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Abstract

Correlation between instances is often modelled via a kernel function using in-
put attributes of the instances. Relational knowledge can further reveal additional
pairwise correlations between variables of interest. In this paper, we develop a
class of models which incorporates both reciprocal relational information and in-
put attributes using Gaussian process techniques. This approach provides a novel
non-parametric Bayesian framework with a data-dependent covariance function
for supervised learning tasks. We also apply this framework to semi-supervised
learning. Experimental results on several real world data sets verify the usefulness
of this algorithm.

1 Introduction

Several recent developments such as the growth of the world wide web and the maturation of ge-
nomic technologies, have brought new domains of application to machine learning research. Many
such domains involverelational data in which instances have “links” or inter-relationships be-
tween them that are highly informative for learning tasks, e.g. (Taskar et al., 2002). For exam-
ple, hyper-linked web-documents are often about similar topics, even if their textual contents are
disparate when viewed as bags of words. In document categorization, the citations are important
as well since two documents referring to the same reference are likely to have similar content. In
computational biology, knowledge about physical interactions between proteins can supplement ge-
nomic data for developing good similarity measures for protein network inference. In such cases,
a learning algorithm can greatly benefit by taking into account the global network organization of
such inter-relationships rather than relying on input attributes alone.

One simple but general type of relational information can be effectively represented in the form
of a graphG = (V, E). The vertex setV represents a collection of input instances (which may
contain the labelled inputs as a subset, but is typically a much larger set of instances). The edge set
E ⊂ V ×V represents the pairwise relations over these input instances. In this paper, we restrict our
attention to undirected edges, i.e., reciprocal relations, though directionality may be an important
aspect of some relational datasets. These undirected edges provide usefulstructural knowledge
about correlation between the vertex instances. In particular, we allow edges to be of two types
– “positive” or “negative” depending on whether the associated adjacent vertices are positively or
negatively correlated, respectively. On many problems, only positive edges may be available.

This setting is also applicable to semi-supervised tasks even on traditional “flat” datasets where the
linkage structure may be derived from data input attributes. In graph-based semi-supervised meth-
ods,G is typically an adjacency graph constructed by linking each instance (including labelled and
unlabelled) to its neighbors according to some distance metric in the input space. The graphG then
serves as an estimate of the global geometric structure of the data. Many algorithmic frameworks
for semi-supervised (Sindhwani et al., 2005) and transductive learning, see e.g. (Zhou et al., 2004;
Zhu et al., 2003), have been derived under the assumption that data points nearby on this graph are
positively correlated.



Several methods have been proposed recently to incorporate relational information within learning
algorithms, e.g. for clustering (Basu et al., 2004; Wagstaff et al., 2001), metric learning (Bar-Hillel
et al., 2003), and graphical modeling (Getoor et al., 2002). The reciprocal relations over input in-
stances essentially reflect the network structure or the distribution underlying the data, which enrich
our prior belief of how instances in the entire input space are correlated. In this paper, we inte-
grate relational information with input attributes in a non-parametric Bayesian framework based on
Gaussian processes (GP) (Rasmussen & Williams, 2006), which leads to a data-dependent covari-
ance/kernel function. We highlight the following aspects of our approach:1) We propose a novel
likelihood function for undirected linkages and carry out approximate inference using efficient Ex-
pectation Propagation techniques under a Gaussian process prior. The covariance function of the
approximate posterior distribution defines a relational Gaussian process, hereafter abbreviated as
RGP. RGP provides a novel Bayesian framework with a data-dependent covariance function for su-
pervised learning tasks. We also derive explicit formulae for linkage prediction over pairs of test
points.2) When applied to semi-supervised learning tasks involving labelled and unlabelled data,
RGP is closely related to the warped reproducing kernel Hilbert Space approach of (Sindhwani
et al., 2005) using a novel graph regularizer. Unlike many recently proposed graph-based Bayesian
approaches, e.g. (Zhu et al., 2003; Krishnapuram et al., 2004; Kapoor et al., 2005), which are mainly
transductive by design, RGP delineates a decision boundary in the input space and provides proba-
bilistic induction over unseen test points. Furthermore, by maximizing the joint evidence of known
labels and linkages, we explicitly involve unlabelled data in the model selection procedure. Such a
semi-supervised hyper-parameter tuning method can be very useful when there are very few, possi-
bly noisy labels.3) On a variety of classification tasks, RGP requires very few labels for providing
high-quality generalization on unseen test examples as compared to standard GP classification that
ignores relational information. We also report experimental results on semi-supervised learning
tasks comparing with competitive deterministic methods.

The paper is organized as follows. In section 2 we develop relational Gaussian processes. Semi-
supervised learning under this framework is discussed in section 3. Experimental results are pre-
sented in section 4. We conclude this paper in section 5.

2 Relational Gaussian Processes

In the standard setting of learning from data, instances are usually described by a collection of input
attributes, denoted as a column vectorx ∈ X ⊂ Rd. The key idea in Gaussian process models is
to introduce a random variablefx for all points in the input spaceX . The values of these random
variables{fx}x∈X are treated as outputs of a zero-mean Gaussian process. The covariance between
fx andfz is fully determined by the coordinates of the data pairx andz, and is defined by any
Mercer kernel functionK(x, z). Thus, the prior distribution overf = [fx1 . . . fxn ] associated with
any collection ofn pointsx1 . . .xn is a multivariate Gaussian, written as

P(f) =
1

(2π)n/2 det(Σ)1/2
exp

(
−1

2
fT Σ−1f

)
(1)

whereΣ is then × n covariance matrix whoseij-th element isK(xi,xj). In the following, we
consider the scenario with undirected linkages over a set of instances.

2.1 Undirected Linkages

Let the vertex setV in the relational graph be associated withn input instancesx1 . . .xn. Consider a
set of observed pairwise undirected linkages on these instances, denoted asE = {Eij}. Each linkage
is treated as a Bernoulli random variable, i.e.Eij ∈ {+1,−1}. HereEij = +1 indicates that the
instancesxi andxj are “positively tied” andEij = −1 indicates the instances are “negatively tied”.

We propose a new likelihood function to capture these undirected linkages, which is defined as
follows:

Pideal
(Eij |fxi , fxj

)
=

{
1 if fxifxjEij > 0
0 otherwise (2)

This formulation is for ideal, noise-free cases; it enforces that the variable values corresponding
to positive and negative edges have the same and opposite signs respectively. In the presence of



uncertainty in observingEij , we assume the variable valuesfxi and fxj are contaminated with
Gaussian noise that allows some tolerance for noisy observations. The Gaussian noise is of zero
mean and unknown varianceσ2.1 LetN (δ; µ, σ2) denote a Gaussian random variableδ with mean
µ and varianceσ2. Then the likelihood function (2) becomes

P (Eij = +1|fxi
, fxj

)
=

∫ ∫ Pideal
(Eij = +1|fxi

+ δi, fxj
+ δj

)N (δi; 0, σ2)N (δj ; 0, σ2) dδi dδj

= Φ
(

fxi

σ

)
Φ

(
fxj

σ

)
+

(
1− Φ

(
fxi

σ

))(
1− Φ

(
fxj

σ

))

(3)
whereΦ(z) =

∫ z

−∞N (γ; 0, 1) dγ. The integral in (3) evaluates the volume of a joint Gaussian in the
first and third quadrants wherefxi andfxj have the same sign. Note thatP (Eij = −1|fxi , fxj

)
=

1− P (Eij = +1|fxi , fxj

)
andP (Eij = +1|fxi , fxj

)
= P (Eij = +1| − fxi ,−fxj

)
.

Remarks: One may consider other ways to define a likelihood function for the observed edges.
For example, we could definePl(Eij = +1|fxi , fxj ) = 1

1+exp(−νfxi
fxj

) whereν > 0. However

the computation of the predictive probability (9) and its derivatives becomes complicated with this
form. Instead of treating edges as Bernoulli variables, we could consider a graph itself as a random
variable and then the probability of observing the graphG can be simply evaluated as:P(G|f) =
1
Z exp

(
− 1

2fT Ψf
)

whereΨ is a graph-regularization matrix (e.g. graph Laplacian) andZ is a

normalization factor that depends on the variable valuesf . Given that there are numerous graph
structures over the instances, the normalization factorZ is intractable in general cases. In the rest of
this paper, we will use the likelihood function developed in (3).

2.2 Approximate Inference

Combining the Gaussian process prior (1) with the likelihood function (3), we obtain the posterior
distribution as follows,

P(f |E) =
1

P(E)
P(f)

∏

ij

P (Eij |fxi , fxj

)
(4)

wheref = [fx1 , . . . , fxn ]T andij runs over the set of observed undirected linkages. The normal-
ization factorP(E) =

∫ P(E|f)P(f)df is known as the evidence of the model parameters that
serves as a yardstick for model selection.

The posterior distribution is non-Gaussian and multi-modal with a saddle point at the origin. Clearly
the posterior mean is at the origin as well. It is important to note that reciprocal relations update
the correlation between examples but never change individual mean. To preserve computational
tractability and the true posterior mean, we would rather approximate the posterior distribution as
a joint Gaussian centered at the true mean than resort to sampling methods. A family of inference
techniques can be applied for the Gaussian approximation. Some popular methods include Laplace
approximation, mean-field methods, variational methods and expectation propagation. It is inappro-
priate to apply the Laplace approximation to this case since the posterior distribution is not unimodal
and it is a saddle point at the true posterior mean. The standard mean-field methods are also hard to
use due to the pairwise relations in observation. Both the variational methods and the expectation
propagation (EP) algorithm (Minka, 2001) can be applied here. In this paper, we employ the EP
algorithm to approximate the posterior distribution asa zero-mean Gaussian. Importantly this still
captures the posterior covariance structure allowing prediction of link presence.

The key idea of our EP algorithm here is to approximateP(f)
∏

ij P
(Eij |fxi , fxj

)
as a parametric

product distribution2 in the form of

Q(f) = P(f)
∏

ij t̃(f ij) = P(f)
∏

ij sij exp
(
− 1

2fT
ijΠijf ij

)

whereij runs over the edge set,f ij = [fxi , fxj ]
T , andΠij is a symmetric2 × 2 matrix. The

parameters{sij ,Πij} in {t̃(f ij)} are successively optimized by locally minimizing the Kullback-
Leibler divergence,

1We could specify different noise levels for weighted edges. In this paper, we focus on unweighted edges
only.

2The likelihood function we defined could also be approximated by a Gaussian mixture of two symmetric
components, but the difficulty lies in the number of components growing exponentially after multiplication.



t̃(f ij)new = arg min
t̃(f ij)

KL

(
Q(f)

t̃(f ij)old
P(Eij |f ij)

∥∥∥∥∥
Q(f)

t̃(f ij)old
t̃(f ij)

)
. (5)

SinceQ(f) is in the exponential family, this minimization can be simply solved by moment match-
ing up to the second order. At the equilibrium the EP algorithm returns a Gaussian approximation
to the posterior distribution

P(f |E) ≈ N (0,A) (6)

whereA = (Σ−1 + Π)−1, Π =
∑

ij Π̌ij andΠ̌ij is ann × n matrix with four non-zero entries
augmented fromΠij . Note that the matrixΠ could be very sparse. The normalization factor in this
Gaussian approximation serves as approximate model evidence that can be explicitly written as

P(E) ≈ |A| 12
|Σ| 12

∏

ij

sij (7)

The detailed updating formulations have to be omitted here to save space. The approximate evidence
(7) holds an upper bound on the true value ofP(E) (Wainwright et al., 2005). Its partial derivatives
with respect to the model parameters can be analytically derived (Seeger, 2003) and then a gradient-
based procedure can be employed for hyperparameter tuning. Although the EP algorithm is known to
work quite well in practice, there is no guarantee of convergence to the equilibrium in general. Opper
and Winther (2005) proposed expectation consistent (EC) as a new framework for approximations
that requires two tractable distributions matching on a set of moments. We plan to investigate the
EC algorithm as future work.

2.3 Data-dependent Covariance Function

After approximate inference as outlined above, the posterior process conditioned onE is explicitly
given by a modified covariance function defined in the following proposition.

Proposition: Given (6), for any finite collection of data pointsX , the latent random variables
{fx}x∈X conditioned onE have a multivariate normal distributionN (0, Σ̃) whereΣ̃ is the co-
variance matrix whose elements are given by evaluating the kernel functionK̃(x, z) : X × X 7→ R
for x, z ∈ X given by:

K̃(x, z) = K(x, z)− kT
x (I + ΠΣ)−1Πkz (8)

whereI is ann × n identity matrix,kx is the column vector[K(x1,x), . . . ,K(xn,x)]T , Σ is an
n × n covariance matrix of the vertex setV obtained by evaluating the base kernelK, andΠ is
defined as in (6).

A proof of this proposition involves some simple matrix algebra and is omitted for brevity. RGP
is obtained by a Bayesian update of a standard GP using relational knowledge, which is closely
related to the warped reproducing kernel Hilbert space approach (Sindhwani et al., 2005) using a
novel graph regularizerΠ in place of the standard graph Laplacian. Alternatively, we could simply
employ the standard graph Laplacian as an approximation of the matrixΠ. This efficient approach
has been studied by (Sindhwani et al., 2007) for semi-supervised classification problems.

2.4 Linkage Prediction

Given a RGP, the joint distribution of the random variablesfrs = [fxr , fxs ]
T , associated with a test

pairxr andxs, is a Gaussian as well. The linkage predictive distributionP(frs|E) can be explicitly
written as a zero-mean bivariate GaussianN (frs; 0, Σ̃rs) with covariance matrix

Σ̃rs =
[ K̃(xr,xr) K̃(xr,xs)
K̃(xs,xr) K̃(xs,xs)

]

whereK̃ is defined as in (8). The predictive probability of having a positive edge can be evaluated
as

P(Ers|E) =
∫
Pideal(Ers|frs)N (frs; 0, Σ̃rs)dfxrdfxs

which can be simplified as

P(Ers|E) =
1
2

+
arcsin(ρErs)

π
(9)



whereρ = K̃(xr,xs)√
K̃(xs,xs)K̃(xr,xr)

. It essentially evaluates the updated correlation betweenfxr andfxs

after we learn from the observed linkages.

3 Semi-supervised Learning

We now apply the RGP framework for semi-supervised learning where a large collection of unla-
belled examples are available and labelled data is scarce. Unlabelled examples often identify data
clusters or low-dimensional data manifolds. It is commonly assumed that the labels of points within
a cluster or nearby on a manifold are highly correlated (Chapelle et al., 2003; Zhu et al., 2003). To
apply RGP, we construct positive reciprocal relations between examples withinK nearest neighbor-
hood.K could be heuristically set at the minimal integer of nearest neighborhood that could setup a
connected graph over labelled and unlabelled examples, where there is a path between each pair of
nodes. Learning on these constructed relational data results in a RGP as described in the previous
section (see section 4.1 for an illustration). With the RGP as our new prior, supervised learning can
be carried out in a straightforward way. In the following we focus on binary classification, but this
procedure is also applicable to regression, multi-class classification and ranking.

Given a set of labelled pairs{z`, y`}m
`=1 wherey` ∈ {+1,−1}, the Gaussian process classifier

(Rasmussen & Williams, 2006) relates the variablefz`
at z` to the labely` through a probit noise

model, i.e.P(y`|fz`
) = Φ(y`fz`

σn
) whereΦ is the cumulative normal andσ2

n specifies the label noise
level. Combining the probit likelihood with the RGP prior defined by the covariance function (8),
we have the posterior distribution as follows,

P(f `|Y, E) =
1

P(Y|E)
P(f `|E)

∏

`

P(y`|fz`
)

wheref ` = [fz1 , . . . , fzm ]T ,P(f `|E) is a zero-mean Gaussian with anm×m covariance matrix̃Σ`

whose entries are defined by (8), andP(Y|E) is the normalization factor. The posterior distribution
can be approximated as a Gaussian as well, denoted asN (µ, C), and the quantityP(Y|E) can be
evaluated accordingly (Seeger, 2003). The predictive distribution of the variablefzt at a test case
zt then becomes a Gaussian, i.e.P(fzt |Y, E) ≈ N (µt, σ

2
t ), whereµt = ktΣ̃−1

` µ and σ2
t =

K̃(zt, zt) − kT
t (Σ̃−1

` − Σ̃−1
` C Σ̃−1

` )kt with kt = [K̃(z1, zt), . . . , K̃(zm, zt)]T . One can compute
the Bernoulli distribution over the test labelyt by

P(yt|Y, E) = Φ

(
µt√

σ2
n + σ2

t

)
. (10)

To summarize, we first incorporate linkage information into a standard GP that leads to a RGP, and
then perform standard inference with the RGP as the prior in supervised learning. Although we
describe RGP in two separate steps, these procedures can be seamlessly merged within the Bayesian
framework. As for model selection, it is advantageous to directly use the joint evidence

P(Y, E) = P(Y|E)P(E), (11)
to determine the model parameters (such as the kernel parameter, the edge noise level and the label
noise level). Note thatP(Y, E) explicitly involves unlabelled data for model selection. This can be
particularly useful when labelled data is very scarce and possibly noisy.

4 Numerical Experiments

We start with a synthetic case to illustrate the proposed algorithm (RGP), and then verify the
usefulness of this approach on three real world data sets. Throughout the experiments, we con-
sistently compare with the standard Gaussian process classifier (GPC). RGP and GPC are dif-
ferent in the prior only. We employ the linear kernelK(x, z) = x · z or the Gaussian kernel
K(x, z) = exp

(−κ
2 ‖x− z‖22

)
, and shift the origin of the kernel space to the empirical mean, i.e.

K(x, z)− 1
n

∑
iK(x,xi)− 1

n

∑
iK(z,xi)+ 1

n2

∑
i

∑
j K(xi,xj) wheren is the number of available

labelled and unlabelled data. The centralized kernel is then used as base kernel in our experiments.
The label noise levelσ2

n in the GPC and RGP models is fixed at10−4. The edge noise levelσ2

of the RGP models is usually varied from 5 to 0.05. The optimal setting of theσ2 and theκ in the
Gaussian kernel is determined by the joint evidence (11) in each trial. When constructing undirected
K nearest- neighbor graphs,K is fixed at the minimal integer required to have a connected graph.
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Figure 1: Results on the synthetic dataset. The 30 samples drawn from the Gaussian mixture are
presented as dots in (a) and the two labelled samples are indicated by a diamond and a circle respec-
tively. The bestκ value is marked by the cross in (b). The curves in (a) present the semi-supervised
predictive distributions. The prior covariance matrix of RGP learnt from the data is presented in (c).

Table 1: The four universities are Cornell University, the University of Texas at Austin, the Univer-
sity of Washington and the University of Wisconsin. The numbers of categorized Web pages and
undirected linkages in the four university dataset are listed in the second column. The averaged
AUC scores of label prediction on unlabelled cases are recorded along with standard deviation over
100 trials.
Task Web&Link Number Student or Not Other or Not
Univ. Stud Other All Link GPC LapSVM RGP GPC LapSVM RGP
Corn. 128 617 865 131770.825±0.0160.987±0.0080.989±0.0090.708±0.0210.865±0.0380.884±0.025
Texa. 148 571 827 160900.899±0.0160.994±0.0070.999±0.0010.799±0.0210.932±0.0260.906±0.026
Wash.126 939 1205 153880.839±0.0180.957±0.0140.961±0.0090.782±0.0230.828±0.0250.877±0.024
Wisc. 156 942 1263 215940.883±0.0130.976±0.0290.992±0.0080.839±0.0140.812±0.0300.899±0.015

4.1 Demonstration Suppose samples are distributed as a Gaussian mixture with two components
in one-dimensional space, e.g.0.4 · N (−2.5, 1) + 0.6 · N (2.0, 1). We randomly collected 30
samples from this distribution, shown as dots on thex axis of Figure 1(a). WithK = 3, there
are 56 “positive” edges over these30 samples. We fixedσ2 = 1 for all the edges, and varied the
parameterκ from 0.01 to 10. At each setting, we carried out the Gaussian approximation by EP as
described in section 2.2. Based on the approximate model evidenceP(E) (7), presented in Figure
1(b), we located the bestκ = 0.4. Figure 1(c) presents the posterior covariance functionK̃ (8)
at this optimal setting. Compared to the data-independent prior covariance function defined by the
Gaussian kernel, the posterior covariance function captures the density information of the unlabelled
samples. The pairs within the same cluster become positively correlated, whereas the pairs between
the two clusters turn out to be negatively correlated. This is learnt without any explicit assumption
on density distributions. Given two labelled samples, one per class, indicated by the diamond and
the circle in Figure 1(a), we carried out supervised learning on the basis of the new priorK̃, as
described in section 3. The joint model evidenceP(Y|E)P(E) is plotted out in Figure 1(b). The
corresponding predictive distribution (10) with the optimalκ = 0.4 is presented in Figure 1(a). Note
that the decision boundary of the standard GPC should be aroundx = 1. We observed our decision
boundary significantly shifts to the low-density region that respects the geometry of the data.

4.2 The Four University Dataset We considered a subset of the WebKB dataset for categoriza-
tion tasks.3 The subset, collected from the Web sites of computer science departments of four
universities, contains 4160 pages and 9998 hyperlinks interconnecting them. These pages have been
manually classified into seven categories: student, course, faculty, staff, department, project and
other. The text content of each Web page was preprocessed as bag-of-words, a vector of “term fre-
quency” components scaled by “inverse document frequency”, which was used as input attributes.
The length of each document vector was normalized to unity. The hyperlinks were translated into
66249 undirected “positive” linkages over the pages under the assumption that two pages are likely
to be positively correlated if they are hyper-linked by the same hub page. Note there are no “neg-
ative” linkages in this case. We considered two classification tasks, student vs. non-student and
other vs. non-other, for each of the four universities. The numbers of samples and linkages of the
four universities are listed in Table 1. We randomly selected10% samples as labelled data and used
the remaining samples as unlabelled data. The selection was repeated 100 times. The linear kernel

3The dataset comes from the Web→KB project, see http://www-2.cs.cmu.edu/∼webkb/.
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Figure 2: Test AUC results of the two semi-supervised learning tasks, PCMAC in (a) and USPS
in (b). The grouped boxes from left to right represent the results of GPC, LapSVM, and RGP
respectively at different percentages of labelled samples over 100 trials. The notched-boxes have
lines at the lower quartile, median, and upper quartile values. The whiskers are lines extending from
each end of the box to the most extreme data value within 1.5 interquartile range. Outliers are data
with values beyond the ends of the whiskers, which are displayed as dots.

was used as base kernel in these experiments. We conducted this experiment in a transductive setting
where the entire linkage data was used to learn the RGP model and comparisons were made with
GPC for predicting labels of unlabelled samples. We make comparisons with a discriminant kernel
approach to semi-supervised learning – the Laplacian SVM (Sindhwani et al., 2005) using the lin-
ear kernel and a graph Laplacian based regularizer. We recorded the average AUC for predicting
labels of unlabelled cases in Table 1.4 Our RGP models significantly outperform the GPC models
by incorporating the linkage information in modelling. RGP is very competitive with LapSVM on
“Student or Not” while yields better results on 3 out of 4 tasks of “Other or Not”. As future work, it
would be interesting to utilize weighted linkages and to compare with other graph kernels.

4.3 Semi-supervised Learning We chose a binary classification problem in the 20 newsgroup
dataset, 985 PC documents vs. 961 MAC documents. The documents were preprocessed, same
as we did in the previous section, into vectors with 7510 elements. We randomly selected 1460
documents as training data, and tested on the remaining 486 documents. We varied the percentage
of labelled data from0.1% to 10% gradually, and at each percentage repeated the random selection
of labelled data 100 times. We used the linear kernel in the RGP and GPC models. WithK = 4,
we got 4685 edges over the 1460 training samples. The test results on the 486 documents are
presented in Figure 2(a) as a boxplot. Model parameters for LapSVM were tuned using cross-
validation with 50 labelled samples, since it is difficult for discriminant kernel approaches to carry
out cross validation when the labelled samples are scarce. Our algorithm yields much better results
than GPC and LapSVM, especially when the fraction of labelled data is less than5%. When the
labelled samples are few (a typical case in semi-supervised learning), cross validation becomes hard
to use while our approach provides a Bayesian model selection by the model evidence.

U.S. Postal Service dataset (USPS) of handwritten digits consists of16× 16 gray scale images. We
focused on constructing a classifier to distinguish digit 3 from digit 5. We used the training/test split,
generated and used by (Lawrence & Jordan, 2005), in our experiment for comparison purpose. This
partition contains 1214 training samples (556 samples of digit 3 and 658 samples of digit 5) and 326
test samples. WithK = 3, we obtained 2769 edges over the 1214 training samples. We randomly
picked up a subset of the training samples as labelled data and treated the remaining samples as
unlabelled. We varied the percentage of labelled data from0.1% to 10% gradually, and at each
percentage repeated the selection of labelled data 100 times. In this experiment, we employed the
Gaussian kernel, varied the edge noise levelσ2 from 5 to 0.5, and tried the following values forκ,
[0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1]. The optimal values ofκ andσ2 were
decided by the joint evidenceP(Y, E) (11). We report the error rate and AUC on the 326 test data
in Figure 2(b) as a boxplot, along with the test results of GPC and LapSVM. When the percentage
of labelled data is less than5%, our algorithm achieved greatly better performance than GPC, and
very competitive results compared with LapSVM (tuned with 50 labelled samples) though RGP used

4AUC stands for the area under the Receiver-Operator Characteristic (ROC) curve.



fewer labelled samples in model selection. Comparing with the performance of transductive SVM
(TSVM) and the null category noise model for binary classification (NCNM) reported in (Lawrence
& Jordan, 2005), we are encouraged to see that our approach outperforms TSVM and NCNM on
this experiment.

5 Conclusion

We developed a Bayesian framework to learn from relational data based on Gaussian processes.
The resulting relational Gaussian processes provide a unified data-dependent covariance function
for many learning tasks. We applied this framework to semi-supervised learning and validated this
approach on several real world data. While this paper has focused on modelling symmetric (undi-
rected) relations, this relational Gaussian process framework can be generalized for asymmetric
(directed) relations as well as multiple classes of relations. Recently, Yu et al. (2006) have repre-
sented each relational pair by a tensor product of the attributes of the associated nodes, and have
further proposed efficient algorithms. This is a promising direction.
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