and not identically constant). Since

any value between rmin and rmax corresponds to the same t, Pr[X ∈ [rmin, rmax]] =

0. But since F (rmin) = F (rmax), this is consistent with being a 0-probability event.
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The process is illustrated in Figure 7-1.

8x = −

8x = −

8x = +

8x = +

F = c.d.f. of X

X = r
y=0

y=1

0
1

Y
 =

 t

x=
0 

Figure 7-1: How to generate a random variable X from a known distribution F ,

assuming that you can generate a random variable Y from the uniform distribution

on [0, 1]. X and Y (together with their values, r and t) are in lighter font.

Throughout this chapter, when we talk about a set of random variables on the

same probability space, we think of them as being all generated by the same value t

of the uniform distribution variable Y (thus dependent on the same random “bits”).

We can now present the following crucial lemma.

Lemma 7.1.2. For n ≥ N, let rn ∈ R+, and let (Xn)n∈N be a set of variables lying

on the same probability space, such that Xn has distribution χrn . If limn→∞ rn = ∞,

then Xn −
√
rn converges almost surely to a normal distribution of variance 1

2
(which

lies in the same probability space).

Proof. We prove this lemma by looking at the density function of χrn when rn → ∞.

First we will show that E[Xn] −√
rn → 0 as n→ ∞. Since

E[Xn] =
21−rn/2

Γ
(

rn

2

)

Γ
(

rn+1
2

)

21−(rn+1)/2
=

1√
2

Γ
(

rn+1
2

)

Γ
(

rn

2

) . (7.1)

Using the Lanczos approximation formula

Γ(z + 1) = zz+1/2e−z
√

2π

(

c0 +
c1
z

+O(
1

z2
)

)

, (7.2)
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for rn large, (7.1) becomes

E[Xn] =
1√
2

(

rn−1
2

)(rn−1)/2
e−(rn−1)/2

√

2π(rn − 1)/2
(

rn−2
2

)(rn−2)/2
e−(rn−2)/2

√

2π(rn − 2)/2
(1 +O(r−1

n )) ,

=
√
rn

(rn − 1)(rn−2)/2e−1/2

(rn − 2)(rn−2)/2
(1 +O(r−1

n )) ,

=
√
rn (1 +O(r−1

n )) .

So as rn → ∞, the mean of Xn−
√
rn approaches 0. Now let us examine the p.d.f.

of Xn −√
rn; denote by Yn = Xn −√

rn. Then the p.d.f. of Yn is

fn(t) =
21−rn/2

Γ
(

rn

2

) (t +
√
rn)rn−1e−(t+

√
rn)2/2 .

We examine this p.d.f. in a “small” neighborhood of 0, such that t = o(r
1/2
n ).

Again, we use the Lanczos approximation (7.2) for the Gamma function at infinity,

to obtain

fn(t) =
21−rn/2 r

rn/2−1
n

(

1 + t
rn

)rn−1

e−t2/2−√
rnt−rn/2

(

rn

2
− 1
)rn/2−1

e−rn/2+1
√
πrn

(

1 +O(
1

rn
)

)

,

=
1√
π

(

1 +
t√
rn

)rn−1

e−t2/2−√
rnt

(

1 +O(
1

rn
)

)

,

and by using the Taylor series for (rn − 1) ln(1+ t/
√
rn) and the fact that t = o(r

1/2
n ),

we obtain

fn(t) =
1√
π
e−t2

(

1 +O

(

t√
rn

))

. (7.3)

Thus, on any fixed interval, the p.d.f. of Xn − √
rn converges to the p.d.f. of a

centered normal of variance 1/2. This is enough to prove that the c.d.f. of Xn −
√
rn

converges to the c.d.f. of a centered normal of variance 1/2.

We now use the fact that the variables Xn−
√
rn are on the same probability space

with the variable Y which corresponds to the normal. Let t1 = − ln rn and t2 = ln rn;

the maximum amount by which Xn −√
rn can differ from Y given that Xn −√

rn is

between t1 and t2 is then O
(

(ln rn)2√
rn

)

, from (7.3).

Taking derivatives, one obtains that the maximum of the function xrn−1e−x2/2 is

obtained at x =
√
rn − 1 >

√
rn − ln rn since rn → ∞; the function is increasing
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before and decreasing after that point. Hence on the interval [0,
√
rn − ln rn] this

allows us to bound from above the probability that Xn is smaller than
√
rn − ln rn:

Pr[Xn ≤ √
rn − ln rn] =

21−rn/2

Γ( rn

2
)

∫

√
rn−ln rn

0

trn−1e−t2/2 dt

<
21−rn/2

Γ( rn

2
)

(
√
rn − ln rn)rne−(

√
rn−ln rn)2/2

= O(rne
−(ln rn)2/2 = O(r− ln rn/2−1

n ) .

Similarly, the probability that Xn is larger than
√
rn + ln rn is found to be

O(r
− ln rn/2−1
n ).

Thus, given a certain ε,

Pr[|Xn −√
rn − Y | > ε] = Pr

[

|Xn −√
rn − Y | > ε | Xn ∈ [t1, t2]

]

Pr[Xn ∈ [t1, t2]] +

+ Pr
[

|Xn −√
rn − Y | > ε | Xn|Xn≤ t1

]

Pr[Xn≤ t1] +

+ Pr
[

|Xn −√
rn − Y | > ε | Xn|Xn≥ t1

]

Pr[Xn≥ t1]

< O(r− ln rn/2−1
n ) ,

since Pr[|Xn − Y | > ε | Xn ∈ [t1, t2]] becomes 0 as soon as n is large enough.

But then
∞
∑

n=1

Pr[|Xn − Y | > ε] = O(1) +

∞
∑

n=1

O(r− ln rn/2−1
n ) <∞ ,

and hence we have almost sure convergence of Xn −√
rn to Y .

Lemma 7.1.2 will turn out to be crucial for the rest of the chapter.

7.1.1 The Hermite case

Let n be fixed, and (βm)m≥1 be a sequence of positive reals going to infinity.

Let h
(n)
1 , . . . , h

(n)
n be the roots of the nth univariate Hermite polynomial Hn (where

the Hermite polynomials H0(x), H1(x), . . . are orthonormal with respect to the weight

e−x2
on (−∞,∞)).

Let A1, A2, . . . , Am, . . . , be random matrices from the β1, β2, . . . , βm, . . . , -

Hermite ensembles of size n (fixed), scaled by 1/
√

2nβ1, 1/
√

2nβ2, . . . , 1/
√

2nβm,

. . . .
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Furthermore, assume that for each pair (i, j) with |i − j| ≤ 1, the variables

A1(i, j), . . . , Am(i, j), . . . are on the same probability space (in particular, if i = j,

this means that Am(i, i) = Am′(i, i) for all i,m,m′, for each realization of the Gaus-

sian).

We can now state and prove the following theorem.

Theorem 7.1.3. Let λi(Am) be the ith largest eigenvalue of Am, for any fixed 1≤ i≤
n. Then, as m→ ∞,

√

βm

(

λi(Am) − 1√
2n
h

(n)
i

)

a.s.→ 1√
2n

Gi ,

where Gi is a Gaussian with mean 0 and variance

Var(Gi) =

n−1
∑

j=0

H4
j (h

(n)
i ) +

n−2
∑

j=0

H2
j+1(h

(n)
i )H2

j (h
(n)
i )

(

n−1
∑

j=0

H2
j (h

(n)
i )

)2 .

Proof. Let H be the n× n symmetric tridiagonal matrix

H =
1√
2





























0
√
n− 1

√
n− 1 0

√
n− 2

√
n− 2 0

. . .

0
√

1
√

1 0





























. (7.4)

Orthogonal polynomial/tridiagonal symmetric matrix theory tell us that the first

matrix has the following property: its eigenvalues are the roots of the nth Hermite

polynomial Hn(x) (recall that we denoted them by h
(n)
1 , . . . , h

(n)
n ), and an eigenvector

corresponding to the ith eigenvalue h
(n)
i is

vi =























Hn−1(h
(n)
i )

Hn−2(h
(n)
i )

...

H1(h
(n)
i )

H0(h
(n)
i )























.
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We define φi ≡ vi/||vi||2 to be a length 1 eigenvector which corresponds to h
(n)
i .

Lemma 7.1.4. Let A1, . . . , Am . . . , be as defined in the beginning of this section.

Then almost surely

lim
m→∞

√

2nβmAm −
√

βmH = Z ,

where Z is a tridiagonal matrix with standard normal variables on the diagonal and

normal variables of mean 0 and variance 1/4 on the subdiagonal. All normal variables

in Z are mutually independent, subject only to the symmetry.

Lemma 7.1.4 follows immediately from Lemma 7.1.2, since we are dealing with

a finite number (n − 1) of χ variables on the sub-diagonal of Am, each converging

almost surely to a normal variable.

Hence we have

Am =
1√
2n
H +

1√
2nβm

Z + o

(

1√
βm

)

,

almost surely as m→ ∞.

Thus all zero- and first-order properties of Am are the same as for the simpler

model 1√
2n
H + 1√

2nβm
Z, where Z as as above. In particular, for any 1≤ i≤n,

λi(Am) = λi

(

1√
2n
H +

1√
2nβm

Z

)

+ o

(

1√
βm

)

,

almost surely as m→ ∞.

Finally, with the help of Perturbation Theory Lemma 4.4.1, we obtain that for

any 1≤ i≤n,

λi(Am) =
1√
2n
h

(n)
i +

1√
2nβm

ψT
i Zψi + o

(

1√
βm

)

,

almost surely as m→ ∞.

Since Gi ≡ ψT
i Zψi is a Gaussian of variance

Var(Gi) =

n−1
∑

j=0

H4
j (h

(n)
i ) +

n−2
∑

j=0

H2
j+1(h

(n)
i )H2

j (h
(n)
i )

(

n−1
∑

j=0

H2
j (h

(n)
i )

)2 ,

the proof of Theorem 7.1.3 is complete.
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7.1.2 The Laguerre case

Let n be fixed, and (βm)m≥1 be a sequence of positive reals going to infinity.

Given γ > 0, let l
(n)
1 , . . . , l

(n)
n be the roots of the nth univariate Laguerre polyno-

mial of parameter γ−1, Lγ−1
n (for any γ ≥ 0, the Laguerre polynomials Lγ

0 , L
γ
1 , . . . are

orthonormal with respect to the weight xγe−x on [0,∞); for γ ∈ (−1, 0) they admit

formal definitions).

Let B1, B2, . . . , Bm, . . . , be random matrices from the β1, β2, . . . , βm, . . . , -

Laguerre ensembles of size n and parameters a1, a2, . . . , am, . . . , scaled by 1/nβ1,

1/nβ2, . . . , 1/nβm, . . . . Suppose that

lim
m→∞

am

βm

=
1

2
(n+ γ − 1) .

Note that the requirement am>(n− 1)βm/2 constrains γ to be positive.

Furthermore, assume that for each i and j with |i− j| ≤ 1, all of the (i, j) entries

of the matrices Bm are on the same probability space.

Theorem 7.1.5. Let λi(Bm) be the ith largest eigenvalue of Bm, for any fixed 1 ≤
i≤n. Then, as m→ ∞,

√

βm

(

λi(Bm) − 1

n
l
(n)
i

)

a.s.→ 1

n
Gi ,

where Gi is a Gaussian with mean 0 and variance

Var(Gi) = 2
(γ + n− 1)(Lγ

n−1(l
(n)
i ))4 + An +Bn + 2Cn

(

n−1
∑

j=0

(Lγ
j (l

(n)
i ))2

)2 ,

where

An =
n−1
∑

j=1

(γ + 2(n− j) − 1)(Lγ
n−j−1(l

(n)
i ))4 ,

Bn =
n−1
∑

j=1

(γ + 2(n− j))(Lγ
n−j−1(l

(n)
i ))2(Lγ

n−j(l
(n)
i ))2 , and

Cn =

n−1
∑

j=1

√

γ+n−j
√

n−j
(

(Lγ
n−j−1(l

(n)
i ))3Lγ

n−j(l
(n)
i ) + Lγ

n−j−1(l
(n)
i )(Lγ

n−j(l
(n)
i ))3

)

.
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Proof. The proof follows in the footsteps of that of Theorem 7.1.3.

Let Lγ be the n× n (symmetric) positive definite matrix

Lγ =



































γ + n − 1
√

γ + n − 1
√

n − 1
√

γ + n − 1
√

n − 1 2(n − 2) + γ + 1
√

γ + n − 2
√

n − 2
√

γ + n − 2
√

n − 2 2(n − 3) + γ + 1

.. .
√

γ + 2
√

2
√

γ + 2
√

2 3 + γ
√

γ + 1
√

1
√

γ + 1
√

1 1 + γ



































(7.5)

We can write Lγ = BγB
T
γ , with

Bγ =























√
γ − n + 1
√

n − 1
√

γ − n

. . .
. . .
√

2
√

γ + 1
√

1
√

γ























. (7.6)

The matrix Lγ has as eigenvalues the roots of the nth Laguerre polynomial of

parameter γ − 1, Lγ−1
n (x) (recall that we have denoted them by l

(n)
1 , . . . , l

(n)
n ), and an

eigenvector corresponding to the ith eigenvalue l
(n)
i is

wi =























Lγ
n−1(l

(n)
i )

Lγ
n−2(l

(n)
i )

...

Lγ
1(l

(n)
i )

Lγ
0(l

(n)
i )























.

We define φi ≡ wi/||wi||2 to be a length 1 eigenvector corresponding to the ith

eigenvalue li.

Lemma 7.1.6. Let B1, . . . , Bm . . . , be as in the statement of Theorem 7.1.5. Then

almost surely

lim
m→∞

nβmBm − βmL
γ =

1√
2
(BγZ

T + ZBT
γ ) ,
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where Z is a lower bidiagonal matrix with standard normal variables on the diago-

nal and normal variables of mean 0 and variance 1 on the subdiagonal. All normal

variables in Z are mutually independent, subject only to the symmetry.

Once again, the proof for this lemma follows from the construction of the Laguerre

matrices as a lower bidiagonal random matrix times its transpose, and from Lemma

7.1.2 applied to the χ entries on the bidiagonal random matrices (there is a finite

number 2n− 1 of them).

Just as in the Hermite case, Lemma 7.1.6 allows us to write

Bm =
1

n
Lγ +

1

n
√

2βm

(BγZ
T + ZBT

γ ) + o

(

1√
βm

)

,

almost surely, as m→ ∞. Thus once again,

λi(Bm) = λi(
1

n
Lγ +

1

n
√

2βm

(BγZ
T + ZBT

γ )) + o

(

1√
βm

)

,

almost surely, as m→ ∞.

Finally, Perturbation Theory Lemma 4.4.1 applies once again to yield that almost

surely as m→ ∞,

λi(Bm) =
1

n
l
(n)
i +

1

n
√

2βm

φT
i (BγZ

T + ZBT
γ ))φi + o

(

1√
βm

)

.

Note that φT
i BγZ

Tφi = φT
i ZB

T
γ φi; thus Gi ≡

√
2φT

i BγZ
Tφi is a Gaussian of mean

0 and variance

Var(Gi) = 2
(γ + n− 1)(Lγ

n−1(l
(n)
i ))4 + An +Bn + 2Cn

(

n−1
∑

j=0

(Lγ
j (l

(n)
i ))2

)2 ,

with

An =

n−1
∑

j=1

(γ + 2(n− j) − 1)(Lγ
n−j−1(l

(n)
i ))4 ,

Bn =
n−1
∑

j=1

(γ + 2(n− j))(Lγ
n−j−1(l

(n)
i ))2(Lγ

n−j(l
(n)
i ))2 , and

Cn =
n−1
∑

j=1

√

γ+n−j
√

n−j
(

(Lγ
n−j−1(l

(n)
i ))3Lγ

n−j(l
(n)
i ) + Lγ

n−j−1(l
(n)
i )(Lγ

n−j(l
(n)
i ))3

)

.
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7.2 Asymptotics for β large; level densities

The following corollaries follow immediately from Theorems 7.1.3 and 7.1.5.

Corollary 7.2.1. Let n be fixed, and fn,β be the level density of the scaled (by

1/
√

2nβ) n× n β-Hermite ensemble. Let gn,β be as below:

gn,β(x) =
1

n

n
∑

i=1

1√
2πσi

e
− (x−µi)

2

2σ2
i ,

where µi =
h
(n)
i√
2n

and σi = 1√
2nβ

√

Var(Gi), with hi and Var(Gi) as in Section 7.1.1.

Then for any x,

lim
β→∞

√

β (fn,β(x) − gn,β(x)) = 0 .

Corollary 7.2.2. Let n and γ > 0 be fixed, and fn,β,γ be the level density of the scaled

(by 1/(nβ)) n× n β-Laguerre ensemble of parameter a = β
2
(n− 1 + γ). Let gn,β,γ be

as below:

gn,β,γ(x) =
1

n

n
∑

i=1

1√
2πσi

e
− (x−µi)

2

2σ2
i ,

where µi =
l
(n)
i

n
and σi = 1

n
√

β

√

Var(Gi), with li and Var(Gi) as in Section 7.1.2.

Then for any x,

lim
β→∞

√

β (fn,β,γ(x) − gn,β,γ(x)) = 0 .

While these approximations are simple enough (a sum of Gaussians is an easily

recognizable shape that is also easy to work with), one may wonder how big β has

to be in order for these approximations to become “accurate” (for example, in order

to appear accurate in a plot, the approximations have to be accurate to about 2-3

digits). We have found that, in either of the two cases, the answer is surprisingly low,

as the following set of plots demonstrate.

The first two sets of plots (Figures 7-2 and 7-3) are for the Hermite case. In Figure

7-2, we start with n = 5, and gradually increase β (from 2 to 10) to show how the

plots become more and more similar. In the last one, for β = 10, the two plots appear

to overlap.

If we do the same thing for n = 7 (as in Figure 7-3), β = 6 already provides a

very good approximation.
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Figure 7-2: Hermite case: approximate level densities (in dash-dot lines) and exact

level densities (in solid lines) for n = 4, and β = 4, 6, 8, 10.
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Figure 7-3: Hermite case: approximate level densities (in dash-dot lines) and exact

level densities (in solid lines) for n = 7, and β = 2, 4, 6.

We can conclude that the approximation works very well for low values of β, in

the Hermite case.

In the Laguerre case, there are two possible perspectives, which produce two

possible types of tests. The first one stems from the theory: choose γ≥0 and n≥0,
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and then see how big β and a = β
2
(n − 1 + γ) must be before the level density and

the zero- and first-order approximation overlap.

Note that both the Laguerre parameter a and the power p = a− (m−1)
2

β−1 = γ β
2
−1

are increasing functions of β.

Moreover, by prescribing γ, as β → ∞, in the limit, the plot should become a

sum of delta functions at the roots of the Laguerre polynomial Lγ−1
n .

In Figure 7-4; we take n = 4, γ = 1, β = 4, 6, 8, 10, and a = 8, 12, 16, 20 (equiva-

lently, p = 1, 2, 3, 4). Note that the approximation is very good for β = 10.
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n=4, β =6, γ = 1, a = 12, p = 2
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n=4, β =8, γ = 1, a = 16, p = 3
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1

1.5
2

2.5
3

n=4, β =10, γ = 1, a = 20, p = 4

Figure 7-4: Laguerre case 1: approximate level densities (in dash-dot lines) and

exact level densities (in solid lines) for n = 4, β = 4, 6, 8, 10, and a = 8, 12, 16, 20

(equivalently, p = 1, 2, 3, 4).

A second test arises from a practical question: suppose that one has a given

Laguerre ensemble of fixed n, (relatively large) β, and given power p, and one would

like to know how good the level density approximation is for that particular case.

Note that to compute the approximation in this case we need to take γ = (p + 1) 2
β

and since β is relatively large and p “fixed”, this yields a relatively small γ.
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Moreover, in this case, as β → ∞, γ → 0, and the plot should become a sum of

delta functions at the roots of the polynomial L−1
n .

The approximation works, once again, surprisingly well, as demonstrated by

Figure 7-5, where n = 4, p = 1, β = 4, 6, 8, 10, and γ = 1, 2/3, 1/2, 2/5 (or

a = 8, 11, 14, 17).
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0 1 2 3
0
1
2
3
4
5
6
7
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Figure 7-5: Laguerre case 2: approximate level densities (in dash-dot lines) and exact

level densities (in solid lines) for n = 4, p = 1, β = 4, 6, 8, 10, and γ = 1, 2/3, 1/2, 2/5

(or a = 8, 11, 14, 17).

Thus we can conclude that in both cases, a good approximation is obtained even

for β relatively small.y.

We have used only even integer values of β for our plots, because (in addition to

β = 1) those are the only ones for which (to the best of our knowledge) there are exact

formulas for the level densities. The plots were obtained with the help of our Maple

Library, MOPs, which was used for computing the orthogonal and Jack polynomial

quantities involved; these were translated into polynomials which were then plotted

in MATLAB. For more on MOPs see Chapters 8 and 9.
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Chapter 8

Jack Polynomials and Multivariate

Orthogonal Polynomials

8.1 History and the connection with Random Ma-

trix Theory

The Jack polynomials have a very rich history. They represent a family of orthogonal

polynomials dependent on a positive parameter α, and some of them are more famous

than others. Unsurprisingly, there are three values of α which have been studied

independently, namely, α = 2, 1, 1/2. The 1-Jack polynomials are better known as the

Schur functions; the 2-Jack polynomials are better known as the zonal polynomials,

whereas the 1/2-Jack polynomials are known as the quaternion zonal polynomials.

In an attempt to evaluate the integral (8.1) in connection with the non-central

Wishart distribution, James [46] discovered the zonal polynomials in 1960.

∫

O(n)

(tr(AHBH ′))k (H ′dH) =
∑

κ`k

cκZκ(A)Zκ(B) . (8.1)

Inspired by the work of James [46] and Hua [42], in his own attempt to evaluate

(8.1), Jack was lead to define the polynomials eventually associated with his name

[44]. More explicitly, he defined a new one-parameter (α) class of polynomials, which

for α = 1 he proved were the Schur functions, and for α = 2 he conjectured to be the
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zonal polynomials (and proved it in a very special case). He consequently generalized

the α parameter to any real non-zero number, and noted that for α = −1 he obtained

yet another special class of functions, which he called the “augmented” monomial

symmetric functions. Later it was noted that the orthogonalizing inner product was

positive definite only if α > 0.

During the next decade, the study of Jack polynomials intensified; Macdonald [63,

page 387] points out that in 1974, H.O.Foulkes [31] raised the question of finding com-

binatorial interpretations for the Jack polynomials. This question was satisfactorily

answered in 1997 by Knop and Sahi [57].

In the late ’80s, the Jack polynomials were the subject of investigation in Macdon-

ald’s book [63] and Stanley’s paper [86]; these two authors generalized many of the

known properties of the Schur functions and zonal polynomials to Jack polynomials.

Below we mention a few of the researchers who have studied the connection be-

tween Jack polynomials and Random Matrix Theory.

James [47] was one of the first to make the connection between the zonal polyno-

mials (α = 2 Jack polynomials) and the 1-ensembles, when he calculated statistical

averages of zonal polynomials over the 1-Laguerre ensemble (Wishart central and

non-central distributions).

At about the same time, Constantine and Muirhead provided a generalization of

the hypergeometric series, using the zonal polynomials, and studied the multivariate

Laguerre polynomials for β = 1 (for a reference, see [70]).

In a survey paper, James defines and describes multivariate 1-Laguerre, Hermite

and Jacobi polynomials [49]. Chikuse [13] studied more extensively the multivariate

1-Hermite polynomials.

In the early ’90s, Kaneko [56] studied the general α binomial coefficients, and used

them in connection with the study of hypergeometric series and multivariate Jacobi

polynomials. He was also one of the first to study Selberg-type integrals, and establish

the connection with generalized Jacobi polynomials. A few years later, Okounkov and

Olshanski [75] considered shifted Jack polynomials for all α, and proved that they
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were the same as the generalized binomial coefficients.

Kadell [55] was perhaps the first to consider averages of many valued Jack poly-

nomials, with his study of the average of the Jack polynomial of parameter 1/k (with

k an integer) over the corresponding 2k-Jacobi distribution. Later it was noticed that

this constraint is unnecessary.

Lasalle [59, 60, 61], considered all three types of multivariate polynomials, and

among many other things computed generating functions for them.

These are just a few of the researchers who have made significant contributions

in this area; we have mentioned a few more in the introduction. The last results

that we mention here are those of Forrester and Baker [8], who studied in detail

the generalized α-Hermite and α-Laguerre polynomials, in connection with the 2/α-

Hermite and Laguerre ensembles (some of their work built on Lasalle [59, 61]). For

a good reference on multivariate generalizations of many of the univariate properties

of the Hermite and Laguerre ensembles, see [30].

In this chapter, we define the Jack, Hermite, Laguerre, and Jacobi multivariate

orthogonal polynomials, and add a few facts to the growing body of knowledge. In

Chapter 9, we show how these polynomials can be computed.

8.2 Partitions and Symmetric Functions

Definition 8.2.1. A partition λ is a finite, ordered, non-increasing sequence of pos-

itive integers λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λl.

Throughout this chapter, we will refer to l = l(λ) as the length of λ, and to

k = |λ| =
∑l

i=1 λi as the sum of λ.

Remark 8.2.2. One can remove the constraint “finite” from the definition of the

partition, and replace it with “of finite sum”, since one can always “pad” a parti-

tion with 0s at the end; in this context l becomes the index of the smallest non-zero

component of the partition λ.
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We will work with two orderings of the partitions. The first one is the lexicographic

one, denoted by ≤.

Definition 8.2.3. We say that λ ≤ κ in lexicographical ordering if for the largest

integer m such that λi = κi for all i < m, we have λm ≤ κm. If λm < κm, we say

that λ < κ.

Remark 8.2.4. This is a total ordering of the partitions.

The second ordering is the dominance ordering, sometimes also called the natural

ordering.

Definition 8.2.5. We say that λ � κ (or, equivalently, that κ “dominates” λ) if,

given m = max{length(κ), length(λ)},

j
∑

i=1

λi ≤
j
∑

i=1

κi, ∀ j < m , and

m
∑

i=1

λi =

m
∑

i=1

κi .

If one of the inequalities above is strict, we say that λ ≺ κ.

Remark 8.2.6. Note that we compare two partitions only if they sum to the same

integer. Also note that even with this constraint, � is only a partial ordering of the

set of partitions of a given number: for example, [4, 1, 1] and [3, 3] are incomparable.

Definition 8.2.7. A symmetric polynomial of m variables, x1, . . . , xm, is a polyno-

mial which is invariant under every permutation of x1, . . . , xm.

Remark 8.2.8. The symmetric polynomials form a vector space over R.

Over the course of time, combinatorialists have defined a variety of homogeneous

bases for this vector space; each such basis is indexed by partitions (which correspond

to the terms of highest order in lexicographical ordering of the polynomial). By

homogeneity we mean that all terms of the polynomial have the same total degree.

Some of these homogeneous bases are displayed in the table below:
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Name Definition for l = 1 Definition for l > 1

power-sum functions pλ1 =
∑m

j=1 x
λ1
j pλ =

∏l
i=1 pλi

elementary functions eλ1 =
∑

j1<j2<...<jλ1
xj1 . . . xjλ1

eλ =
∏l

i=1 eλi

Complete homogeneous functions hλ1 =
∑

j1≤j2≤...≤jλ1
xj1 . . . xjλ1

hλ =
∏l

i=1 hλi

Another important basis is given by the monomial functions m,

mλ =
∑

σ ∈ Sλ

xλ1

σ(1)x
λ2

σ(2) . . . x
λm

σ(m) ;

here Sλ is the set of permutations giving distinct terms in the sum; λ is considered

as infinite.

The last basis we mentioned distinguishes itself from the other ones in two ways;

the advantage is that it is very easy to visualize, and proving that it is indeed a basis

is immediate. The disadvantage is that it is not multiplicative1.

Monomials seem to be the basis of choice for most people working in statistics or

engineering. Combinatorialists often prefer to express series in the power-sum basis,

because of connections with character theory.

8.3 Multivariate Orthogonal Polynomials

8.3.1 Jack Polynomials

The Jack polynomials Cα
λ constitute a far more complex class of homogeneous bases

(depending on the parameter α) than any of the previously mentioned ones. They

allow for several equivalent definitions (up to certain normalization constraints). We

present here two (Definitions 8.3.1 and 8.3.2). Definition 8.3.1 arose in combinatorics,

whereas Definition 8.3.2 arose in statistics. We will mainly work with Definition 8.3.2.

Definition 8.3.1. (following Macdonald [63]) The Jack polynomials P α
λ are orthog-

onal with respect to the inner product defined below on power-sum functions

〈pλ, pµ〉α = αl(λ)zλδλµ,

1While xλxµ = xλ+µ, for x ∈ {p, e, h}, mλmµ in general is not a monomial
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where zλ =
l(λ)
∏

i=1

ai!i
ai , ai being the number of occurrences of i in λ. In addition,

P α
λ = mλ +

∑

µ�λ

uα
λ,µmµ .

There are two main normalizations of the Jack polynomials used in combinatorics,

the “J” normalization (which makes the coefficient of the lowest-order monomial, [1n],

be exactly n!) and the “P” normalization (which makes the coefficient of the highest-

order monomial be 1, and is given in Definition 8.3.1). To convert between these

normalizations, see Tables 8.1 and 8.2. In Table 8.1, Im = (1, 1, 1, . . . , 1), where the

number of variables is m.

We use the notation κ ` k for κ a partition of k, and ρα
κ for

∑m
i=1 ki(ki−1− 2

α
(i−1)).

Definition 8.3.2. (following Muirhead, [70]) The Jack polynomial Cα
κ is the only ho-

mogeneous polynomial eigenfunction of the following Laplace-Beltrami-type operator

D∗ =

m
∑

i=1

x2
i

d2

dx2
i

+
2

α

∑

1≤i6=j≤m

x2
i

xi − xj

d

dxi
,

with eigenvalue ρα
κ + k(m − 1), having highest-order term corresponding to κ. In

addition,
∑

κ ` k, l(κ)≤m

Cα
κ (x1, x2, . . . , xm) = (x1 + x2 + . . . xm)k .

Remark 8.3.3. The Jack “C” polynomials are the normalization which allows for

defining scalar hypergeometric functions of multivariate (or matrix) argument. These

supply Selberg-type integrals which appear in various fields, from the theory of random

walks to multivariate statistics and quantum many-body problems.

Remark 8.3.4. David M. Jackson [45] pointed out that the D∗ operator also appears

in algebraic geometry, for example in the context of ramified covers.

Definition 8.3.5. Given the diagram of a partition κ (see Figure 1), define aκ(s) (the

“arm-length”) as the number of squares at the right of s; lκ(s) (the “leg-length”) as

the number of squares below s; h∗
κ(s) = lκ(s)+α(1+ aκ(s)) (the “upper hook length”)

and hκ
∗(s) = lκ(s) + 1 + αaκ(s) (the “lower hook length”).
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Figure 8-1: The Arm-length and the Leg-length.

(4,3,1,1)

1

2

s

κ

κ = 

κa  (s) = 

 l  (s) = 

Finally, a further definition is needed in order to present the conversion table.

Definition 8.3.6. Let

c(κ, α) =
∏

s∈κ

h∗κ(s) ,

c′(α, κ) =
∏

s∈κ

hκ
∗(s) ,

jκ = c(α, κ) c′(α, κ) ,

where h∗κ and hκ
∗ have been defined above.

To explain the conversions between “J”, “P”, and “C”, we recall the definition

of the generalized Gamma function and generalized shifted factorial from Chapter 3,

(3.1) and (3.2); instead of β, we will work now with α = 2/β, as in the rest of the

chapter.

We can now present Tables 8.1 and 8.2; the entries have been filled out using

James [48], Forrester and Baker [8], and Stanley [86].

Normalization Value at Im = (1, 1, 1, . . . , 1)

C Cα
κ (Im) = α2kk!

jκ

(

m
α

)

κ

J Jα
κ (Im) = αk

(

m
α

)

κ

P P α
κ (Im) = αk

c(α,κ)

(

m
α

)

κ

Table 8.1: Values of the different normalizations of Jack polynomials of partition κ

and parameter α at Im.
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C J P

C αk k!
jk

αk k!
c′(κ,α)

J jk

αk k!
c(κ, α)

P c′(κ,α)
αk k!

1
c(κ,α)

Table 8.2: Conversions between the three normalizations for the Jack polynomials;

the a(I, J) entry above is defined as Iα
κ (x1, . . . , xm) =a(I, J)Jα

κ (x1, . . . , xm).

8.3.2 Generalized binomial coefficients

Many algebraic quantities (and the identities they satisfy) can be extended from the

univariate case to the multivariate case through Jack polynomials. One such example

is the generalized binomial coefficient.

Definition 8.3.7. We define the generalized binomial coefficients
(

κ
σ

)

as

Cα
κ (x1 + 1, x2 + 1, . . . , xn + 1)

Cα
κ (1, 1, . . . , 1)

=

k
∑

s=0

∑

σ`s, σ⊆κ

(

κ

σ

)

Cα
σ (x1, x2, . . . , xn)

Cα
σ (1, 1, . . . , 1)

,

where σ ⊂ κ means that σi ≤ κi for all i.

The generalized binomial coefficients depend on α, but are independent of both

the number of variables m and the normalization of the Jacks (the latter independence

is easily seen from the definition).

The multivariate binomial coefficients generalize the univariate ones; some simple

properties of the former are straightforward generalizations of properties of the latter.

For example,

(

κ
(0)

)

= 1 ,

(

κ
(1)

)

= |κ| ,
(

κ
σ

)

= 0 if σ 6⊆ κ ,

(

κ
σ

)

= δκ if |κ| = |σ| ,
(

κ
σ

)

6= 0 if |κ| = |σ| + 1, iff σ = κ(i) ,

where κ(i) = (k1, . . . , ki−1, . . . , km). The above are true for all κ and α, and σ subject

to the constraints.
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8.3.3 Jacobi Polynomials

The Jacobi polynomials can be obtained by the Gram-Schmidt orthogonalization of

the Jack polynomials2 Cα
λ with respect to the weight/density function proportional

to the 2/α-Jacobi density

dµα
J(x1, x2, . . . , xm) =

Γm

(

g1 + g2 + 2
α
(m− 1) + 2

)

Γm(g1 + m−1
α

+ 1
) ×

×
m
∏

i=1

[

xg1

i (1 − xi)
g2

]

∏

i<j

|xi − xj|2/αdx1 . . . dxm ;

for the purpose of well-definiteness we assume

g1, g2 > −1 . (8.2)

Define

δ∗ =
∑

i

xi
d2

dx2
i

+
2

α

∑

i6=j

xi

xi − xj

d

dxi

E =
∑

i

xi
d

dxi

ε =
∑

i

d

dxi

;

then the Jacobi polynomials are eigenfunctions of the following Laplace-Beltrami-type

operator:

D∗ + (g1 + g2 + 2)E − δ∗ − (g1 + 1)ε ,

with eigenvalue ρα
κ + |κ|(g1 + g2 + 2

α
(m− 1) + 2).

8.3.4 Laguerre Polynomials

The multivariate Laguerre polynomials are orthogonal with respect to the weight/density

proportional to the Wishart (or Laguerre) density:

dµα
L(x1, x2, . . . , xm) =

π−m(m−1)/α (Γ(1 + 1
α
))m

Γα
m(1 + m

α
) Γα

m(γ + m−1
α

+ 1)
×

× e−
P

i xi

∏

i

xγ
i

∏

i6=j

|xi − xj|2/αdx1 . . . dxm.

2Or any other set of homogeneous polynomials with leading degree corresponding to κ.
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Note that for the purpose of well-definiteness, we must have γ > −1.

This density can be obtain from the Jacobi density of the previous subsection by

substituting (g1 + g2 + 2
α
(m− 1) + 2)−1(x1, . . . , xm) for (x1, . . . , xm) and then taking

the limit as g2 → ∞. The same limiting process applied to the Jacobi polynomials

yields the Laguerre polynomials.

Under the transformation mentioned above, the Jacobi differential operator be-

comes

δ∗ − E + (γ + 1)ε ,

and the Laguerre polynomials are simply eigenfunctions of this operator, with eigen-

value |κ|.

8.3.5 Hermite Polynomials

The multivariate Hermite polynomials are orthogonal with respect to the Gaussian

(Hermite) weight/density proportional to

dµα
H(x1, x2, . . . , xm) = 2−n/2 πn(n−1)/α−n/2 (Γ(1 + 1

α
))n

Γα
n(1 + n

α
)

×

× e−
P

i x2
i /2
∏

i6=j

|xi − xj|2/αdx1 . . . dxn .

This density can be obtained by taking (γ +
√
γx1, γ +

√
γx2, . . . , γ +

√
γxm) in

the density of the Laguerre polynomial, and then letting γ go to infinity; note that

this way the only non-matrix parameter remaining is α.

Under this limiting process, the differential operator becomes

δ∗∗ − E ,

where

δ∗∗ =
∑

i

d2

dx2
i

+
2

α

∑

i6=j

1

xi − xj

d

dxi
.

The Hermite polynomials are eigenfunctions of this operator with eigenvalue |κ|.

Remark 8.3.8. Similarly,

lim
γ→∞

γ−k/2Lα,γ
κ (γ +

√
γx1, γ +

√
γx2, . . . , γ +

√
γxm) = (−1)kHα

κ (x1, . . . , xm) . (8.3)
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8.3.6 Hypergeometric functions

The hypergeometric functions are perhaps the easiest to generalize from univariate to

multivariate. For the multivariate versions, a good reference is Forrester’s unpublished

book [30].

Definition 8.3.9. We define the hypergeometric function pF
α
q of parameters a1, . . . , ap,

respectively b1, . . . , bq and of variables (x1, . . . , xm) by

pF
α
q (a1, . . . , ap; b1, . . . , bq; x1, . . . , xm) =

∞
∑

k=0

∑

κ`k

(a1)κ . . . (ap)κ

k! (b1)κ . . . (bq)κ
Cα

κ (x1, . . . , xm) .

Note that this is a formal definition; additional conditions on the variables ai and

bj are needed in order for the above series to converge. Similarly one can extend this

to hypergeometric functions of 2, 3, . . . matrix arguments.

Hypergeometric functions provide answers to many statistics and statistics-related

questions; below are two examples.

1. Krishnaiah and Chang [58] have proved in 1971 that the density of the smallest

root of a real (α = 2) Wishart matrix with m variables and n degrees of freedom

such that p = n−m−1
2

is an integer is proportional to

ρ(x) = xpm e−xm/2
2F0(−p,

m + 2

2
;−2Im−1/x) .

Note that the eigenvalue density of the matrix described above is dµα
L with

α = 2 and a = n/2.

In Chapter 10 we extend this to any α and any a such that p = a− m−1
α

− 1 is

an integer. We obtain that for this case the density of the smallest eigenvalue

is proportional to

ρ(x) = xpm e−xm/2
2F

α
0 (−p, m

α
+ 1;−2Im−1/x) .

2. The largest eigenvalue (l1) distribution for a Wishart real matrix withm variates

and n degrees of freedom (α = 2, a = n/2) can be expressed as

P [l1 < x] =
Γm

[

1
2
(m + 1)

]

Γm

[

1
2
(n+m + 1)

] det
(1

2
xIm

)n/2
1F1

(1

2
n,

1

2
(n +m+ 1);−1

2
xIm

)

.
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The above is a corollary of a stronger theorem proved by Constantine [14], and

it can also be found in Muirhead [70, page 421].

This result generalizes to any α and a (as noted in Chapter 10) to

P [l1 < x] =
Γm

[

1
α
(m− 1) + 1

]

Γm

[

a+ 1
α
(m− 1) + 1

] det
(1

2
xIm

)am
1F1

(

a, a+
1

α
(m−1)+1;−1

2
xIm

)

8.4 Computing Integrals over the β-ensembles

In the univariate case we have the following moments for the Hermite, Laguerre, and

Jacobi weight functions:

∫

R

xke−x2/2dx = (2k − 1)!! = (−1)k/2Hk(0) ,
∫

[0,∞)

xkxγe−xdx = (γ + 1)k = Lγ
k(0) , and

∫

[0,1]

xkxa(1 − x)bdx =
(a + 1)kΓ(a+ b + 2)

Γ(a+ 1)Γ(a+ b + k + 2)
= P a,b

k (0) .

In the above, k≥0.

These three identities provide in the univariate case, formulas for integrating (av-

eraging) any polynomial over the univariate Hermite, Laguerre, and Jacobi distribu-

tions.

A similar triad of formulas is can be established for the multivariate case. In the

Laguerre and Jacobi cases, the closed-form formulas extend to the multivariate case:

∫

[0,∞)m

Cα
κ (x1, . . . , xm)dµα

L = (γ +
m− 1

α
+ 1)κC

α
κ (Im) = Lα,γ

κ (0) , (8.4)

∫

[0,1]m
Cα

κ (x1, . . . , xm)dµα
J =

(g1 + m−1
α

+ 1)κ

(g1 + g2 + 2
α
(m− 1) + 2)κ

Cα
κ (Im) = P g1,g2

α,κ (0) .(8.5)

For a good reference for the first formula, see Forrester and Baker [8]; the second

one was obtained by Kadell [55].

For the Hermite case,

∫

Rn

Cα
κ (x1, . . . , xm)dµα

H = (−1)k/2Hα
κ (0) , (8.6)

but to the best of our knowledge, no simpler closed-form formula is known.
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Below is the most explicit formula we were able to obtain for Hα
κ (0). Here

[

. . .
]

is the notation for a coefficient in a polynomial/power series. To the best of our

knowledge, this formula is new. We use It for a vector of t ones.

Lemma 8.4.1.

[Cα
σ (x1, . . . , xm)] Hα

κ (x1, . . . , xm) = (−1)kC
α
κ (Im)

Cα
σ (Im)

k+s
2
∑

j=s

(−1)k−j
∑

σ⊆µ⊆κ;µ`j

(

κ

µ

)(

µ

σ

)

×

×
[

r
k+s
2

−j
]

F (r, α,m, κ, σ) ,

where

F (r, α,m, κ, σ) =
(r + 1

α
(m+ α− 1))κ

(r + 1
α
(m+ α− 1))σ

.

In particular, for the empty partition [],

Hα
κ (0) = [Cα

[] (x1, . . . , xm)] Hα
κ (x1, . . . , xm) (8.7)

= (−1)kCα
κ (Im)

k
2
∑

j=0

(−1)k−j
∑

µ⊆κ;µ`j

(

κ

µ

)

[

r
k
2
−j
]

F (r, α,m, κ, []) . (8.8)

Remark 8.4.2. Note that if κ sums to an odd integer, or if |κ| and |σ| have different

parities, the above is trivially 0.

Proof. Starting with (8.3), one writes the Laguerre polynomial in closed-form, then

expands the Jack polynomials by the generalized binomial formula, re-groups the

terms, and takes the limit.

8.5 Some integrals over β-Hermite ensembles

8.5.1 A new proof for a conjecture of Goulden and Jackson

In this section, we take a closer look at formula (8.6): the expected value of a Jack

polynomial over the β-Hermite ensembles. We provide an alternate proof for a con-

jecture by Goulden and Jackson [36], which was proved by Okounkov [73]. The proof

is based on the material presented in this chapter.

We give the conjecture as a theorem below.
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Theorem 8.5.1. Let k be an even integer. Then
∫

Rn

P α
κ (x1, x2, . . . , xn)dµα

H(x1, x2, . . . , xn) =
(n

α

)

κ

〈P α
κ , p[2k/2]〉α

2k/2 (k/2)!
,

where |κ| = k and [2k/2] = [2, 2, . . . , 2]. Note that if k = 0 or k is odd, the above

becomes 0 = 0.

Proof. For reasons of space, we denote by X = (x1, x2, . . . , xn), by T = (t1, t2, . . . , tn),

and by In = (1, 1, . . . , 1).

First we rewrite the equation with the help of (8.6) to

Hα
κ (0) =

(−1)k/2αk k!

c′(α, κ)

(n

α

)

κ

〈pα
κ, p[2k/2]〉α

2k/2 (k/2)!
. (8.9)

We use the generating function for the Hermite polynomials. From [8], Proposi-

tion 3.1 (which the authors attribute to Lasalle), rewritten in accordance with our

normalization of the Hermite polynomials, we have that

∞
∑

k=0

∑

κ`k

Hα
κ (X) Cα

κ (T )

k! Cα
κ (In)

= 0F
α
0 (X, T ) etr(−T 2/2) .

Because the left-hand side has the normalization constant for the Jack polynomial

built-in, we can rewrite it as

∞
∑

k=0

∑

κ`k

Hα
κ (X) P α

κ (T )

k! P α
κ (In)

= 0F
α
0 (X, T ) etr(−T 2/2) .

Let X = 0 in the above; by the homogeneity of P α
κ (T ) it follows that, for every

k ≥ 0,

∑

κ`k

Hα
κ (0) P α

κ (T )

k! P α
κ (In)

=
1

(k/2)!
tr(−T 2/2)k/2 =

(−1)k/2

2k/2 (k/2)!
p[2k/2](T ) .

Thus

Hα
κ (0) =

k! P α
κ (In)

2k/2 (k/2)!
[P α

κ (T )] p[2k/2](T ) ,

which can be rewritten as

Hα
κ (0) =

k! P α
κ (In)

2k/2 (k/2)!

〈p[2k/2], P
α
κ 〉α

〈P α
κ , P

α
κ 〉α

, (8.10)

and since 〈P α
κ , P

α
κ 〉α = c′(α,κ)

c(α,κ)
, and P α

κ (In) = αk

c(α,κ)

(

n
α

)

κ
, the statement of the theorem

follows.
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Remark 8.5.2. The Goulden-Jackson conjecture was meant to provide a way of

connecting two different perspectives on a map counting problem. Okounkov was in-

terested in finding a way to compute the expected value of a Jack polynomial over

a β-Hermite ensemble. Formula (8.8) also provides such a means, and it has been

implemented in our Maple package, MOPs.

8.5.2 A duality principle

This section explores formula (8.6) to a greater extent, and obtains an interesting

duality formula by using the Q(α)-algebra family of automorphisms defined in [63]

and [86].

Theorem 8.5.3.

Eα

[

Cα
κ (x1, x2, . . . , xn)

Cα
κ (1, 1, . . . , 1)

]

= (−α)−k/2 E1/α

[

C
1/α
κ′ (y1, y2, . . . , ym)

C
1/α
κ′ (1, 1, . . . , 1)

]

,

where the first expectation is taken over the 2/α-Hermite ensemble of size n, while

the second is taken over the 2α-Hermite ensemble of size m (n not necessarily equal

to m), and κ′ is the conjugate of κ.

Proof. Let Q(α) be the field of all rational functions of α with rational coefficients.

Let Λ×Q(α) be the vector space of all symmetric polynomials of bounded degree

with coefficients in Q(α).

For every 0 6= β ∈ Q(α), define a Q(α)-algebra automorphism ωβ : Λ × Q(α) →
Λ × Q(α) by the condition ωθ(pk) = (−1)k−1θpk, for all k ≥ 1. This family of

automorphisms is defined in [63, Chapter 10], and similarly in [86]. In particular,

ω = ω1 is the Macdonald involution [63, Chapter 1].

We will use the following three formulas, to be found as formulas (10.8), (10.9)

and (10.24) in [63]; the first two follow easily from the definition of ωθ. The third one

is due to Stanley [86].

〈ωθf, g〉α = 〈f, ωθg〉α , (self-adjointness) (8.11)

〈ω1/αf, g〉α = 〈ωf, g〉1 , (duality with respect to 〈, 〉α) (8.12)

ωαJ
α
κ = α|κ| J

1/α
κ′ . (8.13)
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We rewrite 8.9 as follows:

Hα
κ (0)

Cα
κ (In)

=
(−1)k/2

2k/2 αk (k/2)!
〈p[2k/2], J

α
κ 〉α , (8.14)

where the last equality can be obtained by re-normalizing (see Table 6), and from

Proposition (3.6) from [86]. Once again, In denotes a vector of n ones.

We now rewrite 〈p[2k/2], J
α
κ 〉α as follows, making use of (8.11)-(8.13):

〈p[2k/2], J
α
κ 〉α = αk 〈p[2k/2], ω1/αJ

1/α
κ′ 〉α

= αk 〈p[2k/2], ωJ
1/α
κ′ 〉1

= αk 〈ωp[2k/2], J
1/α
κ′ 〉1

= αk 〈ωαp[2k/2], J
1/α
κ′ 〉1/α

= (−1)k/2α3k/2〈p[2k/2], J
1/α
κ′ 〉1/α .

Hence

Hα
κ (0)

Cα
κ (In)

=
(−α)k/2

2k/2 (k/2)!
〈p[2k/2], J

1/α
κ′ 〉1/α ,

= (−α)−k/2 H
1/α
κ′ (0)

C
1/α
κ′ (Im)

,

and by (8.6), the statement of the theorem follows.

8.5.3 Moments of determinants

In this section we examine the problem of computing moments of the determinant

of the 2/α-Hermite distribution. The reason why the Hermite case is interesting is

because it is the only non-trivial one (in the Laguerre (or even Jacobi) cases, the

power of the determinant can be absorbed into the Laguerre (or Jacobi) power, and

the answer follows from Selberg integral formulas.

This problem was our entry point into the theory of random matrices, and at-

tempting to solve it lead us to many of the computations and theorems in this thesis.

Our interest has since shifted to other areas, and the original question of a nice gen-

eral formula for the moments of the determinant of the 2/α-Hermite distribution is
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not fully solved. We present here some partial results, and mention the fact that a

routine for computing moments of the determinant is available as part of our Maple

Library, MOPs.

As with most of the problems approached in this thesis, the cases β = 1, 2, 4 (or,

in the notation of this chapter, α = 2, 1, 1/2) are the only ones which were studied.

The first to examine the problem and provide a complete answer for β = 2 (α = 1)

were Mehta and Normand [68]. Mehta also discovered a duality between the cases

β = 1 (α = 2) and β = 4 (α = 1/2).

This duality is simply a particular case of Theorem 8.5.3. Indeed, for a n × n

matrix A with eigenvalues x1, . . . , xn,

det(A)k =
Cα

[kn](x1, x2, . . . , xn)

Cα
[kn](In)

,

for every α. Moreover, the set of partitions B = {[kn] | k ∈ N, n ∈ N} is closed with

respect to conjugation.

Remark 8.5.4. This means that instead of computing the kth moment for all α and

n (size of the matrix) we can transform the problem to computing all moments n for

any α for a matrix of fixed size k.

A few years after [68], Delannay and Le Caër [16] computed the closed-form answer

for β = 1 (α = 2), and noted that the duality also provides the answer for β = 4

(α = 1/2).

Jackson, Goulden, and Andrews [3] rediscovered these results for α = 1 and 2,

and linked them to a particular coefficient of the Jack polynomial corresponding to

rectangular partitions. Their proof greatly simplifies the Delannay and Le Caër proof,

and is entirely self-contained.

To the best of our knowledge, there are no references in the literature for other

values of α. In this chapter, we give a closed-form answer for the second moment (the

square of the determinant), for any α, and we provide 3-term and 4-term recurrences

for the third and fourth moments.
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Theorem 8.5.5. Let n and α be fixed; then

Eα[det(An)2] = (2n− 1)!! (−α)−n
2F1(−n,−n− α;−n+

1

2
;
1

2
) ,

where the matrix An is from the 2/α-Hermite ensemble of size n, and the expectation

is taken over the ensemble.

Proof. The proof is based on the duality. Based on Theorem 8.5.3, it is enough to

show that given a matrix A2 from the 2 × 2 2/α-Hermite ensemble,

Eα[det(A2)
n] = (2n− 1)!! 2F1(−n,−n − 1

α
;−n+

1

2
;
1

2
) .

To this extent, we start with the actual distribution of the eigenvalues (x1, x2),

which we order (x1 ≥ x2). The distribution is

fα,2 =
1

π

Γ
(

1 + 1
α

)

Γ
(

1 + 2
α

) (x1 − x2)
2/α e−x2

1/2−x2
2/2 .

We will compute the exponential generating function for the moments of the

determinant, which is (formally) Eα[et det(A2)].

We denote by T = x1 +x2, and by D = (x1 −x2)
2, the trace and the discriminant

of the matrix; we change variables (the Jacobian of the transformation is 1/(4
√
D)),

and obtain

Eα[et det(A2)] =
1

π

Γ
(

1 + 1
α

)

Γ
(

1 + 2
α

)

∫

R

e−T 2(1−t)/4dT

∫

[0,∞)

D1/α−1/2 e−(1+t)D/4 dD . (8.15)

With the help of the Legendre duplication formula

Γ(2z) =
1

2π
22z−1/2Γ(z +

1

2
)Γ(z) ,

(8.15) becomes

Eα[et det(A2)] = (1 − t)−1/2 (1 + t)−1/α−1/2 .

In other words, we obtain that

Eα[det(A2)
n] =

dn

dtn
(1 − t)−1/2 (1 + t)−1/α−1/2

∣

∣

t=0
.

Though the Jacobi polynomials are usually defined only for parameters a, b > −1

(as being orthogonal with respect to the weight function (1 − t)a(1 + t)b on [−1, 1]),
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formally, the Rodrigues formula definition (8.16, see Abramowitz and Stegun [1])

below extends to and a, b, away from 1 and −1:

P a,b
n (t) =

(−1)n

2n n!
(1 − x)−a(1 + x)−b dn

dtn
(1 − t)a+n (1 + t)b+n . (8.16)

Thus

Eα[det(A2)
n] = (−1)n 2n n! P a,b

n (0) . (8.17)

Similarly, away from t = ±1, the following identity extends for any a, b (see

Abramowitz and Stegun [1]):

P a,b
n (t) =

(a+ 1)n

n!
2F1(−n, n + a+ b + 1; a+ 1;

1

2
(1 − t)) .

By letting a = −n−1/2 and b = −n−1/α−1/2 in the above, we can thus rewrite

(8.17) as

Eα[det(A2)
n] = (2n− 1)!! 2F1(−n,−n− 1

α
;−n +

1

2
;
1

2
) .

For the third and fourth moments of the determinant, we will have to apply a

different strategy, based on the 3-term recurrence for the determinant.

Let An be a matrix from the size n 2/α-Hermite ensemble, and let An−k be the

lower right (n− k) × (n− k) submatrix, for all k ≤ n; clearly An−k is a matrix from

the size n− k 2/α-Hermite ensemble. Let Tn = Eα[det(An)3] for all n.

Theorem 8.5.6.

Tn = −
(

n− 1

α

)

1

(

3 +

(

n− 2

α

)

2

+

(

n− 1

α
+ 1

)

2

)

Tn−2 −

−
(

n− 1

α

)

1

(

n− 2

α

)

2

(

n− 3

α

)

3

Tn−4 ,

with T0 = 1, T1 = 0, T2 = − 5
α
− 3

α2 − 1
α3 , and T3 = 0. Note that T2k+1 = 0 for any k.

Remark 8.5.7. The above is a linear recurrence.
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Remark 8.5.8. Technically speaking, this appears to be a 5-term recurrence. How-

ever, since the odd-indexed terms are always 0, and for the even-indexed terms the

recurrence depends only on the previous two (Tn depends only on Tn−2 and Tn−4), one

can safely call this a 3-term recurrence.

The proof is based on the 3-term recurrence for the determinant of a symmetric

tridiagonal matrix. Here and for the rest of this section we use the notation an, . . . , a1

for the diagonal of the matrix, bn−1, . . . , b1 for the subdiagonal. The distribution of

the elements can be found in Chapter 5.

Proof. We start with

det(An) = an det(An−1) − b2n−1 det(An−2) , (8.18)

once we take the third power on each side and take expectations, we obtain

Tn = Eα[ a3
n det(An−1)

3 − 3a2
nb

4
n−1 det(An−1)

2 det(An−2) +

+ 3anb
6
n−1 det(An−1) det(An−2)

2 − b8n−1 det(An−2)
3] ,

whence

Tn = −3

(

n− 1

α

)

1

Eα[det(An−1)
2 det(An−2)] −

(

n− 1

α

)

3

Tn−2 , (8.19)

where the last equality comes form the mutual independence of an and bn−1, and their

individual independence from either one of An−1 and An−2.

We now write, with the help of (8.18) for n− 1,

Eα[det(An−1)
2 det(An−2)] = Eα[det(An−2)(an−1 det(An−2) − b2n−2 det(An−3))

2]

= Eα[a2
n−1 det(An−2)

3 − 2an−1b
2
n−2 det(An−2)

2 det(An−3) +

+ b4n−2 det(An−2) det(An−3)
2]

= Tn−2 +

(

n− 2

α

)

2

Eα[det(An−2) det(An−3)
2] ,

once again by using the mutual independence of bn−2 and an−1, and their individual

independence from An−2 and An−3.
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We now write

Eα[det(An−2) det(An−3)
2] = Eα[(an−2 det(An−3) − b2n−3 det(An−4)) det(An−3)

2]

= −
(

n− 3

α

)

1

Eα[det(An−3) det(An−4)
2] ,

since an−2 and An−3 are mutually independent, and bn−3 is independent from either

An−3 and An−4.

Finally, we use a rewrite of (8.19) for n− 2 to get

Eα[det(An−3) det(An−4)
2] =

Tn−2 +
(

n−3
α

)

3
Tn−4

−3
(

n−3
α

)

1

,

and working backward to (8.19), we obtain Theorem 8.5.6.

The last recurrence we work out in this section is the one for the fourth moment.

Let Yn = Eα[det(An)4].

Theorem 8.5.9.

Yn =

(

3 +

(

n− 1

α

))

Yn−1 +

(

n− 1

α

)

2

(

3 +

(

n− 1

α
+ 2

)

2

)

Yn−2 −

−
(

n− 1

α

)

2

(

n− 2

α

)

4

Yn−3 ,

with Y0 = 1, Y1 = 3. Y2 = 1
α4 + 6

α3 + 17
α2 + 12

α
+ 9.

Remark 8.5.10. The above is a linear recurrence.

Proof. Using the same notation and independence properties as in the proof of The-

orem 8.5.6, we obtain that

Yn = Eα[det(An)4] = Eα[(an det(An−1) − b2n−1 det(An−2))
4]

= Eα[a4
n det(An−1)

4 − 4a3
nb

2
n−1 det(An−1)

3 det(An−2) +

+ 6a2
nb

4
n−1 det(An−1)

2 det(An−2)
2 −

− 4anb
6
n−1 det(An−1) det(An−2)

3 + b8n−1 det(An−2)
4] ,

whence

Yn = 3Yn−1 + 6

(

n− 1

α

)

2

Eα[det(An−1)
2 det(An−2)

2] +

(

n− 1

α

)

4

Yn−2 . (8.20)
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The next step is to write

Eα[det(An−1)
2 det(An−2)

2] = Eα[det(An−2)
2(an−1 det(An−2) − b2n−2 det(An−3))

2]

= Eα[a2
n−1 det(An−2)

4 − 2an−1b
2
n−2 det(An−2)

3 det(An−3) +

+ b4n−2 det(An−2)
2 det(An−3)

2]

= Yn−2 +

(

n− 2

α

)

2

Eα[det(An−2)
2 det(An−3)

2] ;

finally, rewriting (8.20) for n− 1, we obtain

Eα[det(An−2)
2 det(An−3)

2] =
Yn−1 − 3Yn−2 −

(

n−2
α

)

4
Yn−3

6
(

n−2
α

)

2

,

working backwards to (8.20) we obtain the 4-term recurrence for Yn.

Remark 8.5.11. The method we employed in finding recurrences for the third and

fourth moments extends to any other power k.

Consider the (k + 1) × n table which has in its (i, j) entry the expected value

Eα[det(Aj)
i−1 det(Aj−1)

k−i+1]. Note that A0 = 1 (non-randomly), and we can fill the

first column with the moments of the Gaussian.

It is not hard to see that the entries in the jth column depend exclusively on

the (k + 1) entries of the previous column (an immediate consequence of the 3-term

recurrence for the determinant). Moreover, the coefficients involved essentially encode

the 0 through 2k moments of aj and bj; hence for k fixed, they take O(1) to compute.

Since we are interested in the kth row of the matrix, it follows that the work done

in filling this matrix is linear in n. Thus with the help of the 3-term recurrence for

the determinant, one can compute Eα[det(An)k] in time linear in n for any k fixed.
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Chapter 9

MOPs: A Maple Library for

Multivariate Orthogonal

Polynomials (symbolically)

As mentioned in Section 2.5, our Maple Library MOPs implements some new and

some known algorithms for computing the Jack, Hermite, Laguerre, and Jacobi mul-

tivariate polynomials for arbitrary α = 2/β. This library can be used as a tool for

conjecture-formulation and testing, for statistical computations, or simply for getting

acquainted with the mathematical concepts.

As an example of a calculation that can pe performed with MOPs is the probability

that a random Gaussian matrix has exactly k real eigenvalues. This probability has

a closed-form answer as an integral, which was computed by Edelman [27, Theorem

7.1]. The main term in the integral is given by an expectation over the 1-Hermite

ensemble or GOE of a product of determinants. Using MOPs, we can evaluate that

expectation and perform the rest of the computation, to get an exact answer.

All the algorithms presented here keep the variables in symbolic format; whether

we expand the polynomials in the monomial or in the Jack polynomial basis, we

ultimately compute coefficients, which can either be numerical values, or (in the

symbolic evaluations) rational functions of m, the number of variables, and/or α, the

Jack parameter.
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Aside from the routines analyzed here, MOPs includes routines for numerical

evaluation of the Jack, Hermite, Laguerre, and Jacobi polynomials. These algo-

rithms take numerical values for the variables; they compute quantities such as

C3
[3,2](2.5, 1.09,−10). The algorithms we use for these routines have been developed

and analyzed by Koev and Demmel [19].

9.1 Computing Jack and Multivariate Orthogonal

Polynomials

In this section we present the recurrences and formulas which can be used in order to

compute Jack, Hermite, Laguerre, and Jacobi polynomials, and generalized binomial

coefficients. These recurrences appear in the literature (see James [49]) for α = 2; we

have used the methods employed by James to compute the general α versions, and

obtained similar results, the derivations of which we choose not to present. Since we

implemented these recurrences, we were forced to consider certain details that might

have been otherwise overlooked. We present them here, in Lemmas 9.1.2 and 9.1.4.

9.1.1 Computing Jack Polynomials

From the Laplace-Beltrami equation, one can find an expansion for the Jack polyno-

mials of the type

Cα
κ (x1, x2, . . . , xm) =

∑

λ≤κ

cακ,µmλ(x1, x2, . . . , xm) ,

where λ and κ are both partitions of the same integer |κ|, and the order imposed on

partitions is the lexicographic one. The coefficients cα
κ,λ depend on all three parame-

ters; mλ(x1, x2, . . . , xm) is the monomial function corresponding to λ.

Note that as a consequence of the above, if l(κ) > m, Cα
κ (x1, x2, . . . , xm) = 0

(“there is no highest-order term”).

Using the eigenfunction equation

D∗Cα
κ = (ρα

κ + k(m− 1))Cα
κ , (9.1)
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where

ρα
κ =

m
∑

i=1

ki(ki − 1 − 2

α
(i− 1))

one can obtain a recurrence for cακ,λ from which the Jack polynomials can be explicitly

calculated. This recurrence is

cακ,λ =
2
α

ρα
κ − ρα

λ

∑

λ〈µ≤κ

(

(li + t) − (lj − t)
)

cακ,µ , (9.2)

where λ = (l1, . . . , li, . . . , lj, . . . , lm), µ = (l1, . . . , li + t, . . . , lj − t, . . . , lm), and µ

has the property that, when properly reordered, it is between λ (strictly) and κ in

lexicographic order.

In fact we can do better, using two propositions found in Macdonald’s book [63,

(10.13), (10.15)]. Roughly the content of the two propositions is that the Jack poly-

nomials, in “P” normalization, can be written as

P α
κ = mκ +

∑

λ≺κ

uα
κ,λmλ ,

with uα
κ,λ > 0 whenever κ � λ (the order imposed on partitions here being the

domination order).

Thus it follows that the recurrence can be improved to

cακ,λ =
2
α

ρα
κ − ρα

λ

∑

λ≺µ�κ

(

(li + t) − (lj − t)
)

cακ,µ , (9.3)

where λ = (l1, . . . , li, . . . , lj, . . . , lm), µ = (l1, . . . , li+t, . . . , lj−t, . . . , lm), and µ has the

property that, when properly reordered, it is between λ (strictly) and κ in domination

order.

This recurrence, at first glance, seems to be enough to compute all coefficients

cακ,λ, once cακ,κ is found. However, one has to account for the possibility that ρα
κ = ρα

λ

for some λ different from κ; what can one do in that case?

Fortunately, this never happens. We first need the following well known Proposi-

tion.

Proposition 9.1.1. The dominance ordering is a lattice on the set of partitions of a

given number. In particular, between any partitions κ and λ such that κ � λ, there
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exists a “path” on this lattice, σ0 = κ � σ1 � . . . � σt = λ, such that σi+1 differs

from σi in the following way: there exists i1 < i2 such that σi+1 and σi agree in all

places but i1 and i2, (σi+1)i1 = (σi)i1 − 1, and (σi+1)i2 = (σi)i2 + 1.

Now we can prove that we never divide by 0 in computing Recurrence 9.3.

Lemma 9.1.2. If λ ≺ κ, then ρα
λ 6= ρα

κ , for all α > 0.

Proof. Let λ ≺ κ be two partitions, let m = max{length(κ), length(λ)} , and assume

that there is some α > 0 such that

ρα
λ = ρα

κ .

Since the two partitions sum to the same number, the above is equivalent to

m
∑

i=1

k2
i − λ2

i =
2

α

m
∑

i=1

(ki − λi)(i− 1) .

The right-hand side is non-negative (as an immediate consequence of the strict or-

dering).

We show that the left-hand side is positive by induction. For that we will use

Proposition 9.1.1, which shows that it is enough to prove that

m
∑

i=1

k2
i − λ2

i ≥ 0

in the case when κ and λ differ only in two places, i1 < i2. Note that if κi1 = λi1 + 1

and κi2 = λi2 − 1, this implies that κi1 ≥ κi2 + 2. Hence

m
∑

i=1

k2
i − λ2

i = k2
i1
− λ2

i1
+ k2

i2
− λ2

i2
= 2ki1 − 1 − 2ki2 − 1 ≥ 2 > 0 ,

and we are done.

Proposition 9.1.1 ensures thus that once cα
κκ is determined, every other non-zero

coefficient is uniquely determined.

Finally, for cακκ we use the following formula (deduced on the basis of Table 8.1

and the fact that P α
κ has highest-order coefficient 1):

cακκ =
αkk!

c′(κ, α)
.
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9.1.2 Computing Generalized Binomial Coefficients

One can prove, using the eigenfunction equation (9.1) and the definition of the gen-

eralized binomial coefficients, that

∑

i

(

σ(i)

σ

)(

κ

σ(i)

)

= (k − s)

(

κ

σ

)

, (9.4)

where |σ| = s, |κ| = k, σ(i) = (σ1 . . . , σi + 1, . . . , σm). All generalized binomial

coefficients can be found by recursion, once one has a way to compute the so-called

“contiguous” coefficients
(

σ(i)

σ

)

.

To compute the contiguous coefficients, we use Proposition 2 from [56], applied to

κ = σ(i), and simplified slightly:
(

σ(i)

σ

)

= j−1
σ gσ(i)

σ 1 , (9.5)

where gσ(i)

σ 1 is

gσ(i)

σ 1 =

(

∏

s∈σ

Aσ(i)

)(

∏

s∈σ

Bσ(i)

)

.

Here

Aσ(i) =







hσ
∗ (s), if s is not in the ith column of σ ,

h∗σ(s), otherwise .

Bσ(i) =







h∗
σ(i)(s), if s is not in the ith column of σ ,

hσ(i)

∗ (s), otherwise .

Knowing the contiguous coefficients allows for computing all the generalized binomial

coefficients.

Remark 9.1.3. The generalized binomial coefficients are independent of the number

of variables. They are rational functions of α.

9.1.3 Computing Jacobi Polynomials

From the differential equation, one obtains that the Jacobi polynomials can be written

in the corresponding Jack polynomial basis as

P α,g1,g2
κ (x1, . . . , xm) = (g1 +

m− 1

α
+ 1)κC

α
κ (Im)

∑

σ⊆κ

(−1)scκσ

(g1 + m−1
α

+ 1)σ

Cα
σ (x1, . . . , xm)

Cα
σ (Im)

,(9.6)
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where the coefficients cακσ satisfy the recursion

cακσ =
1

(

(g2 + g1 + 2
α
(m− 1) + 2)(k − s) + ρα

κ − ρα
σ

)

∑

i allowable

(

κ

σ(i)

)(

σ(i)

σ

)

cακσ(i) ,(9.7)

with the previous notation for ρα
κ , Im, and σ(i). The question is again whether we are

always allowed to make the division.

Lemma 9.1.4. Under the assumptions that g1, g2 > −1, (g2 +g1 + 2
α
(m−1)+2)(k−

s) + ρα
κ − ρα

σ is never 0.

Proof. The proof is very similar with the proof of Lemma 9.1.2; the two crucial facts

here are that one needs one show it for the case κ = σ(i), and that g1 and g2 are both

larger than −1 (due to (8.2)).

Letting cακ,κ = 1 for all κ and α allows all the coefficients to be uniquely determined.

9.1.4 Computing Laguerre Polynomials

The Laguerre polynomials have the simplest expansion in terms of the Jack polyno-

mials, which generalizes straightaway from the expansion of the univariate Laguerre

polynomials in terms of powers.

The multivariate expansion can be written in closed form as

Lα,γ
κ (x1, . . . , xm) = (γ + m−1

α + 1)
κ
Cα

κ (Im)
∑

σ⊆κ

(−1)s
(

κ
σ

)

(γ + m−1
α + 1)

σ

Cα
σ (x1, . . . , xm)

Cα
σ (Im)

. (9.8)

Note that the coefficient of Cα
κ (x1, . . . , xm) in Lα,γ

κ (x1, . . . , xm) is (−1)k.

9.1.5 Hermite Polynomials

We present here a recurrence used to compute the Hermite polynomials, rather than

the formula of Lemma 8.4.1, because the latter is more computationally expensive.

Once again using the corresponding differential operator, we obtain a recurrence

for the coefficients of the polynomial. Let

Hα
κ (x1, . . . , xn) =

∑

σ⊆κ

cακ,σ

Cα
σ (x1, . . . , xn)

Cσ(In)
, (9.9)

133



and

cακ,σ =
1

k − s

(

∑

i

(

σ(i)(i)

σ(i)

)(

σ(i)

σ

)

cακ,σ(i)(i) + (9.10)

+
∑

i<j

(σi − σj −
1

α
(i− j))

(

(

σ(i)(j)

σ(j)

)(

σ(j)

σ

)

)

cακ,σ(i)(j)

)

. (9.11)

In the above, i < j take on all admissible values.

Note that if σ 6⊆ κ or k 6= s (mod 2), then the above is 0 (this is a nice general-

ization of the univariate case).

For consistency with the explicit formula of Lemma 8.4.1, we choose cα
κ,κ = Cα

κ (In).

9.2 Algorithms

In this section we analyze the complexity of the algorithms to compute the Jack, Her-

mite, Laguerre, and Jacobi polynomials. We also present and analyze the algorithm

for generalized binomial coefficients, as it is a component of the analysis of algorithms

for the aforementioned polynomials.

Our complexity bounds are upper bounds, but we believe them to be asymptot-

ically correct. They work well for the numerical evaluation; symbolic evaluation of

the polynomials is considerably slower. We are not aware of the existence of a good

symbolic performance model for Maple, and hence it would be difficult to predict how

much slower symbolic evaluation is than numerical evaluation. Since the coefficients

in the polynomials we compute are rational functions of m (the number of variables)

and α, of degrees that can go up to |κ| (the partition size), storage is another issue in

symbolic evaluations, and hence one would expect that the running times for symbolic

evaluation would be orders of magnitude slower than for numerical evaluation (and

hence, the partition size that would be “maximally reasonable” to attempt evaluation

on should be considerably lower than for numerical evaluation).

For each algorithm, we provide a complexity analysis, and we illustrate the per-

formance in practice by providing running times for different tests (both numerical

and symbolic); then we examine the running times and draw a set of conclusions.
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Each time we used N/A for an entry in a running time table, we have done so

because that particular computation has exhausted the memory available to Maple,

and hence (regardless of the time it took up to that point) the computation was not

completed.

The computer we have performed all tests is a Pentium 4 by Dell, 1.8 Ghz, 512

MB, and we have used Maple 8.

9.3 Complexity bounds: theory and practice

The algorithms we use to compute the polynomials are implementations of the re-

currences in Section 9.1; thus we do not see the need to present them in pseudo-code

format. We also note that the Uκ or in other cases Uκ,σ (see Table 9.1) are natural

lower bounds for any of the quantities we compute.

One thing worth mentioning is that Maple allows for the storage (and recall) of

each quantity previously computed, and our library uses this option.

Throughout this section, we will follow the notations given below.

k = |κ| size of partition κ

s = |σ| size of partition σ

l =length(κ) length of partition κ

Pκ number of partitions of k dominated by κ

P[k] number of partitions of the number k (each partition of

k is dominated by [k])

Uκ number of subpartitions of κ

Uκ,σ number of subpartitions of κ which are superpartitions

for σ (this implies σ is a subpartition of κ)

Aκ number of subpartitions of κ which sum to a number with

the same parity with k

Table 9.1: Notations to be used throughout Chapter 9.
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Note that by Ramanujan’s formula

P[k] ∼
1

4k
√

3
eπ
√

2k/3 . (9.12)

9.3.1 Jack Polynomials

The algorithm uses recurrence 9.2, together with the “boundary” conditions cκ,λ = 0

if κ 6≥ λ in dominance ordering, and cκ,κ = αkk!
c′(κ,α)

. The length of the recurrence is

at most O(k1

(

k+1
2

)

), with k1 being the first entry in the partition, and the algorithm

will check each of the possible partitions µ (at most k1

(

k+1
2

)

) to see if they are domi-

nated by κ and dominating λ (this involves l additions and l comparisons). The rest

of the computation has complexity O(k). Thus the complexity of the algorithm is

O(k1k
3Pκ). Note that Pκ, at worst, is P[k], so the algorithm has super-exponential

complexity.

Below we illustrate the running times for both numerical and symbolic computa-

tions. For numerical computations, we have chosen to make α = 1, (so that the Jack

polynomials are the Schur functions). Note that we do not test the partition [k]; for

that particular partition we have a closed-form formula for the Jack polynomial, due

to Stanley [86], which has complexity only O(kPk).

Remark 9.3.1. Note that the ratio of the running times increases when the partition

size increases. At k = 30, the number of partitions is 5604, and each of the monomial

coefficients is a rational function of α. Issues like storage and memory access become

important, and influence negatively the running times. Another important factor is

that in order to make things easier to store and access, not to mention easier to read

and interpret, we use the procedures “simplify” and “factor”, which are relatively

costly.

Extrapolation. Suppose the speed/memory of a top-of-the-line computer goes

up by a factor of 103 every 10 years. Then within the next decade, using MOPS,

computing Jα
(59,1) will take about 30 minutes.
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k κ Running time, α = 1 Running time, α symbolic Ratio

15 κ = [14, 1] 2.48 4.54 1.83

κ = [8, 7] 1.79 3.17 1.77

κ = [3, 3, 3, 3, 3] 0.39 0.50 1.28

20 κ = [19, 1] 16.97 30.45 1.79

κ = [10, 10] 11.53 20.32 1.76

κ = [4, 4, 4, 4, 4] 2.91 4.02 1.38

25 κ = [24, 1] 93.42 189.66 2.03

κ = [9, 8, 8] 46.85 79.85 1.70

κ = [5, 5, 5, 5, 5] 16.08 24.18 1.50

30 κ = [29, 1] 634.32 1819.65 2.86

κ = [10, 10, 10] 214.10 418.19 1.95

κ = [6, 6, 6, 6, 6] 73.54 113.55 1.54

Table 9.2: Running times (in seconds) for the Jack polynomial computation.

9.3.2 Generalized Binomial Coefficients

We use 9.4, together with the boundary conditions listed in Section 8.3.2 and with

the contiguous binomial formula 9.5. Computing each contiguous binomial coefficient

has complexity O(k), and one needs to compute no more than l such coefficients per

subpartition σ of κ. Thus one immediately obtains the bound O(klUκ,σ) for the

complexity of computing
(

κ
σ

)

.

Note that by computing
(

κ
σ

)

, one also obtains
(

κ
µ

)

, for each σ ⊆ µ ⊂ κ. So we have

chosen for our tests to compute
(

κ
[1,1]

)

for different κ, as this yields all the binomial

coefficients having κ as top partition (except
(

κ
2

)

, but that requires only an additional

kl complexity).

Remark 9.3.2. Once again, size and length of the partition increase the symbolic

running times; however, note that the running times are relatively small, even for

partitions of 30. We believe that the generalized binomial coefficients are rational

functions of α which can always be factored in small-degree factors, so that they are
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k κ Running time, Running time, Uκ, [12]

α = 1 α symbolic

15 [6, 4, 2, 2, 1] 0.22 1.12 139

[3, 3, 3, 3, 3] 0.05 0.18 56

[10, 5] 0.03 0.15 51

20 [6, 4, 3, 2, 2, 1, 1, 1] 1.01 6.68 418

[4, 4, 4, 4, 4] 0.17 0.6 126

[12, 8] 0.07 0.28 81

25 [7, 5, 4, 3, 2, 2, 1, 1] 3.41 23.37 1077

[5, 5, 5, 5, 5] 0.41 1.67 252

[16, 9] 0.15 0.62 125

30 [8, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1] 11.87 89.61 2619

[6, 6, 6, 6, 6] 0.91 3.95 462

[20, 10] 0.24 1.20 176

Table 9.3: Running times (in seconds) for the generalized binomial coefficient com-

putation.

easy to store and operate with.

9.3.3 Jacobi Polynomials

To compute the Jacobi polynomials, we use Format 9.6 and Recurrence 9.7. One

can easily see that at each step, one needs to compute at most l contiguous binomial

coefficients, each of which has complexity O(k); in addition, one needs to compute

another at most l binomial coefficients; each of these takes only O(l), as the contiguous

coefficients needed have already been computed at the previous step. Hence the total

complexity is O(kl) (since l≤k) at each step, for a total of O(klUκ, [12]).

Hence computing numerically the Jacobi polynomials is comparable to comput-

ing the generalized binomial coefficients
(

κ
[1,1]

)

; however, the constant for the Jacobi

polynomial complexity is considerably larger (we are guessing it is around 8).
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The Jacobi parameters we chose for each of the computations below are 0 and 1.

k κ Running time, Running time, Running time, Uκ

α = 1, m = l m symbolic α,m symbolic

10 [4, 2, 2, 1, 1] 0.27 0.74 22.12 42

[4, 3, 3] 0.11 0.35 1.88 30

[7, 3] 0.10 0.30 1.57 26

15 [6, 4, 2, 2, 1] 1.05 11.08 N/A 139

[3, 3, 3, 3, 3] 0.39 0.87 63.07 56

[10, 5] 0.19 1.01 27.98 51

20 [6, 4, 3, 2, 2, 1, 1, 1] 5.94 N/A N/A 418

[4, 4, 4, 4, 4] 0.63 8.24 N/A 126

[12, 8] 0.26 3.51 N/A 81

25 [7, 5, 4, 3, 2, 2, 1, 1] 18.61 N/A N/A 1077

[5, 5, 5, 5, 5] 1.23 N/A N/A 252

[16, 9] 0.45 N/A N/A 125

Table 9.4: Running times (in seconds) for the Jacobi polynomial computation.

Remark 9.3.3. While the running times for numerical evaluation are reasonable,

they explode when a symbolic parameter is introduced. The coefficients of the polyno-

mial are rational functions of that parameter or combination of parameters, of order

up to k(k − 1)/2. We recall that there are Uκ, [12] of them, a potentially superpolyno-

mial number, which explains the tremendous increase in the running time.

9.3.4 Laguerre Polynomials

We use Format 9.8; it is easily established that the complexity of computing the

Laguerre polynomial is dominated by the cost of computing the binomial coefficients,

that is O(klUκ, [12]).

The Laguerre parameter we chose for each of the computations below is 1.
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k κ Running time, Running time, Running time, Uκ

α = 1, m = l m symbolic α,m symbolic

10 [4, 2, 2, 1, 1] 0.12 0.23 0.54 42

[4, 3, 3] 0.07 0.14 0.31 30

[7, 3] 0.07 0.10 0.28 26

15 [6, 4, 2, 2, 1] 0.49 0.82 2.95 139

[3, 3, 3, 3, 3] 0.18 0.27 0.84 56

[10, 5] 0.11 0.22 0.81 51

20 [6, 4, 3, 2, 2, 1, 1, 1] 2.26 3.37 16.08 418

[4, 4, 4, 4, 4] 0.44 0.69 2.74 126

[12, 8] 0.20 0.37 1.79 81

25 [7, 5, 4, 3, 2, 2, 1, 1] 7.23 11.06 67.92 1077

[5, 5, 5, 5, 5] 0.96 1.53 8.06 252

[16, 9] 0.32 0.69 4.21 125

Table 9.5: Running times (in seconds) for the Laguerre polynomial computation.

Remark 9.3.4. For the Laguerre polynomials, even in the all-symbolic case, the

computation is very easy, and the storage required is relatively small. This explains

why it is possible to obtain them without much effort, in any one of the cases.

9.3.5 Hermite Polynomials

We use Format 9.9 and Recurrence 9.10. We only do work for those coefficients that

correspond to subpartitions σ of κ such that |σ| ≡ k (mod2). There are Aκ of them.

For each, we compute at most
(

l
2

)

contiguous coefficients, each done with work O(k);

all of the other work is O(k). Hence the total work is O(kl2Aκ).

Remark 9.3.5. Aκ = O(Uκ); Aκ ∼ Uκ/2.

Remark 9.3.6. Note that when m is parametrized, but α = 1, the computation is

almost as fast as in the all-numerical case. That happens because the dependence
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k κ Running time, Running time, Running time, Aκ

α = 1, m = l m symbolic α,m symbolic

10 [4, 2, 2, 1, 1] 0.21 0.24 0.75 22

[4, 3, 3] 0.09 0.11 0.33 16

[7, 3] 0.05 0.06 0.24 14

15 [6, 4, 2, 2, 1] 0.41 2.83 42.92 88

[3, 3, 3, 3, 3] 0.13 0.17 1.83 38

[10, 5] 0.10 0.12 1.10 30

20 [6, 4, 3, 2, 2, 1, 1, 1] 1.93 2.39 N/A 211

[4, 4, 4, 4, 4] 0.35 0.51 N/A 66

[12, 8] 0.18 0.25 13.49 43

25 [7, 5, 4, 3, 2, 2, 1, 1] 6.23 7.53 N/A 1077

[5, 5, 5, 5, 5] 0.90 1.20 N/A 252

[16, 9] 0.29 0.50 106.56 125

Table 9.6: Running times (in seconds) for the Hermite polynomial computation.

on m is very simple, and it only involves Pochhammer symbols, which do not get

expanded (so that the storage required is minimal). However, the dependence on α

is more complicated, and the rational functions obtained as coefficients are complex

and hard to store. Hence the running time for the all-symbolic computation increases

dramatically.

9.3.6 Computing Integrals

To evaluate integral s over the β-Hermite, β-Laguerre, and β-Jacobi ensembles, we

are using formulas (8.6), (8.4), and (8.5) as building blocks; they provide the answer

for the integrals of Jack polynomials.

To compute the integral of a symmetric polynomial over the ensembles, one needs

to write the polynomial either in the Jack basis or in the monomial basis. We have con-

version algorithms that take expressions involving sums of products of Jack/monomial
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symmetric functions, and rewrite them as simple sums of Jack polynomials.

Once the symmetric polynomial is expressed in terms of Jack symmetric functions,

the integral is computed as the sum of the integral s of the Jack polynomials involved.

We provide an example below.

Example. Suppose we want to compute the expected value of

z(α, x1, x2, x3) := Jα
[2,1](x1, x2, x3)C

α
[1,1,1](x1, x2, x3)

over the Hermite distribution. First we have to express z as a linear combination of

Jack “C” Polynomials. Note that the number of variables, as well as α, must be the

same in the two terms of z.

First, we express the two terms in the monomial basis (this can be obtained with

a call to the “jack” routine):

Jα
[2,1](x1, x2, x3) = (2 + α) m[2,1](x1, x2, x3) + 6 m[1,1,1](x1, x2, x3) ,

Cα
[1,1,1](x1, x2, x3) =

6α2

(1 + α)(2 + α)
m[1,1,1](x1, x2, x3).

Their product thus becomes a linear combination of sums of products of two

monomials, which are in turn converted to linear combinations of monomials (this

can be obtained with a call to the “m2m” routine):

m[2,1](x1, x2, x3) m[1,1,1](x1, x2, x3) = m[3,2,1](x1, x2, x3) , while

m[1,1,1](x1, x2, x3)
2 = m[2,2,2](x1, x2, x3) .

Putting it all together, in the monomial basis,

z(α, x1, x2, x3) =
6α2

1 + α
m[3,2,1](x1, x2, x3) +

+
36α2

(1 + α)(2 + α)
m[2,2,2](x1, x2, x3) .

All that is left now is to convert from the monomial basis back to the Jack Poly-

nomial basis, and to obtain that

z(α, x1, x2, x3) =
1

120

(2 + 3α)(1 + 2α)2

α(1 + α)
Cα

[3,2,1](x1, x2, x3)
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The above involves a call to the “m2jack” routine.

We are now able to finish the work:

EH

[

z(α, x1, x2, x3)
]

= −36(α2 + 2α− 3)

(1 + α)(2 + α)
.

All of the above can be realized with a simple call to “expHjacks”, which runs in

less than 0.1 seconds.

The implementations of the (8.4) and (8.5) formulas have both complexity O(k);

(8.6) is slightly more complicated. We have chosen to use (8.8) in order to compute

the value at (0, 0, . . . , 0) of the Hermite polynomial. The complexity of this formula

is comparable to the complexity of computing the generalized binomial coefficient
(

κ
[1,1]

)

; it is O(klAκ).

Below we present some sample running times.

k κ Running time, Running time, Running time, Aκ

α = 1, m = l α symbolic α,m symbolic

10 [4, 2, 2, 1, 1] 0.08 0.39 0.47 22

[4, 3, 3] 0.05 0.26 0.36 16

[7, 3] 0.04 0.24 0.29 14

16 [6, 4, 3, 2, 1] 0.42 10.47 12.77 88

[4, 4, 4, 4] 0.14 8.96 9.92 38

[10, 6] 0.08 7.11 8.34 30

20 [6, 4, 3, 2, 2, 1, 1, 1] 1.36 N/A N/A 211

[4, 4, 4, 4, 4] 0.32 N/A N/A 66

[12, 8] 0.17 106.47 109.66 43

24 [7, 5, 4, 3, 2, 2, 1] 3.21 N/A N/A 425

[4, 4, 4, 4, 4, 4] 0.61 N/A N/A 110

[16, 8] 0.27 N/A N/A 61

Table 9.7: Running times (in seconds) for the integral of the Jack polynomial with

respect to the 2/α-Hermite distribution.
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Since the algorithms for evaluating the integral s of the Jack polynomial over the

2/α-Laguerre and 2/α-Jacobi distributions have complexity O(k), they are incredibly

fast, literally taking fractions of a second to compute when all the parameters are

numerical, and taking seconds in the worst cases, when all parameters are symbolic.
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Chapter 10

Other eigenvalue statistics

In this chapter we list some of the Laguerre/Wishart β = 1, 2 eigenvalue statistics that

are found in the literature, and present their generalizations to general β. There is an

extensive literature on this subject, starting with the work of James [47], Constantine

[14], continuing with Muirhead [70], which is probably the best reference for β = 1,

Krishnaiah and Chang [58], Sugiyama [88], Silverstein [81], Edelman [24, 25, 26], and

many others.

It is our strong belief that each and every one of the Laguerre/Wishart eigenvalue

statistics that have been proved for β = 1 and 2 admits a simple and similar gen-

eralization to β > 0. Moreover, we believe that most eigenvalue statistics that have

been proved for the Gaussian/Hermite ensembles also admits a (perhaps less obvious)

generalization to β > 0.

10.1 Smallest eigenvalue statistics

We present here two theorems which are immediate generalizations from the β = 1

case to all β. Except for the changes in the parameters, the proofs are identical to the

original ones. In the first case, all the tools involving β = 1 hypergeometric functions

have been generalized to all β (for a reference, see Forrester [30]). In the second case,

no new tools are necessary; the conditions that are imposed arise from the proof in

the same way they arose for β = 1.
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The β = 1 version of the theorem below belongs to Krishnaiah and Chang [58].

It can also be found in Muirhead [70, page 423], as a finite sum of zonal polynomials.

Theorem 10.1.1. Let L be a n× n β-Laguerre matrix of parameter a, and assume

that k = a− β
2
(n− 1)− 1 is an integer. Then the p.d.f. of the smallest eigenvalue of

L is proportional to

fn,β(x) = xkn e−xn/2
2F

β
0 (−k, β

2
n + 1;−2

x
In−1) ,

where 2F
β
0 is the multivariate hypergeometric function of parameter β, and In−1 =

(1, 1, . . . , 1).

The second theorem in this section has a β = 1 version which belongs to Edelman

[24, 25].

Theorem 10.1.2. Let L be a n× n β-Laguerre matrix of parameter a, and assume

that a− β
2
(n− 2) = 1. Then the p.d.f. of the smallest eigenvalue of L is given by

fn,β(x) =
n 2β/2−1

Γ(1 − β
2
)
x−β/2 e−xn/2 U(

β

2
(n− 1),−β

2
,
x

2
) ,

where U(a, b, z) is the Tricomi function, i.e. the unique solution of the Kummer

equation

z2 d2w

dz2
+ (b− z)

dw

dz
− aw = 0

with U(a, b, 0) = Γ(1−b)
Γ(1+a−b)

and U(a, b,∞) = 0.

Remark 10.1.3. Note that the requirement a− β
2
(n− 2) = 1, together with the fact

that a > β
2
(n − 1), implies that β < 2. Moreover, for each such β, for each n, there

exists precisely one a which satisfies the constraints.

10.2 Largest eigenvalue statistics

We present here a theorem giving the c.d.f. of the largest eigenvalue of a β-Laguerre

matrix of size n and parameter a. The β = 1 version of this theorem belongs to

Constantine [14] (it is a particular case of Theorem 7) and it is found in numerous
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places, including Muirhead [70, page 421]. The proof for the general case (β > 0,

a > (n − 1)β/2) is once again identical to the original one, and it is based on the

formula for the average of a Jack polynomial of the β-Jacobi distribution (see Kadell

[55]), and on the generalization of the β multivariate hypergeometric functions (for a

reference, see [8]).

Theorem 10.2.1. Let L be an n × n β-Laguerre matrix of parameter a. Then the

c.d.f. of the largest eigenvalue l of L is given below:

Pr[ l ≤ x ] =
Γn(β

2
(n− 1) + 1)

Γn(a + β
2
(n− 1) + 1)

(x

2

)an

1F
β
1 (a; a +

β

2
(n− 1) + 1;−x

2
In−1) ,

where 1F
β
1 is the multivariate hypergeometric function of parameter β, and In−1 =

(1, 1, . . . , 1).

The second result of this section is a generalization of a result obtained by Silver-

stein [81].

Theorem 10.2.2. Let L be an n × n β-Laguerre matrix of parameter a, and let n

and a go to infinity in such a way that (nβ/2a) → y ∈ [0, 1]. Then the largest

eigenvalue λmax of L satisfies

lim
n→∞

nλmax = β(1 +
√
y)2 .

10.3 Condition number

In this section, we present a theorem whose β = 1 version belongs to Edelman [24, 26];

once again, the original proof applies with minor modifications and we choose not to

present it.

Theorem 10.3.1. Let L be a n× n β-Laguerre matrix of parameter a, and assume

that a− β
2
(n− 2) = 1. Let κ = λmax/λmin be the condition number of L, and let fn,β

be the p.d.f. of the scaled condition number κ/n2. Then for any x,

lim
n→∞

fn,β(x) =
8β3/2−β/4

Γ(1 − β
2
)
t−4+β/2 e−2/t2 K−β/2−1

(

2

t

)

,
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where Kν, the modified Bessel function, is the unique solution of the equation

z2 d2w

dz2
+ z

dw

dz
− (z2 + ν2)w = 0

with Kν(z) → 0 as z → ∞ and |arg(z)| < π/2.

This generalization, due to the condition that β < 2, fails to provide an answer to

the question of finding the condition number for any β, when a = nβ/2; this question

remains open.
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Borodin, A., 18

Catalan number, 64, 65

definition, 65

Central Limit Theorem, 15, 21, 22, 63,
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Chang, T.C., 19, 116, 145, 146

changes of variables

see matrix factorizations, 35

Chebyshev, P.L., 62

Chikuse, Y., 19

circular ensembles, 16
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Constantine, A.G., 107, 117, 145

convergence

almost surely, 61, 83, 89

in probability, 59–61

of moments, 61, 75, 78, 81–83, 89

Coxeter groups, 21

CS decomposition

Jacobian of, 41, 42

Deift, P., 15, 18, 47, 56

Delannay, R., 122

Demmel, J., 47, 129

Diaconis, P., 18

discriminant

moments of, 57, 58

dominance ordering

definition, 109

duality principle, 23, 120–123

Dyck path, 65, 66, 69, 71, 72, 78–80,

85–87

connection with Catalan number,

65

definition, 65

Dyson, F.J., 16

Edelman, A., 19, 37–39, 128, 145, 146

empirical distribution, 33, 59–64

definition, 33

density of, 60

expected characteristic polynomial, 56

expected value of a polynomial, 56, 57,

141–144

extremal eigenvalues, 16, 18, 19, 32, 33

fall, 66–75, 77–79, 82

definition, 65

Forrester, P.J., 21, 33, 34, 47, 108, 112,

116, 117

Foulkes, H.O., 107

Gamburd, A., 18

Gaudin, M., 18

Gaussian ensemble, 15–19

generalized binomial coefficients, 108,

113, 143

algorithm, 137

definition, 113

GOE, 16, 18, 128

matrix model, definition, 28

Golub, G., 50

Goulden, I., 18, 23, 118, 120, 122

Gravner, J., 18

Grenander, U., 59

GSE, 16

matrix model, definition, 28

GUE, 14–16, 18, 154

matrix model, definition, 28

Haar measure

definition, 37

Heine formula, 45

Hermite polynomial, 93, 96, 97

roots, 93, 96, 97
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Householder, A., 50

Hsu, P.L., 14

Hua, L.K., 106

hypergeometric functions, 17, 19

definition, 111, 116

invariance with respect to orthogonal

transformations, 15, 16

of the Haar measure, 37

of the normal distribution, 27, 50

Ivanov, D.A., 16

Jack polynomials, 17, 19, 23, 106–108,

110, 122, 142

algorithm, 129, 130, 136, 141

combinatorial definition, 110

conversion between normalizations,

112

eigenfunction definition, 111

inner product, 107, 110

normalizations, 111

Jack, H., 19

Jackson, D.M., 18, 23, 111, 118, 120,

122

Jacobians, 23, 35, 40, 41

James, A.T., 19, 106, 107, 112, 129, 145

Johansson, K., 15, 18, 21, 22, 33, 63

Johnstone, I., 19

joint eigenvalue p.d.f., 29–33, 51

of the GOE, 50

joint element density, 29–32

of the β-Hermite ensembles, 50

Jonsson, D., 60

Kadell, K., 17, 108, 117

Kahan, W., 50

Kaneko, J., 17, 107

Knop, F., 107

Koev, P., 129

Krishnaiah, P.R., 19, 116, 145, 146

Laguerre polynomial, 93, 99, 100, 104

roots, 93, 99, 100, 104, 105

Laplace-Beltrami-type operators, 111,

114

largest eigenvalue, 19

of a β-Hermite ensemble, 15

of a β-Laguerre ensemble, 146, 147

Lasalle, M., 21, 108, 119

LDL′ decomposition

Jacobian of, 40

Le Caër, G., 122

leg-length

definition, 111, 112

level density, 16, 18, 21, 32–34, 60, 61,

75, 81, 83, 89

asymptotic, large β, 23, 93, 102–

105

asymptotic, large n, 17–19

definition, 34

level step, 66–69, 73–75, 77–80, 82, 85–

87, 89

151



definition, 66

lexicographical ordering, 109

definition, 109

LL′ decomposition

Jacobian of, 38

longest increasing subsequence

distribution of, 15

LQ decomposition

Jacobian of, 39

LU decomposition

Jacobian of, 37

Macdonald, I., 21, 107, 110, 120, 130

MANOVA ensemble, 15–17, 19, 20

Maple, 2, 22, 23, 105, 120, 122, 128,

134, 135

Marcenko, V.A., 19, 60

MATLAB, 25, 27, 29, 37, 48, 105

matrix differentials, 36, 37, 52, 53

matrix factorizations, 23, 35, 37

Mehta, M.L., 18, 39, 122

moments of the determinant, 121–125,
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Montgomery-Odlyzko law, 15

MOPs, Multivariate Orthogonal Poly-

nomials (symbolically), 22, 23,

105, 120, 122, 128, 129

Motzkin path, 66, 78, 85, 86

alternating, 64–69, 72, 73, 75, 82,

90

alternating, connection to Narayana

number, 67

alternating, definition, 66

definition, 66

Muirhead, R., 19, 38, 40, 107, 111, 117,

145, 146

multivariate binomial coefficients

see generalized binomial coefficients,

113

multivariate Gamma function, 29

multivariate Hermite polynomials, 21

algorithm, 133, 140, 141

definition, 115

multivariate Jacobi polynomials, 17, 21

algorithm, 138, 139

definition, 114

multivariate Laguerre polynomials, 21

algorithm, 139

definition, 114, 115

multivariate orthogonal polynomials, 17,

21

Narayana number, 64, 65

definition, 67

polynomial, 69

nearest neighbor spacings, 32

distributions for the Gaussian en-

sembles, 33

GUE, 14

normal distributions

definitions and notation, 26
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multivariate definitions and nota-

tion, 26

Normand, J.M, 122

Okounkov, A., 18, 23, 107, 118, 120

Olshanski, G., 18, 107

one-point correlation function

see level density, 33, 34

Opdam, M., 21

Paige, C.C., 44

Parlett, B., 43

partition, 108, 109, 111, 112, 118, 122

definition, 108

Pastur, L.A., 19, 60

perturbation theory, 47, 48, 98, 101

phases, 39, 41, 42

Pochhammer symbol

see shifted factorial, 30, 58, 141

QΛQ′ decomposition

Jacobian of, 39

tridiagonal, Jacobian of, 42

QR decomposition

Jacobian of, 38

QS decomposition

Jacobian of, 40

repelling factor

see Vandermonde determinant, 92

Richards, D., 21

Riemann zeta function

nearest neighbor spacings, 14

zeros, 14

rise, 66–75, 77–79, 82, 86, 89

definition, 65

rising factorial

see shifted factorial, 30

Rodrigues formula for multivariate Her-

mite polynomials, 124

Sahi, S., 107

Schrödinger operator, 15, 17, 21

eigenfunctions, 17, 21

Schur functions, 17, 106, 107

Selberg integral, 21, 23, 55, 56, 58, 107,

111, 121

Selberg, A., 17, 20

Semi-circle distribution, 59, 75, 83

definition, 62

Semi-circle Laws, 22, 62, 63, 76

shifted factorial

generalized multivariate, 30

univariate, 30

Silverstein, J.W., 19, 60, 63, 145

Sinai, Y., 64

singular value decomposition

see UΣV′ decomposition, 39

smallest eigenvalue

of a β-Laguerre ensemble, 145, 146

Soshnikov, A., 64

sparsification
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see bidiagonalization, tridiagonaliza-

tion, 49

Stanley, R.P., 65, 107, 112, 120

Stegun, I.A., 124

Stiefel manifold, 38

definition, 37

Strong Law of Large Numbers

see Semi-circle Laws, 22, 63

Sugiyama, T., 145

symmetric eigenvalue decomposition

see QΛQ′ decomposition, 39

symmetric functions

complete homogeneous, 110

elementary, 57, 110

Jack, see Jack polynomial, 142

monomial, 107, 110, 111, 141, 142

power-sum, 110

Szegö, G., 45, 56

threefold way, 16, 17, 24

Tracy, C., 15, 18

Tracy-Widom law, 19

for the GUE, 15

tridiagonalization, 49, 50

Trotter, H., 59

UΣV′ decomposition

Jacobian of, 39

Vandermonde determinant, 45, 47, 54–

57, 92

tridiagonal formula, 43–45

variables on the same probability space,

94, 95, 97, 99

definition, 93, 94

Widom, H., 15, 18

Wigner, E., 17, 22, 35, 59, 65

Wishart ensemble, 15–17, 19, 20

complex matrix model, definition,

28

quaternion matrix model, definition,

28

real matrix model, definition, 28

Wishart, J., 14, 19

Yan, Z., 21

Zirnbauer, M., 16

zonal polynomials, 17, 19, 106, 107
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