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Abstract. A Bayesian model of learning to learn by sampling from multiple tasks is presented. The multiple
tasks are themselves generated by sampling from a distribution over an environment of related tasks. Such an
environment is shown to be naturally modelled within a Bayesian context by the concept of anobjectiveprior
distribution. It is argued that for many common machine learning problems, although in general we do not know
the true (objective) prior for the problem, we do have some idea of a set of possible priors to which the true
prior belongs. It is shown that under these circumstances a learner can use Bayesian inference to learn the true
prior by learning sufficiently many tasks from the environment. In addition, bounds are given on the amount of
information required to learn a task when it is simultaneously learnt with several other tasks. The bounds show that
if the learner has little knowledge of the true prior, but the dimensionality of the true prior is small, then sampling
multiple tasks is highly advantageous. The theory is applied to the problem of learning a common feature set or
equivalently a low-dimensional-representation (LDR) for an environment of related tasks.

Keywords: Hierarchichal Bayesian Inference, Bias learning, Feature Learning, Neural Networks, Information
Theory

1. Introduction

Hume’s analysis shows that there is noa priori basis for induction. In a machine learning
context, this means that a learner must be biased in some way for it to generalise well
(Mitchell, 1990). Typically such bias is introduced by hand through the skill and insights of
experts, but despite many notable successes, this process is clearly limited by the experts’
abilities. Hence a desirable goal is to find ways of automaticallylearning the bias. As
knowing the right bias makes the learning problem easier, learning the bias can be viewed
as a form oflearning to learn.

In this paper a Bayesian model of bias learning is introduced, based on the VC/PAC-
type models of bias learning introduced in (Baxter, 1995b, Baxter, 1996b). The central
assumption of all these models (including that of the present paper) is that the learner is
embedded within anenvironmentof related tasks. The learner is able to sample from the
environment and hence generate multiple data sets corresponding to different tasks. The
learner can then search for a hypothesis space that is appropriate for learning all the tasks.
Learning problems which can naturally be viewed as belonging to a large class of related
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tasks are things like face recognition (each individual face classifier can be thought of as a
separate learning problem), speech recognition (the word classifiers are related) character
recognition, fingerprint recognition and so on.

For the learner to be able to search for an hypothesis space, it must be provided with a
family of hypothesis spaces from which to choose. In (Baxter, 1995b, Baxter, 1996b) it was
shown that under certain restrictions on this family of hypothesis spaces (these restrictions
are analogous to the “finite VC dimension” restrictions on ordinary learners), it is possible
for the learner to sample sufficiently often from sufficiently many tasks to ensure that a
hypothesis space containing hypotheses with small empirical loss on all the tasks will, with
high probability, contain good solutions to novel tasks drawn from the same environment.
Thus, in this formal sense, it is possible for a learner to learn its own bias.

Whether or not there actually exists a hypothesis space containing good solutions to
all the tasks will depend upon the family of hypothesis spaces provided to the learner,
or equivalently upon thehyper-biasof the learner. Such hyper-bias must be provided
by hand, which appears to beg the question, “haven’t you just replaced the problem of
finding the right bias with the equally difficult problem of finding the right hyper-bias?”
Part of the purpose of this paper is to show that for many classes of learning problems
(in particular those that possess a common set offeatures, or equivalently, a common
Low Dimensional Representation(LDR) or preprocessing), the task of finding the correct
hyper-bias is considerably easier than that of finding the right bias, if multiple tasks can be
sampled. Intuitively, the reason for this is that there is a lot more information in multiple
tasks than there is in a single task, and so the hyper-bias can be more weakly specified than
the bias.

Learning multiple related tasks not only enables bias learning—in the sense that it im-
proves the learner’s performance on novel tasks—but it also improves generalisation per-
formance on the tasks in the training set. In particular, it was shown in (Baxter, 1995b)
that if the learner is learning a common feature set (LDR) for ann task training set then
the number of examplesm required of each task to ensure good generalisation on average
across alln tasks obeys

m = O

(
a+

b

n

)
. (1)

Herea is a measure of the dimension of the smallest hypothesis space needed to learn all
the tasks in the environment andb is a measure of the dimension of the space of possible
representations available to the learner. “Good generalisation” means that the learner’s per-
formance in practice, on overage across alln tasks, will be close to its average performance
on the training sets. Note that this is an agnostic definition of good generalisation because
it does not assume that the learner actually performs well in training.

Then = 1 case of formula (1)—m = O(a + b)—is an upper bound on the number of
examples that would be required for good generalisation in the ordinary, single task learning
scenario, while the limiting case ofm = O(a) is an upper bound on the number of examples
required if the correct preprocessing is already known. Thus, this formula shows that the
upper bound on the number of examples required per task for good generalisation decays
to the minimum possible as the number of tasks being learnt increases.
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Although very suggestive, without a matching lower bound of the same form, it is not
possible to conclude from (1) that learning multiple related tasks requires fewer exam-
ples per task for good generalisation than if those tasks are learnt independently. Un-
fortunately, lower bounds within a real-valued VC/PAC framework can only be obtained
by making extra assumptions, such as that the function values are corrupted by noise
(Bartlett, Long & Williamson, 1994), or that every algorithm within a certain class of algo-
rithms performs well (Anthony & Bartlett, 1995). Without such assumptions it is possible
to construct (albeit artificial) scenarios in which every function within some class encodes
its identity at every point (Bartlett, Long & Williamson, 1994). The problem arises because
the output of a real-valued function can potentially encode an infinite amount of information.

The Bayesian model introduced here is an alternative way to overcome these limitations.
In particular the concept of information (in a Shannon sense) is more naturally modeled
within a Bayesian framework than in a VC/PAC setting, and so one can precisely formulate
questions such as “how much information is required to learn”. By asking this kind of ques-
tion rather than “how many examples are required to learn” we get away from the difficulties
mentioned in the previous paragraph. Another advantage of the Bayesian framework is that
it is much easier to formulate and analyse the effects of prior knowledge on the learning
process. This is particularly important in bias learning where one is trying to understand
how the process of acquiring prior knowledge can be automated.

The main novel feature of this model is that the traditional Bayes prior distribution
is treated asobjective, rather than subjective. The sample space of the objective prior
represents the space of tasks in the environment, and sampling from the prior corresponds
to selecting different learning tasks from the environment. The reason the prior is regarded
as objective is because it is assumed that it can be sampled from,i.e. it represents some
objective stochastic phenomenon, in contrast to subjective priors which reflect the prior
beliefsof the learner.

The analogous question to “how many examples are required of each task in ann task
training set” leading to the upper bound (1), is “how much information is required per
task to learnn tasks?” By using the usual Shannon definition of information, it is shown
in subsection 3.1 that if the learner already knows the true (objective) prior then there is
no advantage to learningn tasks; that is, the expected amount of information needed to
learn each task within ann task training set is the same as if the tasks are learnt separately.
However, if the learner does not know the true prior (which is generally the case in bias
learning, otherwise there is no need to do bias learning), but instead knows only that the
prior is one of a setΠ of possible priors, then we will see that the expected amount of
information required per task to learnn tasks,Rn,π∗ , obeys

Rn,π∗
.= a′ + b′(π∗)

logn
n

+ o

(
logn
n

)
(2)

wherea′ is the minimum amount of information possible (the amount the learner would
require if it knew the true priorπ∗ ∈ Π) and b′(π∗) is a local measure of the dimen-
sion of the space of possible priorsΠ at the pointπ∗. Heref(n, π∗) .= g(n, π∗) means
f(n, π∗) = g(n, π∗) for all but a set ofπ∗ of vanishingly small measure asn → ∞, and
o(logn/n) stands for a functionf(n) satisfyingf(n)/(logn/n) → 0. The “vanishingly
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small measure” referred to above is a measure onΠ, the set of possible priors, and hence is
itself ahyper-priordistribution. The hyper-prior has no physical meaning, it simply reflects
the initial beliefs of the learner as to whichpriors are more likely. Thus, in the terminology
of the present paper, the hyper-prior is asubjectivedistribution.

Comparing (2) and (1) and the meaning ofa andbwith their partnersa′ andb′, we see that
(2) partially realizes the aim of providing an exact bound justifying learning multiple related
tasks. In particular, (2) shows that the information required to learn each task within ann
task training set decays to theminimumpossible as the number of tasks is made arbitrarily
large. One way of interpreting this is that the effect of the learner’s ignorance concerning
the true (objective) prior can be made arbitrarily small by learning sufficiently many tasks,
or equivalently that any uncertainty the learner may have about the appropriate bias to use
for the environment can be made arbitrarily small by learning sufficiently many tasks.

The difference between the amount of information required by the learner to learn the
nth taskafteralready learningn− 1 tasks, and the amount of information required to learn
thenth task if the learnerknowsthe true (objective) prior is analysed in subsection 3.2.
In particular, defining thecumulative lossof the learner,Cn,π∗ to be the sum of the extra
information required when learning the first, second,. . ., nth task, it is shown that

Cn,π∗
.=
b′(π∗)

2
logn+ o(logn). (3)

The form of this equation aslogn multiplied by the dimension of the space of possi-
ble priors around the true priorπ∗ is similar to results from ordinary Bayesian inference
(Clarke & Barron, 1990).

The results of section 3 are purely concerned with the amount of information required
to learn each task within ann task training set, they do not address the problem of how
the information is obtained. In section 4 it is assumed that each task takes the form of a
probability distribution over an observation space, and the information about the task is
obtained by sampling from this distribution. This model covers a multitude of learning
scenarios, from pattern classification to density estimation (see section 2). The question of
how much information is required to encode them’th observation of each task in ann task
training set,Ln,m,π∗ , after seeing the firstm− 1 observations of each task, is analysed. In
particular, general results in terms of metric dimension are given in subsection 4.1 for the
cumulative loss, Cn,m,π∗ =

∑m
k=0 Ln,k+1,π∗ .

These result are specialized in section 4.2 to hierarchical models witha+b real parameters,
b of which are hyper-parameters and the remaininga of which are model parameters. That
is, each possible different prior inΠ is obtained by fixingb of the total set of parameters to
some value, and then each individual learning problem with respect to that prior is obtained
by fixing the remaininga parameters to some value. These models are called(a, b)-models.
Neural networks for learning LDRs are (almost)(a, b)-models; they are considered in
section 4.3. A second example based on learning the parameters of a normal distribution is
given in section 4.4.

In section 4.2 it is shown that for(a, b)-models, the cumulative loss in predicting novel
examples of each task satisfies
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Cn,m,π∗
.=

logm
2

(
a+

b

n

)
+ o (logm) . (4)

Compare this with the situation in which each task is learnt independently:

Cn,m,π∗
.=

logm
2

(a+ b) + o (logm) , (5)

and the optimal loss achievable if the true prior is known:

Cn,m,π∗
.=

logm
2

(a) + o (logm) . (6)

Again we find that the learner’s loss decays to the minimum possible as the number of tasks
grows. Note the reappearance of the factora+ b/n.

The rest of the paper is organized as follows. The Bayesian model of bias learning
is introduced formally in section 2, along with a concrete example based on learning a
feature map or low-dimensional representation (LDR) with a neural network. Equations
(2) and (3) are derived in section 3 and the constantsa′ andb′(π∗) are calculated for the
neural network example, where contact is made between the Bayesian model results and
the VC/PAC model results of (Baxter, 1995b). Equations (4), (5) and (6) are derived in
section 4, along with more general versions based only upon metric dimension concepts.
These results are again applied to the neural network example in section 4.3, and once again
comparison is made with the VC/PAC model results. To demonstrate that this theory is
more generally applicable than just the LDR example, a second example based on learning
the parameters of a normal distribution is given in section 4.4.

1.1. Related Work

Several authors have made empirical studies of the idea that learning multiple related tasks
should improve performance, seee.g. (Caruana, 1993, Abu-Mostafa, 1989, Mitchell &
Thrun, 1994). Experimental verification of this for feedforward nets was also reported
in (Baxter, 1995b). The additional assumption that the tasks are distributed according to
an objectivedistribution is what allows us to perform a theoretical analysis of this idea.
This assumption was also made in (Baxter, 1995b, Baxter, 1996b). However, note that
the theoretical model presented here does not apply directly to the experimental results of
(Caruana, 1993) because there the training sets are not generated independently for each
task.

The Bayesian aspect of the model presented here is a special case of what is known as
hierarchical Bayesian inference(see e.g (Berger, 1985, Berger, 1986, Good, 1980)). To the
best of my knowledge the asymptotic analysis given in this paper for these models is new,
as is the consideration of the effect of the difference in the number of hyper-parameters
and model parameters, and the application of these results to representation or feature-map
learning with neural networks. Hierarchical Bayesian inference has also been discussed
in the context of neural networks by several authors (seee.g. (Mackay, 1991), although
the techniques presented there are not explicitly identified as hierarchical Bayes). As far
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as I know the idea of an objective prior has not been employed previously in Bayesian
approaches to neural networks. For the most part hierarchical Bayes has been used to tune
a small number of “nuisance” (hyper) parameters (such as the parameterλ controlling the
trade-off between regularisation and data-misfit in regression networks (Mackay, 1991)),
and this tuning has been based on learning asingletask.

The asymptotic results for smooth Euclidean models given in section 4.2 could also
be derived more directly from the results of (Clarke & Barron, 1990). The motivation
behind the approach taken here (which is based on the ideas in (Haussler & Opper, 1995a))
is that it provides results for general metric spaces, not just Euclidean models, although
this is at the expense of losing lower order terms in the asymptotic estimates. Theorem
1 can also be derived via quite different techniques as a special case of theorem 2 in
(Haussler & Opper, 1995b) (which appeared as an earlier incarnation of the present paper
(Baxter, 1996a) was being prepared).

1.2. Notation

The probability model treated throughout this paper is three-tiered. At the bottom level
is Z which is assumed to be (at least) a complete separable metric space. All probability
measures onZ are defined on the sigma-field of Borel subsets ofZ. Z is the learner’s
interface with the environment—the learner receives all its data in the form of samples
from Z. For example, in density estimationZ would just be the input spaceX, while in
classificationZ = X × Y whereX is the input space andY = {0, 1}.

The next level up in the hierarchy isΘ, which is the set of possible “states of nature”
or “learning tasks” with which the learner might be confronted. For eachθ ∈ Θ there is
a probability measurePZ|θ onZ. It is assumed that there exists a fixedσ-finite measure
ν that dominatesPZ|θ for eachθ ∈ Θ. Θ is also assumed to be a complete separable
metric space. At the highest level in the hierarchy is the setΠ which represents the space of
possible “priors” onΘ. For eachπ ∈ Π there is a probability measurePΘ|π on Θ. Again
thePΘ|π ’s are defined on the sigma field of Borel subsets ofΘ and it is assumed that there
exists a second measureµ dominating allPΘ|π. Finally, onΠ there is a fixed probability
measurePΠ: the “hyper-prior”. AsΘ is a complete separable metric space, the domain of
PΠ can be taken to be the sigma field generated by the topology of weak convergence of
thePΘ|π measures. Let suppP denote the support of measureP .

Where multiple instances of the same space need to be distinguished, the extra copies
will be denoted by primes (Z ′) or tildes (Z̃).

Integration with respect to the measuresν andµ will be denoted by
∫
Z
dz and

∫
Θ
dθ

respectively (ν andµ are not assumed to be Lebesgue measures—the notation is just for
convenience). Integration with respect to the hyper-priorPΠ will be denoted

∫
Π
p(π) dπ.

The Radon-Nikodym derivative of any measurePZ|θ at z ∈ Z,
dPZ|θ
dν (z) will be written

interchangeably asp(z|θ) or pZ|θ(z), and similarly
dPΘ|π
dµ (θ) will be written asp(θ|π) or

pΘ|π(θ).
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If f is a function onZ, then the expectation off with respect to any random variable
with distributionPZ|θ will be denoted byEZ|θf(z) =

∫
Z
f(z)p(z|θ) dz. Similarly for

functions defined onΘ andΠ.
n×m matrices with elements fromZ will be denoted byz(n,m):

z(n,m) =

z11 . . . z1m

...
...

...
zn1 . . . znm.

(7)

The columns ofz(n,m) will be denoted aszni , soz(n,m) = [zn1 . . . z
n
m].

LetN denote the natural numbers.

2. The Basic Model

In Bayesian models of learning (seee.g. (Berger, 1985)) the learner receives datazn =
z1, . . . , zn which are observations onn random variablesZn = Z1, . . . , Zn. TheZi are
identically distributed and conditionally independent given the true state of natureθ. The
learner does not knowθ, but does know thatθ belongs to a set of possible states of nature
Θ. The learner begins with a prior distribution onΘ, p(θ), and upon receipt of the datazn

updatesp(θ) to a posterior distributionp(θ|zn) according to Bayes’ rule:

p(θ|zn) =
p(zn|θ)p(θ)
p(zn)

, (8)

where

p(zn) =
∫

Θ

p(zn|θ)p(θ) dθ. (9)

2.1. Bayesian inference and Neural Networks

Pattern classification or regression with neural networks may be viewed as a special case
of the above. To fix our ideas, consider the case of an MLP for recognising my face. The
weights of the network correspond to the set of possible states of natureΘ, the true state of
natureθ∗ being an assignment of weights such that the output of the network is 1 when an
example of my face is applied to its input, and 0 if anything else is applied to its input. The
datazn = z1, . . . , zn comes in the form of input-output pairszi = (xi, yi) where eachxi
is an example image andyi is the correct class label (in this case either 0 or 1). As we are
only interested in classification in this example, the input distributionp(x) is not modeled,
only the conditional distribution on class labelsp(y|x). Denoting the output of a network
with weightsθ by fθ(x), and interpretingfθ(x) asp(y = 1|x), it can easily be shown
(Bridle, 1989) that the probability of data setzn = (x1, y1), . . . , (xn, yn) given weightsθ
is
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p(zn|θ) =
n∏
i=1

p(xi)e−E(zn;θ) (10)

where

E(zn; θ) =
n∑
i=1

yi log(fθ(xi)) + (1− yi) log(fθ(xi)). (11)

Choosing a priorp(θ) (typically multivariate Gaussian or uniform over some compact set)
for the weights and substituting (10) into (8) yields the posterior distribution on the weights
p(θ|zn). The posterior is the “output” of the learning process. It can be used to predict the
class label of a novel inputx∗ by integrating:

p(y = 1|x∗; zn) =
∫

Θ

fθ(x∗)p(θ|zn) dθ. (12)

Of course in general this integral cannot be calculated in closed form and so some kind of
approximation procedure such as Markov-Chain Monte-Carlo must be used for its evalua-
tion. In this paper we do not concern ourselves with such computational issues, except to
note that the common practice of choosing the weights with minimal error is equivalent to
approximating the posterior by a delta function at the maximum-likelihood weight setting.

2.2. Interpreting the Prior

In the example above the priorp(θ) is a purelysubjectiveprior. A relatively weak prior was
chosen reflecting our weak knowledge about appropriate weight settings for this problem.
However, in the case of face recognition (and many other pattern recognition problems
such as speech and character recognition) it is arguable that there existobjectivepriors. To
see this, note that given our weak prior knowledge we are likely to have chosen a network
large enough to solveany face recognition problem within some margin of error, not just
the specific task: “recognise Jon ”. Hence it is likely that there will exist weight settings
θ1, θ2, θ3, . . . that will cause the network to behave as a classifier for ‘Mary’, ‘Joe’, ‘males’,
‘smiling’, ‘big nose’ and so on. In fact there should exist weight settings that correspond to
nonexistent faces provided different examples of the face vary in a “face-like” way. Hence
we can consider the space of all face classifiers, both real and fictitious, as represented by
a particular subsetΘface of all possible weight settingsΘ. Theobjective priorp(θ) for
face recognition is then characterised by the fact that its support is restricted toΘface. The
restriction of the support is the most important aspect of the face prior. The actual numerical
probabilities for each elementθ ∈ Θface could be chosen in a number of different ways, but
for the sake of argument we can take them to be uniform or as corresponding to the general
frequency of face-like classifier problems encountered in a particular person’s environment.
In general different people will have different environments and so there will actually be
multiple different objective priors for the face recognition problem. However, this does not
change the fact that the face prior is objective—it is objective precisely because it is defined
by theenvironmentof the learner and not by a set of subjective beliefs. Note also that
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different people embedded within the same environment—say primarily Caucasian faces,
or primarily Asian faces—will have essentially the same objective priors.

The usual subjective priors chosen in neural network applications (Gaussian or uniform
on the weights) bear no resemblance to the objective prior discussed above: initializing the
weights of a network according to a Gaussian prior typically does not cause the network
to behave like some kind of face classifier, whereas initializing according to the objective
prior by definition will induce such behaviour. Hence the use of subjective priors such as
the Gaussian not only demonstrates our ignorance concerning the specific task at hand (e.g.
learn to recognise Jon) but also demonstrates our ignorance concerning the true prior. That
is, we typically have little idea which parameter settingsθ correspond to face-like classifiers
and which correspond to “random junk”.

Should we care that we don’t know the true prior? In short, yes. If we know the true
prior then the task of learning any individual face is vastly simplified. A single positive
example of my face is enough to set the posterior probability of any other individual face
classifiers to zero (or very close to zero), and a few more examples with me smiling,
frowning, bearded, clean-shaven, long-haired, short-haired and so on is enough to set the
posterior probability ofeveryother classifier (the smiling, frowning,etcclassifiers) except
the “Jon” classifier to zero. Contrast this with the usual subjective priors where typically
thousands of examples and counter-examples of my face would have to be supplied to the
network before a reasonably peaked posterior and hence reasonable generalisation could
be achieved.

2.3. Learning the Prior

If knowing the true prior is such a great advantage then we should try to learn it. To do
this an extra layer of inference must be added to the standard Bayesian model in the form
of a setof candidate priorsΠ. Thus, eachπ ∈ Π corresponds to some priorp(θ|π) on
Θ. Realizability is assumed, so that the true objective priorp(θ|π∗) corresponds to some
π∗ ∈ Π. To complete the Bayesian picture asubjectivehyper-priorp(π) must be chosen for
Π. The hyper-priorp(π) is subjective, rather than objective, because it cannot be sampled,
that is it does not correspond to some objective stochastic phenomenon in the way that the
objective priorp(θ|π∗) does. Typically the learner will not have a strong preference for
any particular prior and so we can follow the course taken in ordinary Bayesian inference
under such circumstances and choosep(π) to be non-informative or simply Gaussian with
large variance or uniform over some compact set (assumingΠ is Euclidean).

As the true priorp(θ|π∗) is objective it canin principle be sampled from to generate a
sequence of trainingtasks1 θn = θ1, θ2, . . . , θn. A direct application of Bayes’ rule (8)
then gives the posterior probability of each prior:

p(π|θn) =
p(θn|π)p(π)

p(θn)
(13)

wherep(θn|π) =
∏n
i=1 p(θi|π) andp(θn) =

∫
Π
p(θn|π)p(π) dπ.



16 J. BAXTER

Under appropriate conditions the posterior distribution will tend to a delta function over
the true priorπ∗ asn→∞. Thus for large enoughn the learner can be said to havelearnt
the prior.

2.4. Example: Learning a Low Dimensional Representation

For this model to work it has to be assumed that although the learner has no idea about the
true prior, it can generate a class of priorsΠ containing the true priorπ∗. This assumption
is quite reasonable in the case of face recognition because it seems plausible that there
exists alow-dimensional representation(LDR) or feature map for faces such that each face
classifier can be implemented by a simple map (e.g.linear or nearest-neighbour) composed
with the LDR. An LDR in its simplest form is just a fixed mapping from the (typically
high-dimensional) input space to a much smaller dimensional space. One can think of the
LDR as a preprocessing applied to the input data that extracts features that are important
for classification. For example, in the case of face recognition it might be that to uniquely
determine any face one only needs to know the distance between the eyes and the length of
the nose. So an appropriate LDR would be a two-dimensional one that extracts these two
features from an image. Although faces almost certainly cannot be represented solely by
the inter-eye distance and nose length, it is highly plausible that some kind of LDR exists
for the face recognition problem. It is similarly plausible that LDRs exist for other pattern
recognition problems such as character and speech recognition.

Figure 1 illustrates how in the case of neural-networks the assumption that there exists
an LDR for the tasks in the environment can be translated into a specification for the set
of possible priorsΠ. Referring to the figure, the input space has dimensiond, the LDR
is implemented by a two-layer sigmoidal net withl hidden units followed byk output
units (any boundedk-dimensional LDR can be approximated to arbitrarily high accuracy
by such a two-layer structure (seee.g. (Hornik, 1991))), while each individual classifier
task is assumed to be a sigmoidal map composed with the output of the LDR. Thus each
θ ∈ Θ divides into two parts:θ = (θLDR, θOUT), whereθLDR are the hidden layer weights
andθOUT are the weights of the output map. Assuming that the true preprocessing for
the environment corresponds to some assignment of weights to the hidden layers,θLDR =
θ∗LDR, the true prior can be written as

p(θLDR, θOUT) = δ(θLDR − θ∗LDR)f(θOUT) (14)

whereδ is the Dirac delta-function andf(θOUT) is some distribution over the output weights
that generates the different tasks in the environment. Thus it is reasonable to takeΠ to be
the set of all priors that are a delta function over someθLDR, with the distributionf(θOUT)
over the output weights:

Π =
{
δ(θLDR − θ̂LDR)f(θOUT) : θ̂LDR ∈ ΘLDR

}
. (15)

Thus Π is equivalent to the set of possible weights in the hidden layers,ΘLDR. Note
that assumingΠ is of this form means that the learner must know the true distribution
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f(θOUT) on the output weights. If the learner does not knowf(θOUT) but does know that
f(θOUT) belongs to a parameterised set of distributionsΠOUT (e.g.multi-variate Gaussians
with unknown means and covariance), then the parameters parameterizingΠOUT can be
adjoined toΠ, which will then be of the form

Π =
{
δ(θLDR − θ̂LDR)fπOUT

(θOUT) : θ̂ ∈ ΘLDR, πOUT ∈ ΠOUT

}
. (16)

2.5. Hyper-parameters outnumber parameters

In this model knowing the true prior is equivalent to knowing the correct hidden layer
weights (and the true parameters for the output weight distribution). So if the true prior
is known, learning any individual task is simply a matter of estimating the output weights
for a single node (which is a just a linear regression or linear classification problem). Thus
the output layer weights aremodel parameterswhile the hidden layer weights (and the
parameters of the output weight distribution) are themodel hyper-parameters. In contrast
to other techniques for Bayes learning with neural networks in which there are at most a
handful of hyper-parameters (seee.g.(Mackay, 1991)), here the hyper-parameters vastly
outnumber the model parameters. This happens because we have assumed that the learner’s
uncertainty concerning the true model (or equivalently, the true prior) is large, while the
dimensionality of the true model is in fact quite low. For many real-world learning envi-
ronments this seems to be a plausible assumption. For example, for the environment of
face-recognition problems, we have a fairly large uncertainty concerning the true model,
but human performance on these kinds of problems (e.g.our ability to recognise faces from
single examples) shows that the true model must be very small. Another example is speech
recognition. Considering all individual spoken words as constituting a “speech recognition
environment”, it is true that we have little idea of what the true model is for this environ-
ment, but again human performance suggests that the true model must be small. Many other
pattern recognition problems are arguably best modeled by a two-tier inference structure
in which the hyper-parameters vastly outweigh the model parameters. In the remainder of
the paper we will see how such a two-tiered structure can lead to great improvements in
learning performance if multiple tasks, rather than just a single task, are learnt.

3. Learning Multiple Tasks

Having set up the model of Bayesian bias learning in the previous section, we can now
tackle the questions posed in the introduction: “How much information is required per task
to learnn tasks simultaneously?” and “How much extra information is required to learn a
sequence of tasks when the true prior is unknown?”.

3.1. Learningn tasks simultaneously

Note that if the learner already knows the true priorp(θ|π∗), then the expected amount of
information required per task to learnn tasks is
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          LDR

Figure 1. A neural network for learning low dimensional representations (LDRs) via multi-task sampling. Each
output node corresponds to a different task. Each task is assumed to be implementable by composing a squashed
linear map with a fixed LDR. The LDR is assumed to be implementable by a single-hidden-layer sigmoidal
net. The LDR weights arehyper-parameters, while the the output weights for a single node are ordinary model
parameters.

H(PΘn|π∗)
n

= H(PΘ|π∗) (17)

becausePΘn|π∗ = PnΘ|π∗ and entropy is additive over products of independent distributions
(hereH(PΘ|π∗) = −EΘ|π∗ log p(θ|π∗) is theentropyof the true prior). AsH(PΘ|π∗) is
the expected amount of information required to learn a single task, (17) shows that there is
no advantage to learning multiple tasks if the true prior is known.

If the true prior is unknown, but the learner is in possession of a family of priorsΠ
containing the true priorPΘ|π∗ , then the expected amount of information required per task
to learnn tasks is

Rn,π∗ :=
Hπ∗(PΘn)

n
, (18)

whereHπ∗(PΘn) := −EΘn|π∗ log p(θn) where

p(θn) =
∫

Π

p(θn|π)p(π) dπ (19)

is the density of theinducedor mixtureprior onθn, PΘn . Note that− log p(θn) is (within
one bit) the optimal amount of information required to encode then tasksθn under the
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distributionp(θn), and thatp(θn) is theconsistentdistribution for the learner to use, given
its prior beliefs as encapsulated in the hyper-priorp(π). As the tasks are selected according to
the true priorPΘ|π∗ , we see thatHπ∗(PΘn)/n is indeed the expected amount of information
required (per task) to learnn tasks.

Rather than tacklingRn,π∗ directly it is more convenient to analyse the expected difference
between the information required to learnn tasks using the true priorp(θn|π∗) and the
information required to learnn tasks using the induced priorp(θn). This quantity is∫

Θn
p(θn|π∗) log

p(θn|π∗)
p(θn)

dθn =: DK(PΘn|π∗‖PΘn), (20)

which is theKullback-Liebler divergencebetween the true and induced distributions onΘn.
Note that if we knowDK(PΘn|π∗‖PΘn), we can recoverRn,π∗ from the relation

Rn,π∗ =
1
n
DK(PΘn|π∗‖PΘn) +H(PΘ|π∗) (21)

To boundDK(PΘn|π∗‖PΘn) the following definitions are needed.

Definition 1 For any π, π′ ∈ Π, let ∆H(π, π′) denote the squared Hellinger distance
between the two priorsPΘ|π andPΘ|π′ :

∆H(π, π′) :=
∫

Θ

[√
p(θ|π)−

√
p(θ|π′)

]2
dθ (22)

and let∆K(π, π′) denote the Kullback-Liebler divergence between the two priorsPΘ|π,
PΘ|π′ :

∆K(π, π′) := DK

(
PΘ|π‖PΘ|π′

)
=
∫

Θ

p(θ|π) log
p(θ|π)
p(θ|π′) dθ. (23)

LetBε(π) := {π′: ∆1/2
H (π, π′) ≤ ε}, i.e. the closed Hellinger ball of radiusε aroundπ.

For all π ∈ Π, define thelocal metric dimension ofπ by

dimPΠ(π) := lim
ε→0

− logPΠ(Bε(π))
log 1

ε

(24)

whenever the limit exists (PΠ is the subjective (hyper) prior probability distribution onΠ).

Note that(Π,∆1/2
H ) is a metric space while(Π,∆K) is not (∆K is asymmetric and

does not satisfy the triangle inequality). Also,∆K(π, π′) ≥ 1
2∆H(π, π′) always (seee.g.

(Haussler & Opper, 1995a)). To get a feel for the meaning ofdimPΠ(π), observe that if
Π = Rd andPΠ has a continuous densityp(π), then for anyπ ∈ Rd with p(π) > 0,
dimPΠ(π) = d.

Definition 2 Let (X,Σ, P ) be a measure space andf, g:N ×X → R be two real-valued
functions onN ×X such that for alln ∈ N , f(n, ·) andg(n, ·) are measurable functions
onX. SetXn := {x: f(n, x) = g(n, x)} for eachn ∈ N . We say
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f(n, x) .=(X,P ) g(n, x) (25)

if limn→∞ P (Xn) = 1. This will be abbreviated tof(n, x) .= g(n, x) whenX andP are
clear from the context.

Theorem 1 If there existsα <∞ such that for allπ, π′ ∈ Π,

∆K(π, π′) ≤ α∆H(π, π′), (26)

anddimPΠ(π) exists for almost all (PΠ) π ∈ Π, then

DK(PΘn|π∗‖PΘn)
logn

.=(Π,PΠ)
dimPΠ(π∗)

2
+ o(1), (27)

where o(g(n)) for any function g(n) stands for a functionf(n) for which
limn→∞ f(n)/g(n) = 0.

Proof: See appendix A.

Note that if

sup
π,π∗∈Π andθ∈Θ

p(θ|π)
p(θ|π∗) <∞ (28)

then there existsα <∞ such that∆K(π, π′) ≤ α∆H(π, π′) (Haussler & Opper, 1995a).

Theorem 2 Under the same conditions as theorem 1,

Rn,π∗
.=

dimPΠ(π∗)
2

logn
n

+H(PΘ|π∗) + o

(
logn
n

)
. (29)

Proof: The theorem follows directly from (21) and theorem 1.

Note that this result is not quite as strong as it looks on face value because the set of priors
for which

Rn,π∗ =
dimPΠ(π∗)

2
logn
n

+H(PΘ|π∗) + o

(
logn
n

)
(30)

fails canvary withn, even though its measure becomes vanishingly small asn→∞. This
implies that for any individualπ∗ ∈ Π, (30) may fail for infinitely manyn. However, if
the sum over alln of thePΠ measure of the sets ofπ∗ for which (30) fails is finite, then by
Borel-Cantelli, for all but a set ofπ of PΠ measure zero, (30) will fail onlyfinitelyoften.

Settinga = H(PΘ|π∗) andb = dimPΠ(π∗), theorem 2 shows that the expected amount
of information required per task to learn ann task training set approaches

a+
b logn

2n
, (31)



A BAYESIAN/INFORMATION THEORETIC MODEL 21

except for a set of priors of vanishingly small measure asn→∞, which in turn approaches
a—the minimum amount of information required to learn a task on average (a is the amount
of information required if the true prior is known,c.f. (17)). Observe that the advantage in
learningn tasks is controlled by the relative size ofa andb, and is greatest whenb À a.
As b is a measure of our uncertainty concerning the true prior, the greatest advantage in
learning multiple tasks occurs when the true model is small, but we have little idea about
what the true model should be. It is a plausible hypothesis that many pattern recognition
problems (such as speech, face and character recognition) fit this bill.

3.2. Learningn tasks sequentially

Consider the same set-up as above, but now instead of learning then tasks simultaneously,
the learner receives each task one at a time. So for eachn = 1, 2, . . . the learner has already
seenn − 1 tasks,θn−1 = (θ1, . . . , θn−1), drawn according to the true priorp(θ|π∗). The
learner then:

• generates the posterior distribution onΠ, p(π|θn−1) according to Bayes’ rule (13),

• uses the posterior distribution to generate a predictive distribution onΘ,

p(θ|θn−1) =
∫

Π

p(θ|π)p(π|θn−1) dπ, (32)

• and suffers a loss,Ln,π∗ , equal to the expected amount of extra information needed
to encode each task using the predictive distributionp(θ|θn−1), over and above the
amount of information that would be required if it was using the true prior:

Ln,π∗ := EΘn−1|π∗EΘ′|π∗ log
p(θ′|π∗)
p(θ′|θn−1)

. (33)

Note thatLn,π∗ is the expected loss of the learner over all initial sequencesθn−1 and over
all new tasksθ′. The quantity analysed in this section is thecumulative loss

Cn,π∗ :=
n−1∑
k=0

Lk+1,π∗ , (34)

i.e. the total loss incurred by the learner aftern steps of the above process.

Theorem 3 Under the same conditions as theorem 1,

Cn,π∗
.=

dimPΠ(π∗)
2

logn+ o (logn) . (35)

Proof: Direct calculation shows that



22 J. BAXTER

Cn,π∗ = DK(PΘn|π∗‖PΘn) (36)

wherePΘn is the mixture prior onΘn induced by the hyper-priorPΠ (recall equation (19)).
The result now follows from theorem 1.

The nice thing about (35) is that the cumulative loss only diverges logarithmically, so the
expected loss per trial,Cn,π∗/n, tends to zero at a ratelogn/n.

3.3. Example: learning an LDR

Recall from section 2.4 that for the problem of learning a Low Dimensional Representation
(LDR), Θ was split into(ΘLDR,ΘOUT). Each priorπ ∈ Π was chosen to be a delta
function over someθLDR, multiplied by a fixed distributionf(θOUT) overΘOUT. In order
to apply the results of the previous subsection the delta function needs to be smoothed out,
otherwise the correct prior is identifiable from the observation of a single task2 θ. So instead
assume the prior corresponding to eachπ is of the form

p(θOUT, θLDR|π) := p(θLDR|π)f(θOUT) (37)

wherep(θLDR|π) is a Gaussian with small varianceσΠ and meanθLDR(π). In addition, for
H(PΘ|π) to be well defined (i.e. finite) the output weightsθOUT need to be quantized, so
let each weightw be coded withk bits and (somewhat arbitrarily) choose the distributionf
over the discretizedΘOUT to be uniform for each priorπ. Denote the number of weights
in ΘLDR by WLDR and the number of weights inΘOUT by WOUT. Finally, choose the
hyper-prior distributionPΠ onΠ to be uniform over some compact subset ofΘLDR.

A simple calculation shows the Hellinger and Kullback-Liebler distances to be given by

∆H(π, π′) = 2
(

1− exp
(
− 1

8σ2
Π

‖θLDR(π)− θLDR(π′)‖2
))

, (38)

∆K(π, π′) =
1

2σ2
Π

‖θLDR(π)− θLDR(π′)‖2 (39)

Note that as∆H(π, π′) → 0, ∆H(π, π′) → 1
4σ2

Π
‖θLDR(π) − θLDR(π′)‖2. Substituting

this expression into the definition ofdimPΠ(π) we find

dimPΠ(π) = WLDR (40)

for all π ∈ Π. Trivially, H(PΘ|π) = kWOUT for all π ∈ Π. The fact that the prior onΠ is
compactly supported coupled with the use of Gaussian priors onΘ ensures that∆K(π, π′)
is bounded above byα∆H(π, π′) for all π, π′ and someα < ∞. Hence the conditions of
theorem 2 are satisfied and we have

Rn,π∗
.=
WLDR

2
logn
n

+ kWOUT + o

(
logn
n

)
. (41)

The similarity of this expression to the upper bound on the number of examples required
per task for good generalisation in a PAC sense ofO(WOUT + WLDR/n) is noteworthy



A BAYESIAN/INFORMATION THEORETIC MODEL 23

(see (Baxter, 1995b) for a derivation of the latter expression). Note how the amount of
information required to learn each task decays tokWOUT as the number of tasks being
learnt increases.kWOUT is the minimumamount of information necessary to learn an
individual task,i.e. the amount of information needed if the true prior is known. Note
also that the advantage in learning multiple tasks is greatest ifWLDR À WOUT, i.e. if the
number of hyper-parameters greatly outweighs the number of model parameters.

4. Sampling multiple tasks

Theorems 2 and 3 were derived under the assumption that the learner receives information
about the tasksθ directly. In factRn,π∗ is (within one query) the average number ofqueries
the learner will require per task to identifyn tasks if the queries are restricted to be of
the form “isθn ∈ A” whereA is any subset ofΘn and the learner uses the best possible
querying strategy.

In general the learner will not be able to query in this way, but will instead receive
information about the parametersθ indirectly via a training setzm = (z1, . . . , zm), sampled
i.i.d. according top(z|θ). If the learner is learningn tasks simultaneously then it will receive
n such samples (called an(n,m)-samplein (Baxter, 1995b, Baxter, 1995a)):

z(n,m) =

z11 . . . z1m

...
...

...
zn1 . . . znm

(42)

Each row ofz(n,m) is sampled according top(z|θi) whereθ1, . . . , θn are then tasks being
learnt. LetZ(n,m) denote the set of all suchz(n,m). The correct hierarchical Bayes approach
to learning then tasksθ1, . . . , θn is to use the hyper priorPΠ to generate a prior distribution
onΘn via

p(θn) =
∫

Π

p(θn|π)p(π) dπ

=
∫

Π

p(π)
n∏
i=1

p(θi|π) dπ

and then the posteriorp(θn|z(n,m)) can be computed according to Bayes’ rule

p(θn|z(n,m)) =
p(z(n,m)|θn)p(θn)

p(z(n,m))

=
p(θn)

∏n
i=1

∏m
j=1 p(zij |θi)

p(z(n,m))
(43)

wherep(z(n,m)) =
∫

Θn
p(θn)

∏n
i=1

∏m
j=1 p(zij |θi) dθn.
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4.1. Loss as the extra information required to predict the next observation

One way to measure the advantage in learningn tasks together is by the rate at which the
learner’s loss in predicting novel examples decays for each task. This is the same as the
approach taken in section 3.2, but now we are considering the more realistic situation in
which the learner receives information about each taskθi indirectly via a samplezm from
PZ|θi . So fix the number of tasksn, samplen tasksθn = θ1, . . . , θn according to the true
prior PΘ|π∗ , and then for eachm = 1, 2, . . . the learner has already seenm− 1 examples
of each task

z(n,m−1) =

z11 . . . z1m−1

...
...

...
zn1 . . . znm−1

(44)

where each row is drawn according toPm−1
Z|θi (or equivalently, each column is drawn ac-

cording toPZn|θn ). The learner then:

• generates the posterior distribution onΘn, p(θn|z(n,m−1)) according to Bayes’ rule
(43),

• uses the posterior distribution to generate a predictive distribution onZn,

p(zn|z(n,m−1)) =
∫

Θn
p(zn|θn)p(θn|z(n,m−1)) dθn, (45)

• and suffers a loss,Ln,m, equal to the expected amount of extra information needed
per task to encode a novel example of each task using the predictive distribution
p(zn|z(n,m−1)), over and above the amount of information that would be required
if it was using the true distribution,p(zn|θn):

Ln,m :=
1
n
EZn|θn log

p(zn|θn)
p(zn|z(n,m))

. (46)

Note that

Ln,1 :=
1
n
EZn|θn log

p(zn|θn)
p(zn)

, (47)

wherep(zn) is the learner’s initial distribution onZn before any data has arrived,

p(zn) =
∫

Θn
p(zn|θn)p(θn) dθn =

∫
Π

∫
Θn|π

p(zn|θn)p(θn|π) dθn p(π)dπ (48)

To understand better the meaning ofLn,m, consider the loss associated with learning a single
classification task. In this caseZ = X × {0, 1}. If we assume that only the conditional
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distribution on class labels is affected by the model, thenp(z|θ) = p(x)p(y|x, θ), and for
the predictive distribution,p(z|zm) = p(x)p(y|x, zm). Let α(x) := p(y = 1|x, θ) and
β(x) := p(y = 1|x, zm). Substituting these expressions into (46) and simplifying yields

L1,m = EX

[
α(x) log

α(x)
β(x)

+ (1− α(x)) log
1− α(x)
1− β(x)

]
. (49)

The expression in square brackets is zero ifα(x) = β(x), i.e. if the conditional distributions
on class labels are the same for the true and predictive distributions. It increases slowly as
α(x) andβ(x) diverge.

The quantity analysed in this section is again thecumulative risk:

Cn,m,π∗ :=
m−1∑
k=0

EΘn|π∗EZ(n,k)|θnLn,k+1, (50)

i.e. the expectedtotal loss incurred by the learner afterm steps of the above process.
Note that the expectation is over all sequences ofn tasksθn and all(n, k)-samples drawn
according top(zn|θn).

Definition 3 For any n = 1, 2, . . ., and for all θn, θ̃n ∈ Θn, definedimPΘn (θn),
∆H(θn, θ̃n) and∆K(θn, θ̃n) by replacing all occurrences ofΠ byΘn and all occurrences
of Θ byZn in definition 1.

Theorem 4 For this theorem fixn ∈ N and take all limiting behaviour to be with respect
tom. Suppose there existsα <∞ such that for allθ, θ̃ ∈ Θ,

∆K(θ, θ̃) ≤ α∆H(θ, θ̃), (51)

and thatdimPΘn (θn) exists for almost all (PΘn ) θn ∈ Θn. Then,

Cn,m,π∗
.=(Π,PΠ)

logm
2n

EΘn|π∗ dimPΘn (θn) + o(logm). (52)

Proof: Direct calculation shows that

Cn,m,π∗ =
1
n
EΘn|π∗DK(PZ(n,m)|θn‖PZ(n,m)). (53)

As ∆K(θn, θ̃n) =
∑n
i=1 ∆K(θi, θ̃i), the condition∆K(θ, θ̃) ≤ α∆H(θ, θ̃) ensures that

∆K(θn, θ̃n) ≤ nα∆H(θn, θ̃n). So the conditions of theorem 1 are satisfied (withΘn

replaced byZ(n,m), Π replaced byΘn, andn replaced bym). Hence,

DK(PZ(n,m)|θn‖PZ(n,m))
logm

.=(Θn,PΘn )
dimPΘn (θn)

2
+ o(1). (54)

More specifically, equation (54) means that for alln = 1, 2, . . ., there existsf(m) such that
f(m)→ 0 and the sets
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Θn
m :=

{
θn ∈ Θn:

DK(PZ(n,m)|θn‖PZ(n,m))
logm

=
dimPΘn (θn)

2
+ f(m)

}
(55)

satisfyPΘn (Θn
m)→ 1 asm→∞. AsPΘn(Θn

m) = EΠPΘn|π(Θn
m), we must have

PΘn|π(Θn
m) .=(Π,PΠ) 1 + o(1) (56)

for eachn. Hence

EΘn|π∗
DK(PZ(n,m)|θn‖PZ(n,m))

logm
.=(Π,PΠ) EΘn|π∗

dimPΘn (θn)
2

+ o(1), (57)

which completes the proof.

Theorem 4 gives an expression for the expectedcumulativerisk for a learner that is
simultaneously learningn tasks using a hierarchical model. In contrast, if the learner does
not take account of the fact that then tasks are related, then each time it comes to learn a
new task it will start with the same priorp(θ) =

∫
Π
p(θ|π)p(π) dπ. In this case the learner’s

expected cumulative risk when learningn tasks is given by

Cn,m,π∗
.=

logm
2

EΘ|π∗ dimPΘ(θ) + o(logm) (58)

(the proof of this is similar to the proof of theorem 4). Thus the difference between the
learner’s risk when taking task relatedness into account (52) vs. ignoring task relatedness
(58) is to first order controlled by the difference between

1
n
EΘn|π∗ dimPΘn (θn) (59)

and

EΘ|π∗ dimPΘ(θ). (60)

In the next section expressions (59) and (60) are calculated for a general class of hierarchical
models that includes the LDR model.

4.2. Dimension of(a, b)-models

Definition 4 Let (X, ρ) be a metric space. We say a second metricρ′ locally dominatesρ
at x if there existsε, c, c′ > 0 such that for ally ∈ Bε(x, ρ) (theε-ball aroundx underρ),

cρ′(x, y) ≤ ρ(x, y) ≤ c′ρ′(x, y). (61)

Definition 5 An(a, b)-model is a hierarchical model in whichΠ = Rb, Θ = Ra×Rb and
the following conditions hold:
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1. The priorsp(θ|π) are of the form

p(θ = (xa, xb)|π) = δ(xb − π)gπ(xa) (62)

whereδ(·) is theb-dimensional Dirac delta function andgπ is a continuous function on
Ra.

2. The hyper-priorPΠ has a continuous densityp(π) and the true priorπ∗ has positive
densityp(π∗).

3. The conditional distributionsp(z|θ) are twice continuously differentiable functions of
θ.

4. ∆1/2
H is locally dominated by the Euclidean distance‖ · ‖ on Θ, except possibly for a

set ofθ of PΘ|π∗ -measure zero.

5. There exists anα <∞ such that for allθ, θ̃ ∈ Θ, ∆K(θ, θ̃) ≤ α∆H(θ, θ̃).

Conditions 1–3 of an(a, b)-model formalize the idea of a smooth hierarchical model in
which there area+ b parameters,b of which are effectively hyper-parameters and are fixed
by the prior and the remaininga of which are model parameters. Conditions 4 and 5 are
technical restrictions needed to make the proofs go through. In many cases the following
results would still hold without these restrictions, but different proof techniques would be
required. Recall that suppP is the smallest closed set ofP -probability 1.

Theorem 5 In an (a, b)-model, for allθn in the interior ofsuppPΘn (except for a set of
PΘn|π∗ -measure zero),

dimPΘn (θn) = na+ b, (63)

In addition, for anyπ, if θn is in the interior ofsupp(PΘn|π), then

dimPΘn|π (θn) = na, (64)

again except for a set ofPΘn|π∗ -measure zero.

Proof: See appendix B.

Note that the set ofθn not covered by the first part of theorem 5 hasPΘn measure zero
becausePΘn is absolutely continuous with respect toPΘn|π∗ and thePΘn measure of the
boundary of supp(PΘn) is zero (becausegπ is continuous). A similar conclusion applies
to thePΘn|π∗ measure of the set ofθn not covered by the second part of the theorem.

The requirement thatθn be in theinterior of supp(PΘn) in theorem 5 is sometimes
necessary. To see this, consider a distributionP on[0, 1] that has an analytic density with one
zero atx = 1/2. In this case supp(P ) = [0, 1] and the interior of supp(P ) = [0, 1]−{1/2}.
For anyx in the interior of supp(P ), dimP (x) = 1, but forx = 1/2, dimP (x) = 3.
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Theorem 6 In an (a, b)-model, the learner’s cumulative risk (50) satisfies

Cn,m,π∗
.=

logm
2

(
a+

b

n

)
+ o (logm) (65)

if the tasks are learnt hierarchically, and

Cn,m,π∗
.=

logm
2

(a+ b) + o (logm) (66)

if they are learnt independently. Furthermore, if the true prior is known then

Cn,m,π∗
.=

logm
2

(a) + o (logm) . (67)

Proof: Equation (65) follows immediately from theorem 4 and the first part of theorem
5 (noting the comment after theorem 5), while equation (66) follows from equation (58)
and the first part of theorem 5 withn = 1 . Equation (67) follows by replacingdimPnΘ

by
dimPnΘ |π∗ in theorem 4, and then applying the second part of theorem 5.

Theorem 6 shows that the hierarchical approach always does better asymptotically in an
(a, b)-model (even forn = 2), and is most advantageous when the hyper-parameters dom-
inate the parameters (b À a). Comparing (65) with (67), we see that the effect of lack
of knowledge of the true prior can be made arbitrarily small by learning enough tasks
simultaneously, the same conclusion that was reached in section 3.

The following theorem gives sufficient conditions for‖ · ‖ to locally dominate∆1/2
H in

an(a, b)-model.

Theorem 7 If the mapPZ|θ 7→ θ is continuous (i.e. PZ|θ → PZ|θ0 ⇒ θ → θ0 where
convergence on the left is weak convergence) on some open set containingθ0, and the
Fisher information matrix

J(θ) = EZ|θ

[
∂

∂θi
log p(z|θ) ∂

∂θj
log p(z|θ)

]
i,j=1,...,a+b

(68)

exists and is positive definite atθ0, then‖ · ‖ locally dominates∆1/2
H at θ0.

Proof: See appendix C

4.3. Learning an LDR revisited

Consider the LDR model of section 2.4. Seta = WOUT andb = WLDR, whereWOUT

is the number of weights in an output node andWLDR is the number of weights in the
LDR (recall Figure 1). Assume the priorsp(θ|π) are given by equation (62). Suppose
that the weights are restricted to lie in some compact subset ofRa+b (so that the hyper-
prior p(π) has compact support and so do the functionsgπ). To complete the model,



A BAYESIAN/INFORMATION THEORETIC MODEL 29

suppose that for eachθ ∈ Ra+b, p(z|θ) is of the formp(y = 1, x|θ) = p(x)fθ(x) and
p(y = 0, x|θ) = p(x)(1− fθ(x)), wherefθ(x) is the output of the network with weightsθ
and inputx, andp(x) is a continuous density on some compact subset ofRd. Assume the
sigmoid isσ(x) = tanh(x), except at the output node whereσ(x) = (1 + tanh(x))/2.

Theorem 8 For the neural-network LDR model as above, the cumulative risk (50) satisfies

Cn,m,π∗
.=

logm
2

(
WOUT +

WLDR

n

)
+ o (logm) , (69)

Proof: The theorem would follow immediately from theorem 6 if the neural-network
LDR model was an(a, b)-model. Indeed, conditions 1,2,3 and 5 of definition 5 all hold
(condition 5 is the only nontrivial one—it holds because of the compactness assumptions
and the boundedness oftanh(x)). Unfortunately, condition 4 does not hold because there
are various weight-vector transformations that leave the network invariant—such as hidden-
node permutations and sign-flips of all incoming and outgoing weights at a node. This also
causes the continuity assumption to fail in theorem 7. Let[θ] denote the set of all weight
vectors that produce the same behaviour asθ. Fefferman (Feferman, 1994) showed that for
all but a set of weights of Lebesgue measure zero, node permutations and sign-flips are the
only transformations that leave a multi-layertanh network invariant. Hence, for almost all
(PΠ) priorsπ∗, and for almost all (PΘ|π∗ ) parametersθ, [θ] is finite.

Similar arguments to those used in the proof of lemma 12 and theorem 7 can be used to
show that finiteness of[θ] and positive definiteness ofJ(θ) ensures that there existδ, c, c′

such that for all0 < ε < δ,⋃
θ′∈[θ]

Bcε (θ′, ‖ · ‖) ⊆ Bε
(
θ,∆1/2

H

)
⊆
⋃
θ′∈[θ]

Bc′ε (θ′, ‖ · ‖) . (70)

A slightly modified version of the proof of theorem 5 can then be used to show that theorem
5 holds in this case as well, which coupled with theorem 4 proves (69). Hence, the only thing
left to show is that for almost all (PΠ) priorsπ∗, and for almost all (PΘ|π∗ ) parametersθ,
J(θ) is positive definite. Note thatJ(θ) is always nonnegative-definite (to see this observe
that

[J(θ)]ij =
∂2

∂θi∂θj
DK(Pθ′‖Pθ)

∣∣∣∣
θ′=θ

(71)

and use the fact thatDK(P‖Q) ≥ 0 with equality if and only ifP = Q a.s.) So suppose that
det[J(θ)] = 0 on a set ofθ of positive probability. Butdet[J(θ)] is analytic, hence if it is zero
on a set of positive probability it must be zero everywhere. But in that case there must exist
a smooth re-parameterizationφ = φ(θ) of smaller dimension thanθ such thatPθ = Pφ(θ),
which violates the finiteness of[θ] a.e. HenceJ(θ) is positive definite almost everywhere.

If the true model has a small set of features thenWOUT is small (WOUT is always just the
number of features plus 1 for the threshold,c.f.Figure 1). If our uncertainty concerning the
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correct set of features is large then the LDR net will have to be large and soWLDR will be
large. Equation (69) shows that under these circumstances multiple task learning is most
advantageous.

4.4. Learning the prior on the mean of a Gaussian

To demonstrate the wider applicability of this Bayesian multi-task sampling model, in this
section we consider an altogether simpler model: that of learning the prior on the mean of
a Gaussian.

So letZ = Rb, Θ = Rb ×R, Π = Rb and

p(z|θ = (µ, σ)) =
1√
2πσ

exp
{
−‖z − µ‖

2

2σ2

}
,

p(µ, σ|π) = δ(µ− π)U(σ),
p(π) = B(π),

whereU(σ) is the uniform distribution on[1, 2], andB(π) is the uniform distribution on
the unit ball inRb. In this model the prior fixes the mean of the distribution onZ, and
then each learning problem corresponds to a different value of the varianceσ, which is
uniformly distributed in[1, 2]. In this case the true priorπ∗ is the mean of the distributions
in the environment.

Theorem 7 holds for allθ in this model (see (Clarke & Barron, 1990)), and so condition
5 of the definition of an(a, b)-model ((1, b) in this case) holds. Conditions 1,2 and 3 hold
trivially, and the use of compact support for the mean and variance ensures condition 4
holds. Hence, this is a(1, b) model and so a direct application of theorem 6 yields

Cn,m,π∗
.=

logm
2

(
1 +

b

n

)
+ o (logm) , (72)

if n tasks are learnt hierarchically.

5. Conclusion

The problem of learning appropriate domain-specific bias via multi-task sampling has been
modeled from a Bayesian/Information-Theoretic viewpoint. The approach shows that in
certain high-dimensional, essentially non-parametric modeling scenarios, most of the model
parameters are more appropriately regarded as hyper-parameters. Performing hierarchical
Bayesian inference within such a model, using multiple task sampling, is asymptotically
much more efficient than a non-hierarchical approach.

There are many interesting avenues for further research. Much more experimental work
needs to be done to verify that bias learning actually works in practice. An ideal place
to start would be learning domains in which there are a large number of related tasks and
for which traditional approaches based on hand-coded feature sets have already produced
good results. Face recognition, speech recognition and fingerprint recognition all fit this
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description. One way to test the theory would be to try to learn feature sets for these domains
using the neural net architecture described in figure 1.

Caruana (Caruana, 1993) has observed that adding extra output nodes to a single-hidden
layer net and training them to perform correctly on related tasks can improve performance
on a reference problem. This scenario is not covered by the Bayesian model presented
here, nor by the VC/PAC type models of (Baxter, 1995b, Baxter, 1996b), because these
models assume that independent training sets are available for each output node. It would
be interesting to derive theoretically the behaviour observed by Caruana.

Another open problem is to determine the conditions under which Jeffrey’s prior is the
optimalhyper-prior to use for the hierarchical models discussed here. This question has
only recently been settled for ordinary Bayes models (Barron & Clarke, 1994). Another
important question is to what extent the assumption ofrealizability (i.e. π∗ ∈ Π) can be
relaxed. Also, the results of (Haussler & Opper, 1995b) can be used to derive asymptotic
bounds on the KL divergence even when the model is infinite dimensional. It would be
interesting to apply those results to the hierarchical case.

Appendix A

Proof of theorem 1

Let I(Π; Θn) denote themutual informationbetweenΠ and Θn (i.e. I(Π; Θn) :=
EΠ∗DK(PΘn|π∗‖PΘn)).

Theorem 9 ((Haussler & Opper, 1995a), theorem 1)For all n ≥ 1,

−EΠ∗ logEΠe
−n4 ∆H(π∗,π) ≤ I(Π; Θn) ≤ −EΠ∗ logEΠe

−n∆K(π,π∗). (A.1)

Using the assumption of theorem 1 that∆K(π, π′) ≤ α∆H(π, π′) we have:

−EΠ∗ logEΠe
−n4 ∆H(π∗,π) ≤ EΠ∗DK(PΘn|π∗‖PΘn) ≤ −EΠ∗ logEΠe

−nα∆H(π,π∗)

(A.2)

For any pair of random variablesW andV and any real-valued functionu(w, v), we have
the following inequality due to Feynman:

−EV logEW eu(w,v) ≤ − logEW eEV u(w,v). (A.3)

Using (A.3) we can effectively “lop off” the expectation overΠ∗ in the upper bound of
(A.2) to give an upper bound onDK(PΘn|π∗‖PΘn).

Lemma 10 For all n ≥ 1 andπ∗ ∈ Π,

DK(PΘn|π∗‖PΘn) ≤ − logEΠe
−nα∆H(π,π∗) (A.4)
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Proof: The proof is via the same chain of inequalities used to prove the upper-bound in
theorem 9.

DK(PΘn|π∗‖PΘn) = EΘn|π∗ log
p(θn|π∗)
EΠp(θn|π)

= −EΘn|π∗ logEΠe
log

p(θn|π)
p(θn|π∗)

≤ − logEΠe
EΘn|π∗ log

p(θn|π)
p(θn|π∗)

= − logEΠe
−DK(PΘn|π∗‖PΘn|π)

= − logEΠe
−n∆K(π,π∗)

≤ − logEΠe
−nα∆H(π,π∗).

The penultimate line follows because the KL divergence is additive over the product of
independent distributions (seee.g.(Cover & Thomas, 1991)).

Lemma 11 If dimPΠ(π∗) exists then for any0 < α <∞,

lim
n→∞

− logEΠe
−nα∆H(π,π∗)

logn
=

dimPΠ(π∗)
2

. (A.5)

Proof: The arguments used in the proof of lemma 11 are similar to those used in
(Haussler & Opper, 1995a) for proving corresponding global metric entropy bounds. Set-
ting ε = 1√

αn
, we have

− logEΠe
−nα∆H(π,π∗)

logn
=
− logEΠe

−
(

1
ε∆

1/2
H

(π,π∗)
)2

−2 log ε− logα
. (A.6)

Setε sufficiently small to ensure that−2 log ε− logα > 0. Now,

− logEΠe
−
(

1
ε∆

1/2
H

(π,π∗)
)2

= − log

(∫
Bε(π∗)

p(π)e−
(

1
ε∆

1/2
H

(π,π∗)
)2

dπ

+
∫
Bcε(π∗)

p(π)e−
(

1
ε∆

1/2
H

(π,π∗)
)2

dπ

)

≤ − log

(∫
Bε(π∗)

p(π)e−1 dπ

+
∫
Bcε(π∗)

p(π)e−
(

1
ε∆

1/2
H

(π,π∗)
)2

dπ

)

≤ − log
[

1
e
PΠ(Bε(π∗))

]
= − logPΠ (Bε(π∗)) + 1,
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and so

lim sup
ε→0

− logEΠe
−
(

1
ε∆

1/2
H

(π,π∗)
)2

−2 log ε− logα
≤ lim sup

ε→0

− logPΠ(Bε(π∗)) + 1
−2 log ε− logα

=
dimPΠ(π∗)

2
.

To get a matching lower bound note that for allr > 0,

− logEΠe
−
(

1
ε∆

1/2
H

(π,π∗)
)2

= − log

(∫
Br(π∗)

p(π)e−
(

1
ε∆

1/2
H

(π,π∗)
)2

dπ

+
∫
Bcr(π∗)

p(π)e−
(

1
ε∆

1/2
H

(π,π∗)
)2

dπ

)
≥ − log

[
PΠ (Br(π∗)) + e−( rε )2]

.

Settingr = ε1−δ for any0 < δ < 1 gives

− logEΠe
−
(

1
ε∆

1/2
H

(π,π∗)
)2

≥ − log
(
PΠ (Bε1−δ(π

∗)) + e−
1
ε2δ

)
(A.7)

Now, if dimPΠ(π∗) exists then we know thatPΠ (Bε1−δ(π∗)) decreases no faster than some

power ofε1−δ, which for small enoughεwill dominatee−
1
ε2δ , because the latter expression

decreases faster than any fixed polynomial inε asε→ 0. Thus

lim
ε→0

− log
(
PΠ (Bε1−δ(π∗)) + e−

1
ε2δ

)
− log ε

= (1− δ) dimPΠ(π∗), (A.8)

and so

lim inf
ε→0

− logEΠe
−
(

1
ε∆

1/2
H

(π,π∗)
)2

−2 log ε− logα
≥ 1− δ

2
dimPΠ(π∗) (A.9)

for all 0 < δ < 1. Lettingδ → 0 finishes the proof of lemma 11.

Without loss of generality, we may assume from now on thatdimPΠ(π) exists for all
π ∈ Π (by assumptiondimPΠ(π) exists except for a set ofPΠ measure zero, so we can just
remove all thoseπ whose dimension is undefined).

From lemmas 11 and 10,

lim sup
n→∞

DK(PΘn|π‖PΘn)
logn

≤ dimPΠ(π)
2

. (A.10)

Applying lemma 11 to equation (A.2) and invoking Fatou’s lemma twice gives

lim
n→∞

EΠDK(PΘn|π‖PΘn)
logn

= EΠ
dimPΠ(π)

2
. (A.11)
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Now let

Πsupbad :=
{
π ∈ Π: lim sup

n→∞
DK(PΘn|π‖PΘn) <

dimPΠ(π)
2

}
(A.12)

Suppose thatPΠ(Πsupbad) > 0. Then,

EΠ
dimPΠ(π)

2
= lim sup

n→∞
EΠ

DK(PΘn|π‖PΘn)
logn

(by (A.11))

≤ lim sup
n→∞

EΠsupbad

DK(PΘn|π‖PΘn)
logn

+ lim sup
n→∞

EΠcsupbad

DK(PΘn|π‖PΘn)
logn

≤ EΠsupbad lim sup
n→∞

DK(PΘn|π‖PΘn)
logn

+ EΠcsupbad
lim sup
n→∞

DK(PΘn|π‖PΘn)
logn

< EΠsupbad

dimPΠ(π)
2

+ EΠcsupbad

dimPΠ(π)
2

(by assumption and (A.10))

= EΠ
dimPΠ(π)

2
,

a contradiction. ThusPΠ(Πsupbad) = 0. Hence, for almost allπ,

lim sup
n→∞

DK(PΘn|π‖PΘn)
logn

=
dimPΠ(π)

2
. (A.13)

Now, for eachn = 1, 2, . . . andε > 0 let

Πn,ε = {π:
DK(PΘn|π‖PΘn)

logn
<

dimPΠ(π)
2

− ε}. (A.14)

Suppose thatlim supn→∞ PΠ (Πn,ε) = κ > 0. So there exists an infinite sequence of
integersn1 < n2 < . . . such thatPΠ (Πni,ε) ≥ κ. From (A.10) we know that for anyδ,
0 < δ < εκ, there existsk > 0 such that for alli > k,

DK(PΘni |π‖PΘni )

logni
<

dimPΠ(π)
2

+ εκ− δ. (A.15)

Hence, for alli > k,

EΠ

DK(PΘni |π‖PΘni )
logni

= EΠni,ε

DK(PΘni |π‖PΘni )
logni

+ EΠcni,ε

DK(PΘni |π‖PΘni )
logni

< EΠni,ε

(
dimPΠ(π)

2
− ε
)

+ EΠcni,ε

(
dimPΠ(π)

2
+ εκ− δ

)
< EΠni,ε

dimPΠ(π)
2

− εκ+ EΠcni,ε

dimPΠ(π)
2

+ εκ− δ

= EΠ
dimPΠ(π)

2
− δ.
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and so

EΠ
dimPΠ(π)

2
= lim

i→∞
EΠ

DK(PΘni |π‖PΘni )
logni

≤ EΠ
dimPΠ(π)

2
− δ,

which is a contradiction and so the assumptionlim supn→∞ PΠ (Πn,ε) > 0 must be false.
Hence for allε > 0, limn→∞ PΠ (Πn,ε) = 0. Setting

Π′n,ε :=
{
π:
DK(PΘn|π‖PΘn)

logn
<

dimPΠ(π)
2

− ε or
DK(PΘn|π‖PΘn)

logn
>

dimPΠ(π)
2

}
,

(A.16)

we have proved so far thatlimn→∞ PΠ(Π′n,ε) = 0 for all ε > 0. Now definen0(1) = 1
and for allm > 1,

n0(m) = minn0 :PΠ

(
Π′n, 1

m

)
≤ 1
m
∀n ≥ n0. (A.17)

Note thatΠ′
n, 1
m+1
⊇ Π′

n, 1
m

son0(m) is an increasing function ofm. For alln ≥ 1 define

m0(n) = maxm:n0(m) ≤ n (with m0(n) = ∞ if there is no maximium). Note that
m0(n)→∞ and so 1

m0(n) ∈ o(1). Let

Π′n =
{
π: DK(PΘn|π‖PΘn )

log n <
dimPΠ (π)

2 − 1
m0(n)

or
DK(PΘn|π‖PΘn )

log n >
dimPΠ (π)

2

}
.

(A.18)

By definitionPΠ(Π′n) ≤ 1
m0(n) , hencePΠ(Π′n)→ 0. Thus

DK(PΘn|π‖PΘn)
logn

.=
dimPΠ(π)

2
+ o(1). (A.19)

Appendix B

Proof of theorem 5

Lemma 12 Setθn = (θ1, . . . , θn). If ∆1/2
H is locally dominated by‖ · ‖ at eachθi then

there existsc, c′, δ > 0, such that for all0 < ε < δ,

Bcε (θn, ‖ · ‖) ⊆ Bε
(
θn,∆1/2

H

)
⊆ Bc′ε (θn, ‖ · ‖) (B.1)



36 J. BAXTER

Proof: Let

D(θ, θ̃) :=
∫
Z

[
p(z|θ)p(z|θ̃)

]1/2
dz

D(θn, θ̃n) :=
∫
Z

[
p(zn|θn)p(zn|θ̃n)

]1/2
dzn =

n∏
i=1

D(θi, θ̃i).

Note that∆H(θ, θ̃) = 2
(

1−D(θ, θ̃)
)

and∆H(θn, θ̃n) = 2
(

1−
∏n
i=1D(θi, θ̃i)

)
. Now

suppose that for alli, ∆H(θi, θ̃i) ≤ ε/n. HenceD(θi, θ̃i) ≥ 1−ε/2n⇒
∏n
i=1D(θi, θ̃i) ≥

(1− ε/2n)n ≥ 1− ε/2⇒ ∆H(θn, θ̃n) ≤ ε. Next suppose that∆H(θn, θ̃n) ≤ ε. Hence∏n
i=1D(θi, θ̃i) ≥ 1−ε/2⇒ D(θi, θ̃i) ≥ 1−ε/2 for eachi, becauseD(θ, θ̃) ≤ 1 always.

Thus∆H(θi, θ̃i) ≤ ε for all i. These two results show that

Bε/
√
n

(
θ1,∆

1/2
H

)
× . . .×Bε/√n

(
θn,∆

1/2
H

)
⊆ Bε

(
θn,∆1/2

H

)
⊆ Bε

(
θ1,∆

1/2
H

)
× . . .×Bε

(
θn,∆

1/2
H

)
.

(B.2)

Hence, by the local domination of∆1/2
H by ‖ · ‖ at eachθi, there existsc, c′ such that for

sufficiently smallε,

Bcε/
√
n (θ1, ‖ · ‖)× . . .×Bcε/√n (θn, ‖ · ‖)⊆ Bε (θn, ‖ · ‖)

⊆ Bc′ε (θ1, ‖ · ‖)× . . .×Bc′ε (θn, ‖ · ‖) ,
(B.3)

which implies that there existsc, c′ such that

Bcε (θn, ‖ · ‖) ⊆ Bε
(
θn,∆1/2

H

)
⊆ Bc′ε (θn, ‖ · ‖) . (B.4)

Now fix θ̂n = (θ̂a1, θ̂b1, . . . , θ̂an, θ̂bn). By property 4 of an(a, b)-model (definition 5),
with PΘn|π∗ probabilty 1,‖ · ‖ locally dominates∆1/2

H at eachθi = (θai, θbi). Again by
the definition of an(a, b)-model,

PΘn

(
Bε

(
θ̂n,∆1/2

H

))
=

∫
Bε
(
θ̂n,∆

1/2
H

)
∫

Π

p(θn|π)p(π) dπ dθn

=
∫
π∈Rb

p(π)
∫

Bε
(
θ̂n,∆

1/2
H

) δ(θb1 − π) . . . δ(θbn − π)

gπ(θa1) . . . gπ(θan) dθb1 . . . dθbndθa1 . . . dθandπ

≤
∫

Π

p(π)
∫

Bπ
c′ε
√
n
(θ̂n,‖·‖)

gπ(θa1) . . . gπ(θan) dθa1 . . . dθandπ(B.5)
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whereBπ
c′ε
√
n

(
θ̂n, ‖ · ‖

)
:= {θnπ = (θa1, π, . . . , θan, π): ‖θnπ − θ̂n‖ ≤ c′ε

√
n}, and we

have invoked lemma 12. The condition thatθ̂n be in the interior of supp(PΘn) in the
statement of theorem 5 means

∫
Π
p(θ̂n|π)p(π) dπ > 0, or∫

Π

p(π)
n∏
i=1

δ(θ̂bi − π)gπ(θ̂ai) dπ > 0. (B.6)

This can only hold if there is somêπ such thatp(π̂) > 0 andθ̂bi = π̂ andgπ̂(θ̂ai) > 0 for
all i = 1 . . . n. Hence (B.5) is an integral over anna + b dimensional ball of a function
p(π)gπ(θa1) . . . gπ(θan) that is positive at the center(θ̂a1, π̂, . . . , θ̂an, π̂). By assumption,
p(·) andgπ(·) are continuous and so for small enoughε, (B.5) will be bounded above by
Kεna+b for someK > 0. A similar argument, using the left-hand inequality in lemma 12,

shows thatPΘn

(
Bε

(
θ̂n,∆1/2

H

))
≥ K ′εna+b which shows that

dimPΘn (θn) = na+ b, (B.7)

as required for the first part of theorem 5. The second part of theorem 5 follows from a
similar argument.

Appendix C

Proof of theorem 7

∆H(θ, θ̃) =
∫
Z

[
p(z|θ) 1

2 − p(z|θ̃) 1
2

]2
dz

= 2
(

1−
∫
Z

[
p(z|θ)p(z|θ̃)

] 1
2
dz

)
(C.1)

By assumptionp(z|θ) is twice differentiable and so∫
Z

[
p(z|θ)p(z|θ̃)

] 1
2
dz =

∫
Z

p(z|θ) 1
2

[
p(z|θ) 1

2 +
1
2
p(z|θ)− 1

2 (θi − θ̃i)
∂

∂θi
p(z|θ)

−1
4
p(z|θ)− 3

2 (θi − θ̃i)
∂

∂θi
p(z|θ) ∂

∂θj
p(z|θ)(θj − θ̃j)

+
1
2
p(z|θ)− 1

2 (θi − θ̃i)
∂2

∂θi∂θj
p(z|θ)(θj − θ̃j)

]
dz

+O(‖θ − θ̃‖3)

= 1− 1
4
〈θ − θ̃|J(θ)|θ − θ̃〉+O(‖θ − θ̃‖3), (C.2)

where

[J(θ)]ij : =
∫
Z

p(z|θ)−1 ∂

∂θi
p(z|θ) ∂

∂θj
p(z|θ) dz

= EZ|θ

[
∂

∂θi
log p(z|θ) ∂

∂θj
log p(z|θ)

]
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which is theFisher information matrixatθ. In the above derivation the Einstein summation
convention of summing over repeated indices has been used. Substituting (C.2) in (C.1)
gives

∆H(θ, θ̃) =
1
2
〈θ − θ̃|J(θ)|θ − θ̃〉+O(‖θ − θ̃‖3). (C.3)

Let λmin(θ) andλmax(θ) denote the minimum and maximum eigenvalues ofJ(θ). By
assumptionJ(θ) is positive definite, soλmin(θ) > 0. Working in the basis in whichJ(θ)
is diagonal gives

λmin(θ)‖θ̃ − θ̃‖2 ≤ 〈θ − θ̃|J(θ)|θ − θ̃〉 ≤ λmax(θ)‖θ̃ − θ̃‖2, (C.4)

which coupled with (C.3) yields[
λmin(θ)

2

] 1
2 ‖θ − θ̃‖+O(‖θ − θ̃‖ 3

2≤ ∆
1
2
H(θ, θ̃)

≤
[
λmax(θ)

2

] 1
2 ‖θ − θ̃‖+O(‖θ − θ̃‖ 3

2 ).
(C.5)

By assumption, the mapPZ|θ 7→ θ is continuous in the topology of weak convergence,
which implies it is continuous in the topology generated by the Hellinger distance, and
hence for anyε > 0 there will exist aδ > 0 such that if∆1/2

H (θ, θ̃) < δ, then‖θ− θ̃‖ < ε.

Combined with (C.5), this proves that∆1/2
H is locally dominated by‖ · ‖.
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Notes

1. In reality the prior cannot be directly sampled to getθ1, θ2, . . ., only the conditional distributions
p(z|θ1), p(z|θ2), . . . can be sampled. This is discussed further in section 4, however for the moment the
fiction that we have direct access to the parameters will be maintained.

2. We will put the delta function back in the next section where we consider the more realistic scenario in which
the learner receives information aboutθ in the form of examplesz chosen according top(z|θ), rather than
receivingθ directly.
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