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AbstractÐPrincipal curves and surfaces are nonlinear generalizations of principal components and subspaces, respectively. They

can provide insightful summary of high-dimensional data not typically attainable by classical linear methods. Solutions to several

problems, such as proof of existence and convergence, faced by the original principal curve formulation have been proposed in the

past few years. Nevertheless, these solutions are not generally extensible to principal surfaces, the mere computation of which

presents a formidable obstacle. Consequently, relatively few studies of principal surfaces are available. Recently, we proposed the

probabilistic principal surface (PPS) to address a number of issues associated with current principal surface algorithms. PPS uses a

manifold oriented covariance noise model, based on the generative topographical mapping (GTM), which can be viewed as a

parametric formulation of Kohonen's self-organizing map. Building on the PPS, we introduce a unified covariance model that

implements PPS 0 < � < 1� �, GTM � � 1� �, and the manifold-aligned GTM � > 1� � by varying the clamping parameter �. Then, we

comprehensively evaluate the empirical performance (reconstruction error) of PPS, GTM, and the manifold-aligned GTM on three

popular benchmark data sets. It is shown in two different comparisons that the PPS outperforms the GTM under identical parameter

settings. Convergence of the PPS is found to be identical to that of the GTM and the computational overhead incurred by the PPS

decreases to 40 percent or less for more complex manifolds. These results show that the generalized PPS provides a flexible and

effective way of obtaining principal surfaces.

Index TermsÐPrincipal curve, principal surface, probabilistic, dimensionality reduction, nonlinear manifold, generative topographic

mapping.

æ

1 INTRODUCTION

IN many real world applications, it is often desirable to
reduce the dimensionality of the original feature space for

the problem at hand to alleviate the ªcurse-of-dimension-
alityº [1] and to obtain better generalization. It may also
help in addressing practical issues, such as limited
computational power and memory, or for data visualization
needs. Dimensionality reduction via feature selection/
extraction can be supervised or unsupervised. Supervised
methods such as linear discriminant analysis [2] utilize
additional information like class labels. On the other hand,
unsupervised dimensionality reduction, which is the main
focus of this paper, relies entirely on the input features.

Linear dimensionality reduction techniques such as

principal component analysis (PCA) [3], factor analysis

[3], independent component analysis [4], and projection

pursuit [5] have been very well-studied in the past. Linear

techniques are attractive for their simplicity and amen-

ability to analysis, but may be inadequate for modelling

highly nonlinear data. On the other end of the spectrum,

researchers have proposed nonlinear methods such as

generalized linear models [6], autoassociative neural net-

works [7], self-organizing maps [8], and principal surfaces

[9], [10] for dimensionality reduction. Recently, mixture

models [11], which probabilistically blend a number of

overlapping linear models, have become popular as a

compromise between linear and nonlinear methods [12],

[13], [14]. The mixture approach enjoys some of the

simplicity and analyzability of linear models while remain-

ing robust enough to model nonlinear data (provided there

are enough models of sufficient complexity to fit each

localized data region well). Fig. 1 shows an example of each

of the aforementioned dimensionality reduction methods

when applied to artificially generated data.
Among the nonlinear dimensionality reduction methods,

principal surfaces1 are the most attractive because they

formalize the notion of a low-dimensional manifold passing

through the ªmiddleº of a data set, thereby generalizing

principal components to the nonlinear domain. However,

the original principal surface formulation [9] is not without

its problems, stated as follows:

1. Existence cannot be guaranteed for arbitrary
distributions.

2. Theoretical analysis is not as straightforward as
with parametric models due to its nonparametric
formulation.

3. It is inefficient for large sample size as all data points
are needed to define a principal curve in practice.

4. It is biased at points of large curvature.
5. Convergence of the corresponding estimation algo-

rithm cannot be guaranteed.
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Recently, we have proposed two improved estimation

algorithmsÐprobabilistic principal curve (PPC) and prob-

abilistic principal surface (PPS), to address problems 2-4 for

the case of principal curves and surfaces, respectively2 [15].

The PPC estimates a principal curve with a cubic-spline

smoothed mixture of oriented Gaussians, whereas the PPS

incorporates oriented Gaussians into the generative topo-

graphical mapping (GTM) [16] framework to approximate a

principal surface. The GTM itself is a parametric model of

Kohonen's self-organizing map (SOM) [8]. Indeed, the SOM

itself has been suggested [17], [18] to serve as a discrete

approximation to principal surfaces. However, there are

some significant differences between SOMs and principal

surfaces that can lead to a poor solution in practice. For

example, when the number of SOM nodes approaches the

number of samples, the SOM degenerates into a highly

irregular space-filling manifold [8]. On the contrary, the

principal surface becomes increasingly smooth as the

number of nodes increases! The GTM is better suited for

estimating principal surfaces because its smoothness is

largely determined by a mapping complexity parameter3

and not by the number of nodes.
This paper introduces a generalized model that includes

PPS and GTM as special cases. In Section 2, we formally

state the problem of dimensionality reduction and review

the current literature on principal curves, taking note of the

advantages and disadvantages of each method. Section 3

summarizes and critiques existing algorithms for approx-

imating principal surfaces. Section 4 describes our unified

PPS model. Experimental results and commentaries on

benchmark data sets are given in Section 5, where the

sensitivities of the orientation parameter, manifold size, and

mapping complexity with respect to reconstruction error

are also analyzed. Section 6 discusses the experimental

results. Finally, Section 7 concludes with a description of

applications and directions for future research.

2 PRINCIPAL CURVES

2.1 Dimensionality Reduction

The problem of dimensionality reduction can be summar-

ized as follows: Given N sample vectors ynf gNn�1� IRD

drawn from the random vector ~Y , find mappings G : IRD !
IRQ and4 F :! IRD such that 8n � 1; . . . ; N ,

G yn� � � xn; �1�

F xn� � � ŷn ' yn; �2�
where xnf gNn�1� IRQ denotes the corresponding set of

reduced sample vectors drawn from the random vector ~X

and D, Q denote the dimensionality of the original data and

reduced latent spaces, respectively. The latent dimension-

ality Q is usually limited to 2 or 3 for visualization,

otherwise, Q� D. The mappings G and F may be derived

by optimizing one of several possible criteria such as

maximum-likelihood or minimum mean square error

(MSE). In PCA, for instance, both G and F are linear and

the empirical reconstruction MSE is minimized. The

forward mapping G for PCA can be computed via eigen-

decomposition of the sample covariance matrix and the

derivation of G automatically leads to the corresponding

reverse mapping F . Similarly, latent variable models, such

as factor analysis and independent component analysis,

first compute F , from which G can be obtained trivially

using pseudoinverses. However, since an inverse mapping

may not be easy to find for nonlinear transformations,

usually F is first derived and G is then approximated by

some projection operator.

2.2 Hastie and Stuetzle's Principal Curve

The principal curve was first defined by Hastie and Stuetzle

[9] as a smooth (C1) unit-speed 1D manifold in IRD

satisfying the self-consistency condition

f x� � � E~Y jg ~Y� � ~Y jg ~Y
� �

� x
n o

; 8x 2 � � IR; �3�

where E is the conditional average operator and g y� � is the

projection operator given by
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Fig. 1. (a) Principal component analysis (PCA) showing the first principal axis, (b) mixture of three localized principal axes, (c) a principal curve.

2. Note that the principal curve is simply a 1D principal surface, but it is
often singled out for investigation due to its simplicity. Consequently,
algorithms derived for principal surfaces can be trivially applied to
principal curves, but the reverse is not true in general.

3. The size, shape, and type of latent basis functions also play a
significant role in determining the complexity of the GTM. In this paper, we
consider isotropic Gaussian latent basis functions uniformly laid out in
latent space, with the width equal to twice the distance between adjacent
bases.

4. Some approaches, such as Sammon's projection, do not explicitly
define the reverse mapping.



g ~Y
� �

� sup
�2�

� : ~Yÿf �� �
  � inf

�2�

~Y ÿ f �� �
 � �

: �4�

The latent (coordinate) variable x is usually parameterized

by the arc length along f x� �, starting from either end. The inf

operator finds the point or points on the curve f that are

closest to y; the sup operator simply picks the largest

coordinate among these points. Note that, although (4)

approximates the forward mapping G as a projection

operator, the reverse mapping F is nonparametric as

described by (3), thereby opening up various possibilities

for estimating f x� � as long as the consistency property (3) is

satisfied. Further, the reverse mapping F depends on the

unknown latent variable x, suggesting that an iterative

scheme is needed to compute f x� �. For example, the original

principal curve algorithm (denoted HSPC), updates f x� � by

evaluating (3) and (4) in an iterative manner.
In practice, the distribution of ~Y is unknown and the

conditional expectation operator is replaced by spline

smoothers [19] or locally weighted linear regression [20].

Fig. 2 compares an ideal HSPC with its practical version.
There are several theoretical and practical concerns with

the HSPC definition and they are summarized as follows:

1. Existence. HSPCs are not guaranteed to exist for
arbitrary distributions, although existence can be
shown for ellipsoidal or spherically symmetric den-
sities in IRD, and uniform densities within a square or
annuli in IR2 [21]. Note that, in most cases, the
principal curves are not unique!

2. Nonparametric. The HSPC is nonparametric, mak-
ing theoretical analysis complicated and involved,
despite its generality.

3. Inefficient. In general,5 all available (N) data points
are needed to faithfully estimate the HSPC, thereby
making computations for large N inefficient.

4. Biased. The HSPC is biased at locations of large
curvature. Two opposing forces contribute to the
overall biasÐthe model and estimation bias. At
these locations, model bias causes the principal
curve of data sampled from a function f with
additive isotropic Gaussian noise ~",

~Y � f x� � �~"; �5�
to lie at the exterior of the generating curve. The
model bias is a direct consequence of the projection
operator (4) used in the forward mapping (because
more points ªprojectº onto the curve from the
outside than from the inside, causing the principal
curve to shift outward) and is illustrated in Fig. 3a.
On the other hand, the estimation bias results in a
ªflatteningº effect when a high degree of smoothing
(large span) is applied, as shown in Fig. 3b. Ideally, it
is desired that the model and estimation bias cancel
off each other, unfortunately, the estimation bias is
predominant in practice.

5. Convergence. Algorithmic convergence of the HSPC
to a local minima solution is not assured.

2.3 Alternative Approaches to the Principal Curve

The bias problem (problem 4) was first addressed by Banfield
and Raftery's (BR) algorithm [22], which follows the HSPC
definition, but estimates the error residuals instead of the
actual curve during computation, thereby reducing the
estimation bias. However, the BR algorithm introduces
numerical instabilities which may lead to a smooth but
incorrect principal curve in practice. Chang and Ghosh [23]
showed that a more representative principal curve is
obtained by first computing a HSPC and then applying the
BR algorithm to remove any existing estimation bias.

Tibshirani [24] provided a probabilistic definition of the
principal curve (denoted TPC) using a cubic-spline
smoothed mixture of Gaussians. Although this parametric
formulation does not suffer from the model bias, it is still
affected by the estimation bias due to the use of the
smoother. Further, the generalized expectation maximiza-
tion (EM) algorithm [25] ensures that the TPC will always
converge to a local minima [26], thereby solving problems 2,
4, and 5. Unfortunately, this definition does not uphold the
self-consistency property (3) and, since penalized-likelihood
is used as the optimization criterion, the TPC in general will
not be optimized in terms of the MSE.6

Chang and Ghosh [15] proposed a modified version of
TPC known as the probabilistic principal curve (PPC). The
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5. While it is possible to subsample the data in order to obtain a more
efficient principal curve representation, the details are beyond the scope of
our discussion.

6. One situation in which the maximum-likelihood solution of the TPC
also optimizes the MSE (i.e., yields the minimum MSE solution) is when the
TPC is a straight line with nodes corresponding to the projections of the
data points onto the line.

Fig. 2. (a) Ideally, with infinite data, every point f�x� on the HSPC is defined as the average of all data points y projecting exactly onto f�x�.
(b) Practically, with limited data, f�x� is defined by piecewise linear segments. A point f�x� on the curve is the weighted average of all points y
projecting within a neighborhood of f�x�. For example, f�2� is the weighted average of all points y falling within the indicated neighborhood. Note that
the number of nodes M in the HSPC equals N, which is the number of data points.



PPC approximates the self-consistency condition by using
oriented Gaussians in the mixture model whose variance
along the tangential direction is attenuated by a factor � < 1.
Experiments show that PPC typically converges twice as fast
while attaining much lower MSE compared to TPC. More-
over, the self-consistency condition is achieved in the limit
�! 0. A shortcoming of PPC is that convergence is no longer
guaranteed as the modification makes some simplifying
assumptions that deviate from the generalized EM frame-
work. Fig. 4 illustrates the PPC advantage with a 2D example.

A solution to problems 1 and 3 was recently proposed by
KeÂgl et al. [27], [28], who define the PC (denoted KPC) as a
finite-length curve that minimizes the MSE over all curves
of equal or shorter length. Like Tibshirani's formulation, the
self-consistency condition is foregone. In place of it is the
minimum MSE condition, which ensures that the KPC
retains the essence of PCA. The authors show that a KPC
always exists for any data distribution with finite second
moments, and an asymptotic convergence rate is provided.
However, convergence of the corresponding polygonal line
algorithm [29], which constructs an approximate but
efficient KPC, cannot be guaranteed.

Delicado formulated the PC (denoted DPC) [30], [31] as a
curve passing through principal oriented points, which are
fixed points of some function from IRD to itself. The DPC
always exists for data distribution with finite second
moments. A key property of DPC is that it maximizes the
ªtotalº variance of data projected along the curve, thereby
generalizing the variance-maximization property of the first
principal component. The HSPC does not possess this
property; for example, only the first principal component of
a multivariate Gaussian distribution satisfies the definition
of a DPC, whereas any principal component of this
distribution qualifies as a HSPC.

A summary of the problems addressed by the various
principal curve formulations is given in Table 1. The
summary illustrates that, over the years, most problems
associated with principal curves have been successfully
addressed by redefining the PC. However, none of the
newer definitions are easily extensible to principal mani-
folds (Q > 1). A simple formulation free of the aforemen-
tioned problems is clearly desirable for principal manifolds.

3 PRINCIPAL SURFACES

In theory, principal surfaces can be defined analogously to
principal curves. Now, x is a coordinate on the Q � 2
dimensional principal manifold, hence shown in bold.
Then, the HSPC can be extended to the HS principal
surface (HSPS) as follows:

f x� � � E~Y jg ~Y� � ~Y jg ~Y
� �

� x
n o

; 8x 2 �� � IRQ; �6�

g ~Y
� �

� sup
��2�

�� : ~Y ÿ f ��� �
  � inf

��2�

~Y ÿ f ��� �
 � �

: �7�

However, finding it is another matter which can become
impractical for large Q and, therefore, for the most part,
only 2D principal surfaces have been studied, if any. In fact,
the HSPC has been extended to the Q � 2 case [32], but is
nontrivial for Q > 2 as it involves Q dimensional estimates
of the latent coordinates x and smoothing operations for the
expectation step (6). As a solution to this problem, LeBlanc
and Tibshirani [10] proposed adaptive principal surface
(APS), which is a general adaptive parametric principal
surface approximation for arbitrary Q, using multivariate
adaptive regression splines (MARS) [33]. The additive error
model used by MARS ensures that APSs are unbiased, and
the algorithm is guaranteed to converge. However, it does
not satisfy the self-consistency condition and also inherits
the disadvantages of MARS, as listed below:

1. It involves complicated procedures for the forward
selection and pruning of latent bases.

2. The latent basis functions are not intuitively7

visualizable in the sense that they do not map out
a regular topological grid in latent space.

In the remainder of this section, we critically review
alternative principal surface approximation algorithms
from the neural network community. Each algorithm is
evaluated with respect to the five problems listed in Table 1.
We show that, while each of these algorithms has some-
thing to offer, they often fall short in other areas. One
notable exception is the probabilistic principal surface
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Fig. 4. (a) Under the spherical Gaussian noise model of TPC, points 1

and 2 exert equal influences on the node f�x�, whereas point 1 in (b) is

probabilistically closer to f�x� than point 2 due to the oriented noise

covariance of the PPC. The implicit effect is that each node of the PPC

will tend to move (during iteration of the EM algorithm) in a way such that

the probabilistic (projection) distance is locally minimized.

7. An elaborate process known as ANOVA decomposition can be used to
interpret a MARS model [33].

Fig. 3. Both types of bias arise at locations of large curvature. (a) Model
bias occurs if the noise is Gaussian distributed about the generating
curve. The larger data mass ªoutsideº the curve results in a principal
curve lying ªoutsideº of the generating curve. (b) Estimation bias occurs
for any local average smoothers with a large span. The large span
causes the regression estimate (denoted as a solid dot) to lie at the
interior of the generating curve.



(PPS), which appears to hold the best promise as a suitable
principal surface approximator.

3.1 Self-Organizing Maps

Kohonen's self-organizing map (SOM) [8] is a nonpara-
metric latent variable model with a topological constraint.
During training, the reverse and forward mappings of a
SOM8 are defined, respectively, as

f k�1� � x� � � E~Y jg ~Y� � ~Y jg ~Y
� �

2 N x; k� �
n o

; 8x 2 xmf gMm�1;

�8�

g ~Y
� �

� arg min
��2 xmf gMm�1

~Y ÿ f k� � ��� �
 ; �9�

where N x; k� � is the set of nodes lying within a shrinking
neighborhood of x in IRQ at iteration k, with the neighbor-
hood determined with respect to a chosen latent topology in
IRQ. Common topologies include lines (Q � 1) and square
or hexagonal grids (Q � 2). With enough training, the
neighborhood of x will eventually contain just itself, i.e.,
limk!1N x; k� � � x and the network is said to have
converged. Therefore, at convergence, the topological
constraints disappear and the reverse and forward map-
pings can be expressed, respectively, as follows:

f x� � � E~Y jg ~Y� � ~Y jg ~Y
� �

� x
n o

; 8x 2 xmf gMm�1; �10�

g ~Y
� �

� arg min
��2 xmf gMm�1

~Y ÿ f ��� �
 ; �11�

which turns out to be equivalent to the equations for

k-means clustering [34]. It can be inferred from (10) and (11)

that a converged SOM is similar to a discretized version of

(6) and (7). For this reason, the SOM can serve as an

approximation to the principal surface [17], [18]. The SOM

is computationally efficient since it uses only M (� N)

nodes to model the latent manifold. It is also unbiased due

to the spherical distance measure (11). However, the main

problem with this approximation lies in its reverse mapping

(10), which computes the average point-to-node distances

(11) instead of the more general point-to-manifold projec-

tion distances (7), thereby failing the self-consistency

requirement of principal surfaces (6). Analysis of the SOM

is involved, partly due to its nonparametric nature, and so

far results have shown that the training process does not

actually minimize any objective function [35]. Moreover,

convergence of the training algorithm has been shown only

for the 1D case [36].

3.2 Generative Topographical Mapping

The generative topographical mapping (GTM) [37] is a

principled and parametric alternative to the SOM with

some nice properties. Like the SOM, it is comprised of M

nodes xmf gMm�1 arranged typically on a uniform grid in

latent space IRQ. However, unlike the SOM, whose

topological constraints gradually disappear with time, the

GTM topology is consistently enforced via the reverse-

mapping F , which has a generalized linear form

f x; W� � �W�� x� �; 8x 2 xmf gMm�1;

where W is a D� L real matrix and

� x� � � �1 x� � � � � �L x� �� �T ; 8x 2 xmf gMm�1;

is the vector containing L latent basis functions

�l x� � : IRQ ! IR, l � 1; . . . ; L. The basis functions �l x� � are

usually chosen to be isotropic Gaussians, the number of

which largely determines the mapping complexity of F . In

practice, the Lth basis serves as a bias term, i.e., �L x� � � 1

8x. Fig. 5 shows an example of a 1D GTM in 3D data space.
The M latent nodes of a GTM are assumed to be

uniformly and discretely distributed in latent space with

probability density function

p~X x� � � 1

M

XM
m�1

� xÿ xmk k� �; �12�
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TABLE 1
Problems Addressed by Various Principal Curve (PC) Formulations

Key: HSPC (Hastie and Stutzle), BR (Banfield and Raftery), TPC (Tibshirani), PPC (Chang and Ghosh), DPC (Delicado), KPC (KeÂgl et al.).
1 No estimation bias, but model bias still exists.
2 No model bias, but estimation bias still exists.
3 In the limit �! 0.

8. The batch mode SOM algorithm is considered here.



where � is the Dirac delta function. In the data space, the
conditional probability distribution of y given any x 2
xmf gMm�1 is modeled as an isotropic Gaussian with center

f xm; W� � and global variance 1=�,

p~Y j~X yjxm
ÿ � � �

2�

� �D=2

exp ÿ�
2

f xm; W� � ÿ yk k2

� �
: �13�

Combining (12) and (13) yields a constrained mixture of
Gaussian distribution for the output data y,

p~Y y� � � 1

M

XM
m�1

p~Y j~X yjxm
ÿ �

: �14�

From (12), (13), and (14), the conditional probability
distribution p~Xj~Y xjy� � can be easily computed using Bayes
rule. In practice, the mean and/or mode of the conditional
distribution p~Xj~Y xjy� � is used to find an approximated
value for x, i.e., the forward mapping G is approximated as
the mean of p~Xj~Y xjy� �,

g yn� � � E~Xj~Y ~Xj~Y � yn

n o
: �15�

Equations (12), (13), and (14), are also used in the
computation of the mixture-likelihood, which is then
maximized with respect to W and � using the expectation
maximization (EM) algorithm [38].

The GTM is efficient and unbiased. In addition, it enjoys
the following advantages over the SOM:

1. simple parametric formulation,
2. fewer tunable parameters,
3. guaranteed convergence of the EM algorithm for allQ,
4. consistent mapping functions,
5. smoothness largely determined by the number of

latent basis functions L, assuming uniformly dis-
tributed isotropic latent bases of constant widths.

The last two properties are especially important within
the context of approximating principal surfaces because the
GTM can have M � N nodes while retaining smoothness,
unlike the SOM. However, the GTM still lacks the self-
consistency property of principal surfaces. This major
shortcoming motivated our development of the probabil-
istic principal surfaces, described in the following section.

3.3 Probabilistic Principal Surfaces

In [15], we proposed probabilistic principal surfaces (PPS),
which approximate principal surfaces with a modified
GTM model. The motivation behind this modification lies in
the desire to approximate the self-consistency property of
principal surfaces, as shown in Fig. 4. Specifically, the
spherical covariance 1=� in (13) is modified to:

�old � �
�

ID � 
�

XD
d�Q�1

ed x� �eTd x� �; �16�

where ID is the D�D identity matrix and ed x� �f gDd�Q�1 is

the set of DÿQ unit vectors orthogonal to the manifold

spanned by the Q tangential manifold gradient vectors

df x� �=dx1; . . . ; df x� �=dxQ. Constants � and  determine the

amount of clamping in the tangential manifold direction

and amplification in the orthogonal direction, respectively.
The PPS inherits all of GTM's nice properties. In

addition, it typically converges faster than the GTM and

provides a significantly lower MSE at a similar manifold

smoothness level [15]. One disadvantage of PPS is that the

modification in (16) results in a nonlinear-likelihood

objective function, thus requiring an approximation to be

used in the EM algorithm. Unfortunately, because of this

approximation, convergence is no longer guaranteed.

Nevertheless, this does not appear to be a significant

problem as no convergence problems have been observed

so far in practice.

3.4 Autoassociative Neural Networks

Autoassociative neural networks (AANNs) were popular in
the 1990s as an effective compression tool [7], [39]. Linear
AANNs have been shown to extract a linear combination of
the principal components [40]. Early researchers proposed
2-layer nonlinear networks comprised of D inputs, a
Q-node sigmoidal hidden layer, and a D-node linear output
layer. The network output is trained using the back-
propagation algorithm to mimic the input vector y. Once
trained, the hidden layer nodes will produce a reduced
representation (x) corresponding to each input y. Kramer
[41] showed that a 2-layer AANN is incapable of modeling
the nonlinear relationship among the input and latent
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Fig. 5. A GTM example with D � 3, Q � 1, L � 4, and W a 3� 4 matrix. In this example, a radial basis function network with four hidden units maps

input latent node xm to the corresponding output node f xm; W� � �W�� xm� �.



variables, but a 4-layer network overcomes this limitation.
Other notable studies include [42], [43], [44].

The AANN is not guaranteed to be self-consistent as it only
minimizes the MSE. There have been no studies investigating
the bias problem, if any, for AANNs. Malthouse [45] has
shown that the AANN is inherently suboptimal in the
projections of ambiguity points, defined as data points
equidistant to more than one point on a principal manifold.
A small change in the region about the ambiguity point may
result in a discontinuous jump in the latent variable x and,
since AANNs are unable to model discontinuous jumps, they
are forced to interpolate the latent range spanning the
discontinuous x whenever there is a discontinuity. This
important observation puts to rest any further attempts at
approximating principal manifolds with AANNs.

3.5 Summary

Table 2 summarizes the problems associated with the
various approaches to computing principal surfaces.
AANNs are not considered here for reasons described
previously. Note that the bias criteria here is evaluated with
the assumption that the underlying data distribution is
generated from a finite number of fixed centers with
additive isotropic Gaussian noise. From the table, it can
be seen that the PPS exhibits the best prospects as a
principal manifold approximator. To the best of our
knowledge, existence has not been proven for any of the
approaches listed here.

4 PPS WITH A UNIFIED COVARIANCE MODEL

4.1 Definition and Interpretation

We propose a unified oriented covariance model for the PPS
at each node x 2 xmf gMm�1 that can be expressed as follows:

� x� � � �
�

XQ
q�1

eq x� �eTq x� �

� Dÿ �Q� �
� DÿQ� �

XD
d�Q�1

ed x� �eTd x� �; 0 < � < D=Q;

�17�
where

eq x� �� 	Q
q�1

:

set of orthonormal vectors tangential to the manifold at x;

ed x� �f gDd�Q�1:

set of orthonormal vectors orthogonal to the manifold at x:

Note that the complete set of orthonormal vectors
ed x� �f gDd�1 spans IRD. The unified PPS model (17) is a more

general version of (16) as it reduces PPS to GTM for � � 1
and to the manifold-aligned GTM [46] for � > 1, i.e.,

� x� � �
? to manifold 0 < � < 1 PPS

ID or spherical � � 1 GTM

== to manifold 1 < � < D=Q manifold-aligned GTM:

8><>:
As �! 0, the support of each node becomes increasingly
concentrated on the orthogonal hyperplane at each node,
effectively approximating the self-consistency condition of
principal surfaces [24]. Note that the total energy or
variance (sum of its eigenvalues) of � x� � remains constant
at D=� over the valid range of �, ensuring that the noise
level of PPS remains unchanged regardless of its orienta-
tion. This property will prove useful later on when we
compare the empirical performances of PPS and GTM. Fig. 6
shows the unit Mahalanobis distance loci of � x� � for
various values of �.

4.2 EM Algorithm

The EM algorithm, which is guaranteed to converge to a
local minima [25], can be used to estimate the parameters of
the PPS. The complete log-likelihood for the PPS, assuming
equal and constant prior probabilities, is
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TABLE 2
Problems Addressed By Various
Approaches to Principal Surfaces

Key: HSPS (Hastie and Stuetzle's Principal Surface), APS (Adaptive
Principal Surface), SOM (Self-Organizing Map), GTM (Generative
Topographic Mapping), and PPS (Probabilistic Principal Surface).

1 Only for the case Q � 1.
2 In the limit �! 0.
3 Using the generalized EM algorithm described in Appendix C.

Fig. 6. Unoriented covariances � � 1 (dashed line) and oriented covariances (solid line) for � � 0:10; 0:50; 1:50; 1:90. The valid range for � is

0 < � < 2 for D � 2; Q � 1 in this example.



Lc �
XN
n�1

XM
m�1

zmn ln p~Y j~X ynjxm� � 1

M

� �
; �18�

where the binary variable zmn indicates whether component

m is responsible for generating point yn, i.e.,

zmn � 1 if component m generated point yn
0 otherwise:

�
Since zmn is unknown or ªmissing,º the complete log-
likelihood (18) cannot be evaluated. Therefore, in the E-step

of the EM algorithm, the expectation of Lc is computed

instead:

Lch i �
XN
n�1

XM
m�1

rmn Wold; �old; �old� � ln p~Y j~X ynjxm� � 1

M

� �
;

�19�
where the responsibility parameter,

rold
mn � P~Xj~Y xmjyn� �

�
p~Y j~X ynjxm� �P~X xm� �PM
h�1 p~Y j~X ynjxh� �P~X xh� �

�
p~Y j~X ynjxm� �PM
h�1 p~Y j~X ynjxh� � ;

�20�

is computed by substituting the ªoldº parameter values

Wold; �old; �old into the conditional probabilities p~Y j~X ynjxm� �.
In the M-step, the expected log-likelihood function (19) is

maximized with respect to W, �, and �, thereby giving the

corresponding new iterated values. A regularizing term with

an isotropic Gaussian prior on the weights is usually added to

(19). Details of the derivations and update equations can be

found in Appendix C. For simplicity, in this paper, we

assume a constant clamping factor � and approximate the

M-step with the original GTM M-step update equations [46],

[47]. We have observed no convergence problems over

hundreds of trials.

4.3 Computational Issues

The PPS incurs two additional computations over the GTM:

1) computation of the D�Q tangential matrix E== x� �,
which is formed by concatenating the tangential manifold

vectors feq x� �gQq�1, i.e., E== x� � � e1 x� � � � � eQ x� �� �
D�Q, and

2) evaluation of the full Gaussian class-conditional prob-

abilities p~Y j~X yjxm� �. The set of Q tangential vectors

feq x� �gQq�1 can be estimated from the partial derivatives of

the latent basis activations at x:

e0q x� � �W
@�� x� �
@xq

; �21�

where the constant latent basis derivative @� x� �=@xq needs

to be evaluated only once. However, it is important to note

that, since neither the row space of W nor the set

@� x� �=@xq
� 	Q

q�1
is orthogonal in general, the resulting

fe0q x� �gQq�1 will not be orthonormal and, thus, must be

made so via the Gram-Schmidt procedure [8] in order to

satisfy the conditions of (17).

The matrix E== x� � is updated once per EM training
epoch, which requires O LQD� � operations for the matrix
multiplication and O Q2D� � operations for orthonormaliza-
tion. At first glance, it would seem that the Gram-Schmidt
procedure is also needed to compute the corresponding set
of orthogonal manifold vectors ed x� �f gDd�Q�1 since (17)
involves both the orthogonal and tangential sets of vectors.
Fortunately, this is not necessary, as shown in Proposition 1
which simplifies (17) to a form containing just the tangential
manifold vectors.

Proposition 1. Equation (17) can be expressed in terms of just
the set of tangential manifold vectors eq x� �� 	Q

q�1
as follows:

� x� � � BID � S ÿB� �E== x� �ET
== x� �; �22�

with the constants

B � Dÿ �Q
� DÿQ� � ;

S � �
�
:

Proof. See Appendix A. tu

It turns out that (22) also greatly simplifies the
corresponding expressions for the determinant and inverse,
as shown in Proposition 2.

Proposition 2. The determinant and inverse of � x� � in (22) can
be expressed, respectively, as

�j j � SQBDÿQ; 8x 2 xmf gMm�1; �23�

�ÿ1 x� � � 1

B
ID ÿ S ÿB� �

BS
E== x� �ET

== x� �: �24�

The determinant in (23) is constant and, therefore, needs to be
evaluated only once. For a given E== x� �, the computational
complexity of the inverse covariance �ÿ1 x� � is now O QD2� �
instead of the typical O D3� � operations required of matrix
inversion.

Proof. See Appendix B. tu

With the simplified PPS formulations (23) and (24),
evaluation of the conditional probabilities p~Y j~X yjx� � now
requires O QD2� � operations, which is an order higher
(assuming small Q) than the O D� � complexity of the GTM.
However, as shown later in Section 5.5, this computation
overhead becomes less of an issue for more complex
mappings.

4.4 Performance Evaluation

4.4.1 Roughness

In general, the evaluation of a nonlinear transformation is
very subjective. For instance, the MSE cannot be considered
alone because any transformation that computes a manifold
interpolating all data points will have zero MSE. Therefore,
a secondary measurement indicative of the overall smooth-
ness is needed to determine the generality of a manifold.
The secondary measurement we used in this paper is the
roughness of a manifold which, for a 1D manifold, is defined
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as the cumulative angular variation (in degrees) between
successive manifold segments:

R �
XMÿ1

m�1

cosÿ1 f 0 xm� �T f 0 xm�1� �
f 0 xm� �k k f 0 xm�1� �k k

" #
; �25�

where f 0 xm� �= f 0 xm� �k k denotes the unit gradient directional
vector at node xm. Some sample curves and their
corresponding R values are shown in Figs. 7a, 7b, 7c, 7d,
7e, and 7f. In general, R is independent of the number of
nodes in the manifold since it simply measures the total
angular variation. This is illustrated by the sample curves in
Figs. 7a, 7b, and 7c. However, as the number of nodes in the
manifold increases, more leeway is allowed for roughness,
i.e., R is upper bounded by the number of segments,

0� � R � M ÿ 2� �180�; M � 2;

with equality holding for straight lines. For high-dimen-
sional (Q > 1) manifolds, (25) is averaged over all 1D
submanifolds (grid lines).

4.4.2 Projection onto a Manifold

The distance between any data point y and a 1D manifold
can be easily obtained by linearly projecting y onto allM ÿ 1
segments on the manifold and taking the minimum of the
M ÿ 1 distances. However, for 2D manifolds consisting of
square patches each defined by four manifold nodes, this
distance will have to be approximated. The simplest
approximation is the nearest-neighbor distance MSEnn as
used in the SOM, which finds the minimal squared distance
to all possible manifold nodes. A more accurate

approximation, used in [15], is the minimum grid projection
MSEgrid, which finds the shortest projection distance to a
manifold grid. The best9 approximation is the nearest
triangulation MSE�, which finds the nearest-projection
distance to the two possible triangulations, i.e.,
MSE� � min MSE�1;MSE�2� �. Fig. 8 shows an example
of the three types of approximated MSE used for projecting a
point onto a 2D manifold patch. In this paper, we will
evaluate all three approximations MSEnn, MSEgrid, and
MSE�.

5 EXPERIMENTS

In this section, we evaluate PPS, GTM, and the manifold-
aligned GTM in terms of reconstruction error (MSE�,
MSEgrid, MSEnn) and roughness R. Under our formulation,
an objective comparison between the PPS, GTM, and
manifold-aligned GTM can be made as each of them differs
from the other only in the parameter �. In addition, the
variance or energy of the PPS noise model remains constant
over the valid range of �, further ensuring a fair
comparison. Convergence properties are also investigated.

5.1 Data Set Description and Experiment Setup

Three popular UCI machine learning data sets [48], iris,
glass, and diabetes, with characteristics described in Table 3
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Fig. 7. (a) R = 90 (M = 3), (b) R = 90 (M = 4), and (c) R = 90 (M = 6) are examples of curves with different number of nodes sharing the same

roughness value. (d) R = 0 (M =3), (e) R = 180 (M = 4), (f) R = 292.6 (M = 11) are other example curves with their corresponding roughness.

Fig. 8. Various approximations for projecting a point y onto a 4-node manifold patch in data space. (a) MSEnn � 0:4900: projection onto nearest-

manifold node. (b) MSEgrid � 0:1700: projection onto nearest-manifold grid. (c) MSE� � 0:0800: projection onto nearest-triangular patch.

9. Strictly speaking, the ªbestº distance (maximum-likelihood) under the
generative framework is actually measured as that between the data point y
and xjyh i, the mean of its induced distribution p~Xj~Y �xjy� on the manifold.
Moreover, as this distance may not be the shortest in the Euclidean sense,
we instead compute the distance using linear projection onto the manifold
made up of the nodes. In this paper, the generative model is simply a means
of obtaining the node locations in data space.



were considered. The goal is to study the reconstruction
MSE when the input data is represented by 1D and 2D
PPSs. To facilitate fair comparison across different data sets,
each data set was first normalized to zero mean and unit
covariance by sphering (whitening) [11]. The MSE and
roughness R of each PPS is evaluated while varying the
manifold size (M), manifold complexity (L), and clamping
parameter �. The orientation parameter was varied over the
set of 13 values as shown below:

� 2

0:1; 0:2; . . . ; 1:0; 0:75� 0:25
D

Q
; 0:5� 0:5

D

Q
; 0:25� 0:75

D

Q

� �
:

The manifold size M was varied from 0:1N to N in 0:1N
increments, rounded to the nearest integer, where N refers
to the number of training samples. A range of L 2 4; 9; 16f g
latent basis functions was used.

At each M;L; �� � setting, a total of 25 simulation runs
was repeated on randomly permutated 50/50 train/test
partitions of the data, and averaged to yield the MSE
estimate. Each run was allowed a maximum of 200 epochs
with early stopping triggered whenever the change in
training MSE (Q � 1) or MSE� (Q � 2) went below TOL �
0:1 percent across consecutive 5-epoch windows. Over-
training is not an issue as long as the number of latent basis
functions (L) is kept low. So, unlike generalization situa-
tions, some form of crossvalidation is not needed here. At
the end of each 5-epoch training window, the test MSE was
evaluated. For 1D manifolds, both the MSEnn and MSE
(projection) were evaluated, whereas all three MSE
approximations MSEnn, MSEgrid, and MSE� were eval-
uated for 2D manifolds.

The following common settings were used for all
experiments: regularization parameter � � 0:01, isotropic
Gaussian latent basis functions uniformly distributed with-
in the range ÿ1; 1� � of each latent dimension, with widths of
the basis functions set to twice the distance between two
adjacent centers, manifolds initialized to the first principal
axis (Q � 1) or plane (Q � 2). The publicly available GTM
MATLAB toolbox [47] was modified to accommodate PPS.
Note that the current GTM implementation restricts
2D manifolds to span a square patch in latent space, i.e.,
both M and L must be squares of integers.

5.2 1D PPS

A 1D PPS of relatively low mapping complexity (L � 4) was
first computed for each of the three data sets over a range of
M, � values. Figs. 9a, 9b, 9c, 9d, 9e, and 9f show plots of the
roughness measure R and test MSE, respectively, versus M

and � for a 1D PPS computed on the three data sets. Global
minimum values are marked by a circle () on the plots,
with numerical values indicated above each plot. Interest-
ingly, R actually decreases with increasing number of nodes
and varies tremendously for �� 1 across all three data sets.
By specifically capturing noise in the tangential direction,
the manifold-aligned GTM (� > 1) enjoys a considerable
advantage over the other two models; it yielded the
smoothest manifold (lowest R), most noticeable in Fig. 9a,
over all three data sets.

Due to the remarkable similarity between the MSE and
MSEnn results, which only differ slightly in magnitude, we
shall comment only on theMSE performances and draw the
same conclusions regarding the corresponding MSEnn
performances. As expected, the MSE did not vary much
across the range of M for both the PPS and GTM (� � 1),
except for very small M. However, the manifold-aligned
GTM (� > 1) exhibited relatively higher variation across M,
as seen in Figs. 9d, 9e, and 9f, indicating it to be a relatively
unstable model. For all three data sets,MSE increases with�
until a point where it starts to decrease slightly. This decrease
always occurs way beyond � � 1 (GTM), but the decrease is
not substantial enough to undertake the low level of the PPS
(� < 1). More importantly, the PPS was able to consistently attain
the lowest MSE at any given M and L, exhibiting its superiority.
For all three data sets, the lowest MSE was achieved by the
PPS with a relatively tight clamping factor (� � 0:1 � 0:3)
and a large number of nodes M.

The glass data set displayed a deviation from the other
data sets in that its minimum MSE corresponds to the
smallest value of M � 11 and � � 0:10 (PPS), as indicated
() in Fig. 9e. Similarly, the lowest MSE for the GTM
(� � 1) is at M � 11 (not shown). In either case, there is a
hefty price to pay, in the form of a large roughness R, as
shown in the corresponding plot of the roughness in Fig. 9b.
On the other hand, the lowest MSEnn occurs at M � 107
and � � 0:40, with a reasonable R � 155:82 (not shown).
This example clearly demonstrates that the roughness R, in
addition to MSE, must be evaluated when tuning the
parameters of a PPS. In general, a compromise must first be
made between the number of nodes M and the maximum
tolerable roughness R, after which a suitable � can be
determined experimentally.

In order to assess the relative MSE performances of the
GTM and PPS at a given roughness level, five levels of
roughness R were considered, ranging from 10 to 50 percent
of the full range of roughness R of a GTM. At each
roughness level, the GTM reconstruction MSE was noted,
and compared to the best PPS at the same linearly
interpolated roughness level. Fig. 10 shows the percentage
decrease in MSE of the best PPS at various roughness level
for each of the three data sets. From the figure, it can be seen
that the best PPS always achieve an improvement (up to 5
percent) over the GTM at the same roughness level R.

5.3 2D PPS

In this section, the performances of 2D PPS is evaluated
against that of the 2D GTM and manifold-aligned GTM. A
2D PPS is computed for each of the three data sets while
varyingM,�, andL. Figs. 11a, 11b, 11c, 11d, 11e, and 11f show
plots of the roughnessRversusM,� for each of the three data
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TABLE 3
Characteristics of the Three UCI Machine Learning Data Sets



sets at two complexity levels. The global minimum is
indicated by a circle (). From the figures, it can be observed
that the roughness surface R is rather smooth for all cases,
except for the smaller iris data set at a lower complexity
(L � 4) in Fig. 11a. The manifold-aligned GTM (� > 1) is
again the overall smoothness champion in all cases. Ironi-
cally, the roughnessR exhibited less variation with respect to
� for higher mapping complexities. In the case of the iris data,
the high roughness of a lower complexity mapping may
actually indicate that the data is locally clustered about each
class, thereby requiring a more complex mapping. In fact, the
less complex (L � 4) PPS (� < 1) experienced a sharp increase
in roughness R with decreasing �, as shown in Fig. 11a.
Likewise, the same phenomena was also observed for the
glass and diabetes data sets (not plotted here), which seems to

defy the notion that a smaller L (less complex) should yield a

smoother manifold.
One possible explanation is given as follows: As �! 0,

the output data space nodes effectively become decoupled,

i.e., each output node estimates the noise immediately

within its projection vicinity, quite independent of its

neighboring node. On the contrary, the nodes are closely

coupled in latent space by virtue of having too few number

of bases (small L). It is this nonlinear disparity of scales

between the input and output spaces that leads to a poor

mapping W, invariably resulting in a rougher manifold. A

PPS with sufficient number of latent bases (larger L), where

each can become responsible for a fewer number of latent

nodes, allows the mapping W to better handle the
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Fig. 10. (1D PPS) Percentage change in MSE of the best PPS over the GTM at each roughness level R for the iris, glass, and diabetes data set.

Fig. 9. (1D PPS) Roughness �R� versus number of nodes �M� and clamping factor ��� for (a) iris1 (L = 4) Min R = 120.8212 @ (M, �) = (53, 1.75),
(b) glass1 (L = 4) Min R = 146.4620 @ (M, �) = (97, 5.00), and (c) diab1 (L = 4) Min R = 149.1144 @ (M, �) = (39, 4.50).MSE versusM, � for (d) iris1
(L = 4) Min MSE = 2.5786 with R = 158.5607 @ (M, �) = (75, 0.30), (e) glass1 (L = 4) Min MSE = 7.9465 with R = 165.2362 @ (M, �) = (11, 0.10), and
(f) diab1 (L = 4) Min MSE = 6.5509 with R = 156.8888 @ (M, �) = (346, 0.20).



decoupling of the output nodes at small �, as shown in
Figs. 11b, 11c, 11d, 11e, and 11f.

Figs. 12a, 12b, 12c, 12d, 12e, and 12f show plots of the test
MSE� versus M, � for the three data sets. As with the 1D
PPS case, the plots for the other two reconstruction error
estimates MSEgrid and MSEnn closely resemble those of the
MSE� and we shall only comment on the MSE�. As
shown, the MSE� error surface of the manifold-aligned
GTM (for � > 1) becomes more varied with respect to M
with increasing mapping complexity (larger L), again
confirming that the manifold-aligned GTM should not be
used for large L. Another effect of increasing complexity is
that the MSE� surface becomes convex with respect to �,
with the optimal values of � in the range 0:2-0:4, as shown
in Figs. 12b, 12d, 12e, and 12f.

The percentage improvement in MSE� of the best PPS
over the GTM is plotted in Fig. 13 for five levels of roughness
levelsRfac, which denotes 10-50 percent of the range ofR of
a GTM. In general, the absolute percentage reduction
decreases only slightly at higher roughness levels, with the
general trend across L closely preserved. A significant
reduction of 7-10 percent inMSE� can be expected from low
complexity (L � 4) PPSs at the same roughness level as a

GTM. However, caution should be exercised in using a low

complexity PPS, which can be significantly rougher than the

GTM with the same number of nodes. The amount ofMSE�

reduction did not vary much for PPSs of sufficient complex-

ity (L � 9; 16), though L � 16 appears to be the ªsweet spotº

for the glass data set and L � 4 yields the best improvement

for the diabetes data set.

5.4 Best Results

While the previously plotted error surfaces show that a PPS

will always achieve a lowerMSE than a GTM at any givenM

and L, it would be interesting to see how well the best PPS

measures up to the best GTM over all possible configurations

of M. In other words, we want to find out if it is possible to

have the best GTM (with M1 nodes) perform better than the

best PPS (withM2 6�M1 nodes). Table 4 summarizes, for each

data set, the MSE� (equals MSE for 1D PPS) and

roughness R of the best PPS and best GTM at a given

manifold dimensionalityQ and complexity L. The manifold-

aligned GTM was not included since it performed worse than

the GTM with respect to reconstruction error.
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Fig. 11. (2D PPS) Roughness �R� versus number of nodes �M� and clamping factor ��� for (a) iris2 (L � 4) Min R = 7.4033 @ (M, �) = (25, 1.25),
(b) iris2 (L � 9) Min R = 619.7569 @ (M,�) = (16, 1.75), (c) glass2 (L � 9) Min R = 614.2889 @ (M,�) = (16, 2.75), (d) glass2 (L � 16) Min R = 855.4906
@ (M,�) = (25, 2.75), (e) diab2 (L � 9) Min R = 570.7659 @ (M,�) = (16, 1.75), and (f) diab2 (L � 16) Min R = 971.1465 @ (M,�) = (36, 2.50).



It can be seen that, in every case, the best PPS achieved

a lower MSE� than the best GTM. The 1D PPS showed

modest reduction in MSE� ranging from 1:5 percent to

4:6 percent, with roughness level maintaining at

ÿ1:0 percent to 4:4 percent. At a higher latent mapping

complexity (L � 9; 16), the best 2D PPS betters the GTM

for the glass and diabetes data sets in terms of reconstruc-

tion error by 3:3 percent to 8:8 percent while retaining a

lower or comparable roughness level (ÿ49:8 percent to

2:7 percent). Notably different is the 2D PPS (L � 9) result

on the iris data set, which shows a larger 40:2 percent

increase in R than the corresponding 8:8 percent decrease

in MSE. This is due to the significantly larger number of

nodes (M � 64) used by the 2D PPS compared to that

(M � 36) used by the 2D GTM. For comparison, the best

PPS using M � 36 nodes yielded a MSE� � 0:9221 and

R � 966:08, which translates to a more reasonable change

of ÿ4:0 percent and 7:0 percent, respectively. From these

results, we see that, in general, it is important to use a

sufficient number of latent basis functions in order to

realize the benefits of the PPS.

5.5 Convergence

Figs. 14a, 14b, 14c, 14d, 14e, 14f, 14g, 14h, and 14i show plots

of the averaged (over 25 trials) 2D PPS training MSE�

versus epoch for all three data sets. A plot was obtained for

three selected values of M, corresponding to low, medium,

and high node densities, respectively. The marked location

on each curve indicates ªconvergence,º where the average

MSE� has reduced to within 1� 10ÿ5 of its final value. In

general, the manifold-aligned GTM (� > 1) tends to vary

erratically during training and failed to converge within

200 epochs in most of the cases. The situation gets better as

� approaches unity from above, e.g., the curves correspond-

ing to � � 1:3 in Figs. 14a, 14b, and 14c exhibited good

convergence behavior. Similarly, at the other end of the

valid range of �, poor convergence behavior was observed

for � � 0:1 or less. In all other cases, the PPS required

approximately the same number of epochs as the GTM for

convergence.
Note that each PPS training epoch involves additional

computations over the GTM. Fig. 15 plots the slow-down
factor per epoch of the PPS with respect to the GTM for
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Fig. 12. (2D PPS) Test MSE� versus number of nodes �M� and clamping factor ��� for (a) iris2 (L � 4) Min MSE� � 1:2013 with R = 770.5084 @
(M, �) = (64, 0.20), (b) iris2 (L � 9) Min MSE� � :08757 with R = 1265.6403 @ (M, �) = (64, 0.40), (c) glass2 (L � 9) Min MSE� � 2:0156 with R =
1416.5809 @ (M, �) = (100, 0.10), (d) glass2 (L � 16) Min MSE� � 1:8617 with R = 1601.1549 @ (M, �) = (100, 0.20), (e) diab2 (L � 9) Min
MSE� � 2:0187 with R = 2476.3647 @ (M, �) = (324, 0.40), and (f) diab2 (L � 16) Min MSE� � 1:8202 with R = 2999.4415 @ (M, �) = (361, 0.30).



various values of M, L. The number of floating-point
operations was used as a yardstick, taking into account the
different complexities of addition and multiplication opera-
tions. For example, a value of 1:2 on the vertical axis would
indicate that the PPS required 20 percent more floating
point operations than the GTM for one epoch. As expected,
the ratio remains fairly constant over M, except for very
small values thereof. For small L, the PPS overhead is
significant, requiring as much as three times as many
operations as the GTM, as shown in Fig. 15d. However, the
PPS overhead diminishes with respect to the core computa-

tions for increasingly complex (larger L) mappings, as
shown by the relatively low 30-40 percent overhead
incurred by the L � 16 plots.

6 DISCUSSION

From the performances of PPS on the three benchmark data
sets, the following points can be made:

1. The PPS attains a lower MSE� over the other two
models for all M, L.
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Fig. 13. (2D PPS) Percentage change in MSE� of the best (corresponding � shown) PPS versus complexity L at each roughness factor level Rfac

for the iris, glass, and diabetes data set.

TABLE 4
Comparing the Best GTM Results Against the Best PPS Results



2. At the same roughness level R, the PPS gives a lower
reconstruction error compared to the GTM and
manifold-aligned GTM. The improvement gets
better with increasing M.

3. The best PPS performs better than the best GTM,
indicating that the superiority of the PPS is not local.

4. The optimal clamping factor � is very data-depen-
dent and must be evaluated across trials. In general,
extreme values are not recommended, whereas a
value less than 0:5 should yield a PPS with
satisfactory MSE and roughness R. Alternatively,
the more involved generalized EM algorithm may be
used to derive a flexible value for �.

5. The PPS not only reduces the MSE�, but also the
MSEgrid and MSEnn, making it beneficial even in

applications that only consider the data-to-node
distances. Consequently, the MSEnn and MSEgrid
may be used to approximate MSE� when searching
for the best � parameter.

6. The computational overhead of the PPS reduces to
only 30-40 percent over the GTM for larger L.
Further, notable improvements in reconstruction
error were also observed for larger L. The combina-
tion of these two observations suggests that the best
result can be expected when a relatively complex
PPS is employed.

In all experiments, it was noted that the unified model
performed poorly at either extreme of the valid range of �
values. As �! 0, the PPS models only the noise in the
orthogonal manifold direction, with each node effectively
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Fig. 14. (2D PPS). Averaged training MSE� versus number of epochs k for (a) iris2: L = 9, M = 16, (b) iris2: L = 9, M = 36, (c) iris2: L = 9, M = 64,

(d) glass2: L = 9, M =16, (e) glass2: L = 9, M =49, (f) glass2: L = 9, M =100, (g) diab2: L = 9, M = 36, (h) diab2: L = 9, M = 169, and (i) diab2: L = 9,

M = 361. Marked locations on curve indicate the epoch at which all 25 runs of the experiment have converged, where applicable.



decoupled from its neighbor. On the contrary, at values of
�! D=Q, which correspond to the manifold-aligned
GTM model, only noise along the manifold is modeled.
Thus, the value of � determines the type of noise model
employed by the PPS. The idea of decomposing the noise
into tangential and orthogonal components is not new.
Banfield and Raftery [22] used a linear combination of
variances along and about the manifold (in addition to a
residual variance term) to cluster ice-floe outlines.
However, as mentioned before, their results were limited
to principal curves and cannot be extended to principal
surfaces (Q � 2) and manifolds (Q > 2). The contribution of
our work lies in its extensibility to principal manifolds of
arbitrary dimensions.

7 CONCLUSION

We reviewed various formulations for principal curves and

surfaces and critiqued each with respect to problems related

to self-consistency, existence, parametricity, efficiency, bias,

and convergence. We then proposed a unified PPS model

that overcomes all of these problems, except for existence,

which has not been proven for the general case of principal

manifolds (Q > 1). With the unified PPS model, we were

able to compare the 1D and 2D versions of the PPS to the

corresponding GTM and manifold-aligned GTM in a fair

manner over a range of parameters. The PPS was found to

outperform the GTM and manifold-aligned GTM by a
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Fig. 15. Per epoch slow-down factor of the PPS over the GTM for various values of M and L. Note that, as the mapping gets increasingly complex

(larger L), the extra PPS computational overhead diminishes to just 40 percent or less. (a) Iris 1D PPS (L = 4), (b) iris 2D PPS, (c) glass 1D PPS (L =

4), (d) glass 2D PPS, (e) diab 1D PPS (L = 4), and (f) diab 2D PPS.



significant margin under two different comparisons using

the reconstruction error criterion. The empirical conver-

gence characteristic of the PPS was also studied and found

to be comparable to the GTM in terms of the number of

required training epochs. It was also shown that the

computational overhead incurred by the PPS becomes less

of an issue with increasing mapping complexity.

The PPS appears to be a promising approximation

algorithm for principal manifolds. In addition, the proposed

generalized EM algorithm (Appendix C) for PPS includes

update equations for automatically determining the clamp-

ing factor �, making the PPS even more attractive. Further,

it is possible to assign a different � to each manifold node in

our model so as to give localized noise estimates that best fit

the region, be it orthogonal or tangential. Although only

empirical results on 1D and 2D manifolds were shown, the

model can be easily extended to 3D or higher-dimensional

manifolds. In fact, to date, a 3D spherical PPS has been

applied to visualization of high-dimensional data and also

for the pose-estimation and classification of aircraft and

vehicle images [49], [50].

APPENDIX A

PROOF OF PROPOSITION 1

Proof. Observe that, since fed�x�gDd�1 is orthonormal and
complete in IRD, the following holds:

ID � E== x� �ET
== x� � �E? x� �ET

? x� �; �26�
where ID 2 IRD�D is the identity matrix and E?�x� 2
IRD��DÿQ� is formed by concatenating the orthogonal
manifold vectors fed�x�gDd�Q�1,

E? x� � � eQ�1 x� � � � � eD x� �� �D� DÿQ� �:

Expressing (17) in matrix notation and substituting into it
(26), we obtain the desired expression,

� x� � � SE== x� �ET
== x� � �BE? x� �ET

? x� �

� SE== x� �ET
== x� � �B ID ÿE== x� �ET

== x� �
� �

� BID � S ÿB� �E== x� �ET
== x� �:

tu

APPENDIX B

PROOF OF PROPOSITION 2

Before proving Proposition 2, it is necessary to first
introduce and prove the following lemma.

Lemma 3. Let A 2 IRD�Q with Q < D orthonormal columns
(i.e., rank A� � � Q and ATA � IQ), then the following holds
for any positive real number k:

1. ATA� kIQ
�� �� � k� 1� �Q.

2. AAT � kID
�� �� � kDÿQ k� 1� �Q.

3. �AAT � kID�ÿ1 � 1
k ID ÿ 1

k�k�1�AAT .

Proof.

1. Observe that, since ATA � IQ,

ATA�kIQ
�� �� � k� 1� �IQ

�� �� � k� 1� �Q:

2. By taking the determinants on both sides of the
following equality [51],

AAT � kID ÿA

0 kIQ

" #
ID 0

AT IQ

� �
� ID 0

AT IQ

� �
kID ÿA

0 ATA� kIQ

� �
;

we obtain the desired result

kQ AAT � kID
�� �� � kD ATA� kIQ

�� ��
AAT � kID
�� �� � kDÿQ k� 1� �Q:

3. The proof follows directly from premultiplying
both sides of the expression by �AAT � kID�. tu

We now proceed to prove Proposition 2.

Proof. Applying the second result of Lemma 3 to the

determinant of (22), we obtain

� x� �j j � BID � S ÿB� �E== x� �ET
== x� �

��� ���
� S ÿB� �D B

S ÿB ID �E== x� �ET
== x� �

���� ����
� S ÿB� �D B

S ÿB
� �DÿQ B

S ÿB� 1

� �Q
� SQBDÿQ:

Note that the determinant remains constant for all

x 2 fxmgMm�1. Similarly, applying the third result of

Lemma 3, the inverse is

�ÿ1 x� � � BID � S ÿB� �E== x� �ET
== x� �

� �ÿ1

� 1

S ÿB
B

S ÿB ID �E== x� �ET
== x� �

� �ÿ1

� 1

S ÿB
S ÿB
B

ID ÿ S ÿB� �2
BS

E== x� �ET
== x� �

" #

� 1

B
ID ÿ S ÿB� �

BS
E== x� �ET

== x� �:
tu

APPENDIX C

DERIVATION OF THE GENERALIZED EM
(GEM) ALGORITHM

For improved readability, the dependence on the discrete

latent variable xm is henceforth replaced by its subscript m,

e.g., �m refers to � xm� �. First, express the tangential

manifold matrix in terms of W,
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E==m �W
@�� xm� �
@x1

� � � @�� xm� �
@xQ

h i
�W�m; �27�

according to (21). Note that a key assumption used in the

ensuing derivations is that W�m is orthonormal, which is

not true in general, as mentioned in the beginning of

Section 4.3. In practice, E==m is orthonormalized at each

iteration. Next, the inverse PPS covariance (24) is written in

terms of W using (27),

�ÿ1
m �

ID
B
ÿ S ÿB

BS
E==mET

==m

� ID
B
ÿ S ÿB

BS
W�m�T

mWT

� ID
B
ÿ S ÿB

BS
W	mWT ;

where we have defined

	m � �m�T
m:

Consider the conditional probability term in (19) and
discarding constant terms,

ln p~Y j~X�ynjxm�

� ÿ 1

2
ln
���m

��ÿ 1

2
yn ÿ f xm; W� �� �T�ÿ1

m yn ÿ f�xm; W�� �

� ÿ 1

2
ln�SQBDÿQ� ÿ yn ÿW�mk k2

2B
� S ÿB

2BS

yn ÿW�m� �TW	mWT �yn ÿW�m�:
�28�

We note that for � � 1 (S � B � 1=�), the last term in (28)

vanishes and the GTM expression is recovered.

C.1 Update Equation for W

Concentrating on just the last term in (28) and for the

moment disregarding the constant coefficients and sub-

scripts m, n, we have

�yÿW���TW	WT �yÿW���

� tr

�
WTyÿWTW��
ÿ �T

	 WTyÿWTW��
ÿ ��

� tr CCT	
� �

;

�29�

where we have defined C �WTyÿWTW��. The deriva-

tive of (29) with respect W is

d tr CCT	
� �
dW

� 2 yÿW��� �CT	ÿW	C��T
� �

� 2 yÿW��� � yÿW��� �TW	ÿ 2W	WT yÿW��� ���T :
�30�

Therefore, the derivative of the penalized log-likelihood can

be expressed as

d Lch i
dW

�
XN
n�1

XM
m�1

rmn
d ln p~Y j~X ynjxm� �

dW
� �W

 !
;

where

d ln p~Y j~X ynjxm� �
dW

� 1

B
ID ÿ S ÿB

BS
W	mWT

� �
yn ÿW��m� ���Tm �

S ÿB
BS

yn ÿW��m� � yn ÿW��m� �TW		m

h i
:

�31�
It can be seen from (31) that the derivative of the log-

likelihood is nonlinear in W and, therefore, an analytic

solution for W does not exist in the M-step. At this point,

there are two possible approaches to finding Wnew. The first

approach [46], [47] simply uses an approximation by

solving the original GTM-likelihood equations (which

assumes � �1=�), i.e., solving for WT
new in the penalized

log-likelihood equation

�Gold �T � �IL
ÿ �

WT
new � �RoldYT ;

where

� � ��1 � � � ��M� �L�M
Gold � diag

PN
n�1 r

old
1n � � � PN

n�1 r
old
Mn

� �ÿ �
Y � y1 � � � yN� �D�N;

with Rold � rold
mn

� 	
as given in (20). In the second approach,

we can iteratively update W using steepest ascent (with

learning rate �)

Wk�1 �Wk � � d Lch i
dW

until a local maxima is found. The second solution, though

more computationally intensive, may be desirable as it fits

into the generalized EM framework, which guarantees

convergence [26].

C.2 Update Equation for �

First, we express ln p~Y j~X ynjxm� � in (28) in terms of its

original parameters � and �. After discarding constant

terms, we have

ln p~Y j~X ynjxm� � �

ÿ 1

2
ln

1

�

� �D
�Q

Dÿ �Q
DÿQ

� �DÿQ" #

ÿ � DÿQ� �
2 Dÿ �Q� � yn ÿW��mk k2

� � �ÿ 1� �D
2� Dÿ �Q� � yn ÿW��m� �TW	mWT yn ÿW��m� �:

�32�

Next, taking the derivative of (32) with respect to � yields

d ln p~Y j~X�ynjxm�
d�

� D

2�
ÿ DÿQ

2�Dÿ �Q� k yn ÿW��m k2

� ��ÿ 1�D
2��Dÿ �Q� yn ÿW��m� �TW	mWT �yn ÿW��m�;

which can be substituted into the derivative of the log-

likelihood to give
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d Lch i
d�

�
XN
n�1

XM
m�1

rmn
d ln p~Y j~X ynjxm� �

d�

�
XN
n�1

XM
m�1

rmn

�
D

2�
ÿ DÿQ

2 Dÿ �Q� � yn ÿW��mk k2

� �ÿ 1� �D
2� Dÿ �Q� � �yn ÿW��m�TW	mWT �yn ÿW��m�

�
:

Finally, solving for the stationary point of the above

expression results in

1

�new

� 1

ND

XN
n�1

XM
m�1

rold
mn

�
DÿQ
Dÿ �Q� � yn ÿWnew�mk k2ÿ �ÿ 1� �D

� Dÿ �Q� �

yn ÿWnew��m� �TWnew	mWT
new yn ÿWnew��m� �

�
:

�34�
Note that setting � � 1 in (33) recovers the corresponding

GTM update equation for �.

C.3 Update Equation for �

The derivative of (32) with respect to � yields

d ln p~Y j~X ynjxm� �
d�

�

ÿ QD 1ÿ �� �
2� Dÿ �Q� � �

�Q DÿQ� �
2 Dÿ �Q� �2 yn ÿW��mk k2

� �D Dÿ 2�Q� �2Q� �
2�2 Dÿ �Q� �2 yn ÿW��m� �TW	mWT yn ÿW��m� �:

�34�
Substituting (34) into the derivative of the log-likelihood

function and solving for its stationary point, we obtain a

cubic equation in �

NQD� 1ÿ �� � Dÿ �Q� � �
�2�newQ DÿQ� �V1 � �newD Dÿ 2�Q� �2Q

ÿ �
V2;

where

V1 �
XN
n�1

XM
m�1

rold
mn yn ÿWnew��mk k2;

V2 �
XN
n�1

XM
m�1

rold
mn yn ÿWnew��m� �T

Wnew	T
mWnew yn ÿWnew��m� �;

from which a valid �new can be solved for.

APPENDIX D

SOFTWARE AVAILABILITY

The latest GNU Public Licensed (GPL) version of the PPS

toolbox (MATLAB) is available for download at http://

lans.ece.utexas.edu/~kuiyu.
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