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Present Position and Potential Developments: Some Personal Views

Statistical Theory
The Prequential Approach

By A. P. DAWID
[The Chairman of the Institute of Statisticians, Dr W. G. Gilchrist, in the Chair]

SUMMARY
The prequential approach is founded on the premiss that the purpose of statistical
inference is to make sequential probability forecasts for future observations, rather
than to express information about parameters. Many traditional parametric concepts,
such as consistency and efficiency, prove to have natural counterparts in this
formulation, which sheds new light on these and suggests fruitful extensions.
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1. INTRODUCTION

An anniversary is naturally a time to look back over the path we followed to arrive where we are,
in the hope that the past may shed light on the present. But it is also a time to look ahead, and
our Conference Organizers have wisely chosen to emphasize the theme “Present Position and
Potential Developments”. I shall therefore reverse the usual direction of historical view, and take
the opportunity to outline my personal vision of an approach to Statistical Theory which will,
I hope, provide a fertile soil in which many ideas that are now current can develop further, and
new ideas can germinate. Such a forward view can, I believe, shed as much light on the present and
past as a more conventional historical review. Those who still wish to look back over their
shoulders are referred to. Dawid (1983a), which attempts to highlight the important ideas and
philosophies which have driven Statistical Theory up to 1984. In this paper, however, I shall
proceed on the basis that it is more interesting to look ahead rather than back.

This last assertion in fact forms the theme of my proposed framework for Statistics, variations
on which will be taken up in the rest of this paper.

One of the major purposes of statistical analysis is to make forecasts for the future. It seems to
me that we can shed much light on our subject by formalizing what is involved in making such
forecasts, and by assessing our methods on their empirical success at this task. Another major
purpose of statistical analysis is to offer suitable measures of the uncertainty associated with
unknown events or quantities. I am persuaded by the arguments of de Finetti (1975) that the
only concept needed to express uncertainty is Probability, and that this is most meaningful
associated with genuine observables. Consequently, the “forecasts” I shall be considering will be
probability distributions over future events.

The third main characteristic of the approach to be considered is the sequential nature of the
forecasting task. At any time, we can make a forecast for tomorrow. Come tomorrow, we can
observe the outcomes of the events which were the subject of today’s forecasts and, with this
additional experience to draw on, formulate our new forecasts for the following day. And so on,
day after day, drawing on accumulating experience. I call this prequential forecasting. The name,
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like the subject, combines probability forecasting with sequential prediction.

In this paper I want to show how prequential spectacles can be used to bring into focus a broad
range of problems and concepts of Theoretical Statistics. Given any statistical model, we can con-
vert it into a prequential forecasting system, in various possible ways—for example, by replacing
the unknown parameter in the predictive distribution of the next observation by an estimate based
on the data collected so far. We can then compare different ways of doing this, or different
models, in terms of their prequential performance.

From this standpoint, we shall re-examine some of the traditional concepts of parametric infer-
ence, such as likelihood, consistency and efficiency. These all have natural prequential paraphrases,
which turn out to be applicable in much greater generality than their classical counterparts. We
also discuss the prequential assessment of the goodness of fit of a model to data. I shall try to
persuade you that the prequential approach has great scope, both for deepening our understanding
of a broad range of current concerns of Statistical Theory, and for suggesting entirely new areas
worthy of further study.

2. PROBABILITY FORECASTING

US meteorologists have for a long time issued regular forecasts of the “probability of
precipitation” in their own regions for the following (say) 12 hours. This has stimulated a fascinat-
ing literature in the meteorological journals on the theory and practice of Probability Forecasting:
the field is reviewed by Dawid (1983b). An essential concern of this literature is the provision of
methods for the empirical assessment and comparison of sequences of probability forecasts in the
light of the outcomes of the forecast events.

These meteorological considerations, somewhat remote from current mainstream statistical
theory, will provide the basis of the prequential approach to statistics. We shall suppose that
data arrive in sequence, and view the statistician’s task, at any time, as the appropriate
manipulation of the data currently available so as to produce a specific probability distribution for
the next observation. His success at this task will be judged by methods borrowed from Probability
Forecasting. :

This formalism may appear to be an uncomfortable straightjacket into which to squeeze
statistical theory. The data may arrive en bloc, rather than in a natural order; if they come from a
time-series, it may be impossible, or not obviously desirable, to analyse them at every point of
time, or to formulate one-step ahead forecasts; and the restriction whereby all uncertainty about
the next observation is to be encoded in a probability distribution, while acceptable to Bayesians,
may not appeal to others. All these are valid prima facie objections; but I would respond by
suggesting that, if you will tentatively join me in following through the implications of the pre-
quential approach, you may find that it offers new insights enough to offset such disquiet.

3. PREQUENTIAL FORECASTING SYSTEMS

So now let X =(X,, X,,...) be a sequence of uncertain quantities. At any time »n, the pre-
quential forecaster, with the values x(® of X®.=(X,,X,,..., X,) to hand, must issue a
probability forecast distribution P, +; for the next observation X, +1.

A practising forecaster, such as a meteorologist, need only issue his or her forecast P, +; in
the light of the actual values, xf,”) say, of X(®) that have materialized, and need only do so on
day n. We restrict attention here, however, to prequential forecasting systems (PFS’s). Such a
system is defined by a rule which associates a choice of P,; with each value of n and with any
possible set of outcomes x(*) of X(?),

One obvious way of constructing a PFS is by specifying a joint distribution P for X, and taking
for P,+; the implied conditional distribution for X,+; given X(®. Thus P might, for example,
model an assumed time-series structure for X, or it might express the personal uncertainty of a
subjectivist Bayesian. Conversely, any PFS, however constructed, is consistent in this way with a
unique joint distribution P.

An important generalization of the above definition of a PFS, of considerable independent
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interest, allows the data used in forecasting X, +; to be more extensive than past outcomes of
X® only. Thus P,.; might be a function of (x("), y(®), with y(® the outcome of further
variables Y = (Y, ..., Y,). Almost all of the theory of PFS’s extends with little difficulty
to this case; however, we shall not be considering this extension here.

4. STATISTICAL FORECASTING SYSTEMS

Suppose we have a parametric family -# ={Py: § € ©} of probability distributions for
X =(X;,X,,...). We might use this in a variety of ways to construct a PFS, P* say, which we
could call a statistical forecasting system (SFS) for & . For example, at time # we might form
an estimate §, of 6 based on data X(® = x(, and predict X,,+; as if §, were the true parameter:
Py (*)=Py, ("1 X® = x(m). This may be called the estimative or plug-in approach.

Alternatively, we might take a- Bayesian approach and assign a prior distribution II to 6. The
appropriate forecast distribution for X, +; is '

Fr(*)= jPo(' | X(m) = xt”)) dIl,(9),

where II, is the posterior distribution for @ given data X(") = x(. This is equivalent to con-
structing all forecasts by simple conditioning of the fixed joint probability distribution
P* = [ Py dII(6).

Many other possible ways of constructing a SFS from 2 include, for example, fiducial pre-
dictive distributions. The quality of the PFS based on any familiar method of estimation or
elimination of parameters can be used as a measure of the merit of that method.

Example 1. Under Py, let X; =1 with probability 6, X; =0 with probability 1 — 6, independ-
ently. After observing  1’s on n trials, the maximum likelihood plug-in forecast probability for
X, +1 = 1 is r/n. The Bayesian forecast, based on a uniform prior, is (r + 1)/(n +2).

We can use a SFS to construct more complex k-step ahead forecasts by using the one-step
forecasts as building blocks. Thus the forecast probability of (X, +1=1, X, +2=0, X,+3=1) would
be

/) {@ =0l + 1} +D/(n +2)}

for the above plug-in rule, rather than (r/n){(n—r)/n} (r/n). (Compare the corresponding
Bayesian forecast for the uniform prior, viz.

{¢+ DI+ D H(n—r + DI +3)}HE + D/ + 4},

which simply involves increasing both 7 and n —r by 1.)

Example 2. Let X; ~ A (8, 1) independently under Py. The m. 1. plug-in forecast distribution
for Xp+1 is N (Rn, 1), where X, =n71 (x; +...+xp). A fiducial forecast distribution could be
formed by inversion of the pivotal quantity Xj,+; — Xp, whose distribution is 4" (0,1 +n71),
yielding X,+1 ~A (¥n, 1 +n'). This agrees with the Bayesian solution for the improper uniform
prior distribution.

Example 3. Suppose that 6 = (u, p, ) (0<p<1, ¢>0), and that, under Py, the (X;) form
a Gaussian process with E(X;) =y, var (X;) = ¢, cov (X;, X;) = p¢ (i #)). This is a non-ergodic
process, with parameters which are not even consistently estimable. The maximum likelihood
estimators based on X(") are pn =0, i, =X, (with distribution A (u, (o +n71(1 = p))9)),
and ¢, =n"'! T (X;-X,)* (with distribution n™* (1 —p)¢ x2_;), which appear highly unsatis-
factory. Nevertheless, we shall see below that the plug-in SFS based on these estimators is well
behaved.

In full generality, we could regard any distribution P* over X as a SFS for 2 . The Funda-
mental Question of Prequential Statistics is then seen to be: What does it mean for P*tobea
“good” SFS for the full family £ ? Before examining this, we must first consider the
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Fundamental Question of Prequential Probability: What does it mean for P to be a “good” PFS
for empirical data x?

5. EMPIRICAL ADEQUACY
S.1. The Prequential Principle

Let P be a PFS for X, x=(x,) the realized outcomes of X, and P = (P,) the corresponding
prequential forecast distributions produced by P. We may wish to assess the overall adequacy
of P as a probabilistic explanation for x. It seems desirable that any such assessment should
depend on P only through the sequence P of forecasts that it in fact made. This requirement we
shall call the Prequential Principle. It has an obvious analogy with the Likelihood Principle, in
asserting the irrelevance of hypothetical forecasts that might have been issued in circumstances
that did not, in fact, come about.

5.2. Calibration and Jeffreys's Law

For the case of binary (X,,), Dawid (1982a) introduced a criterion, complete calibration, for
comparing the prequential probabilities p = (p,) (Where p, = P,(X, =1)=P(X, =1 | x(#-1)))
with the outcomes x. Informally, this requires that an average of the p’s over a suitably selected
subset of terms should agree, asymptotically, with the corresponding average of the x’s. This
criterion is justified by the fact that the above property holds with P-probability 1, so that its
failure discredits P. In Dawid (1982b) it was further shown that, if P and Q both satisfy such a
criterion for sufficiently many-subsets, then p, — g, — 0 as n - . Consequently, all non-rejected
PFS’s end up making the same forecasts.

This is an interesting and unexpected boon: in just those cases where we cannot choose
empirically between several forecasting systems, it turns out that we have no need to do so!
This property has implications for Philosophy of Science, giving some support to Popper’s
methodology, wherein a number of alternative hypotheses about Nature may be put forward,
each being retained until it is refuted because its forecasts depart from observation. In our con-
text, such refutation follows evidence that the complete calibration criterion is violated. This
approach need not pick out, even asymptotically, a single “true model”. (Indeed, there is no
need even to assume the existence of an underlying “true” law generating the data.)Using it, we
should, however, eventually be left only with PFS’s that can all be expected to continue to make
essentially identical predictions. I shall call this finding “Jeffreys’s Law”, after an admittedly
distorted interpretation of Jeffreys (1938): “When a law has been applied to a large body of data
without any systematic discrepancy being detected . . . the probability of a further inference
from the law approaches certainty whether the law is true or not.”

5.3. Probability Integral Transform

With continuous quantities (X,), we can proceed as follows. Let U, = F,(X,), where F,, is
the distribution function of P, (assumed continuous). It is easily seen that, under P, the U, are
independent uniform U[O, 1] variables (Rosenblatt, 1952). Consequently, we can reduce the
assessment of P to the question of whether a sequence u = (u,) = (F,(x,)) “looks like”” a random
sample from U[0, 1]. This may be investigated by standard statistical tests, or by an extension
of the calibration criterion: we should require that, for all suitably selected infinite subsets of the
terms (4,), the limiting empirical distribution formed from these terms is just U[0, 1]. Again,
two PFS’s both passing this test will be in asymptotic agreement. Note that all tests based on the
(u,,) alone will be in accord with the Prequential Principle.

If the (u,) seem to show some systematic departure from the “white noise” U[0, 1] structure
(in particular, if they exhibit dependence), it may be possible to find a successful PFS, R say,
for predicting u=(u,). This may then be used to “tune” P: the appropriate new prequential
distribution function for X,, would be G, (F,(*)), where G, is that given by R. Of course, there
can be no guarantee that such tuning would improve future forecasting performance. Successful
applications of this procedure in forecasting software reliability are described by Keiller and
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Littlewood (1984).

5.4. Recursive Residuals

For assessing the empirical adequacy of a statistical model £ , we can replace it by a suitable
SFS P* and proceed as above. (The most satisfactory choice would be an efficient SFS, as defined
in Section 9 below). The corresponding (U,,) can be regarded as extending the idea of recursive
residuals (Brown et al., 1975), which have been extensively used for diagnostic checking of Box-
Jenkins and other time-series models. Under any Py € & the (U,) will behave (at least
asymptotically) like independent U[0, 1] variables, and so provide a diagnostic tool for model
inadequacy.

In certain models it is possible to redefine the (U,) slightly so as to be exactly independent
U[0, 1] variables under any Py € & . This may be achieved through predictive fiducial pivotals
in models with group-structure, or through the conditional probability integral transform
(O’Reilly and Quesenberry, 1973) in those with suitable sufficient statistics. Such (U,) should
provide more reliable small-sample diagnostics.

6. GOODNESS OF FIT

Let (X,,) take values O and 1, and consider a PFS P under which X forms a Markov chain with
transition probabilities Poo = P11 =%, Po1 = P10 = - The initial sequences of data (x,) and fore-
casts (p,,), where p,, = P,(X, = 1), might be

x> 0 0 1 1 1 1 1 0 1 1
. 9o 3 3 1L 1 1 1 1 3 1 6.1)
Pn:  ° 7 ¥ % 3 % 3 7 3 3%
(We can ignore the first trial, for which p; needs further specification.)
The data may be summarized in the table of transition counts (r;;: ,j =0, 1):
1 2 1 3
1 5 ¢ 6, (6.2)
SRS SRR g

where the rows correspond to x,, = 0, 1 and the columns to x,+; =0, 1.

How well does P fit these data? According to the Prequential Principle, the answer to this
question should depend only on the values displayed in (6.1) or (6.2), and not on how the (p,)
were produced. In particular, let us consider a PFS Q under which (X,,: n > 1) were independent,
with Q(X,, = 1) just happening to agree with p,, as displayed in (6.1). Then any assessment of the
goodness of fit of Q should, according to the Principle, likewise be a valid assessment for P.

Now, under Q, the (X,,) divide into two sets of Bernoulli trials, Set 1 (containing trials 2, 3
and 9) having Q(X,, = 1) = 3, and Set 2 (trials 4, S, 6, 7, 8, 10) having Q(X,, = 1) = ;. We might
thus summarize the outcomes in (6.1) in the table:

1 2 3

: , 6.3)

1 5 1 6

where the two rows are sets 1, 2 and the two columns correspond to outcomes 0, 1. For data

(6.1), the entries in (6.3) happen to agree with those in (6.2). We can then calculate, in the usual
way, the “expected frequencies”, (m;;) say, based on Q, yielding the table:

P03
: (6.4)

D=
(o))

43 1

arranged in the same way as (6.3).
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We could now calculate, for example, the Pearson chi-squared statistic

X2 =3 (n,-]- —m,-j)z/m,-j =11.
Referred to tables of x3. the observed significance level is about 4 per cent. This is a measure of
the inadequacy of Q as an explanation of the data. By the Prequential Principle, it should like-
wise constitute such a measure for P.

Under Q, the counts in (6.3) are observations on Binomial variables, and standard theory
justifies the asymptotic x3 distribution of X2. Under P, however, the joint distribution of the
counts in (6.2) is much more complicated. In particular (contrary to assertions of Basawa and
Prakasa Rao, 1980), we do not have ng and n;; independently binomial # (3; 2) and
A (6; %) after conditioning on ng4 =3, ny4 =6, since this information would tell us that the
number of 0’ in (6.1) must be 3 or 4, whence nyy <4, and so ny; =2. A frequentist
statistician might well be unwilling to accept the above “observed significance level” of X? cal-
culated under Q as relevant to an assessment of P, without further evidence that the sampling
distribution of X2 under P itself was approximately x3. Fortunately, and perhaps surprisingly,
this evidence is available: Billingsley (1961) shows that the asymptotic distribution of X under P
is indeed X3, thus supplying some frequentist support for the Prequential Principle.

Such support in fact remains available in very great generality. Many recent results on inference
from dependent processes can be regarded as extending independence results to their prequential
counterparts. Examples are the theorems of Dvoretzky (1972) (central limit theorems), Hill
(1982) (strong laws of large numbers) and Shiryayev (1981) (absolute continuity of distributions).
The work of Hill is particularly interesting in supplying a ‘““meta-theorem’ that justifies extending
any theorem of a certain kind, that one might prove assuming independence, to apply equally,
in its prequential version, to arbitrarily dependent processes. It may be conjectured that this, in
turn, is a special case of a still more powerful meta-theorem. This would then provide strong
frequentist support for the procedure of assessing prequential forecast against outcomes always
as if the variables involved had been independent with the assigned distributions. This procedure
greatly simplifies the problem of deciding, for example, whether sample departure from perfect
calibration, as measured by various summary statistics, is “significant”.’.

7. COMPARISON OF FORECASTING SYSTEMS

Consider a PFS P over X, and suppose that the forecast distribution P, has density function
Pn = Dn(x, | X?-1)) with respect to some fixed underlying measure w,. The prequential likeli-
hood of P for data x( is defined as

n
LP,n= n Di,
i=1

viz. the joint density for X() at x(*) under the marginal distribution P(*) for X(® implied by P.
(If we were to consider the extended definition of a PFS which allows p,, to depend on the
values of variables Y( additional to X, the above prequential likelihood would be a partial
likelihood in the sense of Cox, 1975.)
Now let Q be another PFS, with prequential densities (q,). We can compare P and Q, for data
x(™ by means of their prequential likelihood ratio

Mn=Lon/Lpn= [l (ai/pi)=(dQ/dP™M).
i=1

Now, under P, (A,) forms a non-negative martingale, and so, by standard theory, converges
to a finite limit A with probability one. If then we find that the realized sequence (A,) of like-
lihood ratios tends to infinity, we shall be observing an event deemed almost impossible by P,
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and would thus be justified in regarding P as discredited, in favour of Q—and conversely if
N = 0. (Howard, 1975 has used this property as the basis of a criterion for the empirical
adequacy of a PFS.)

When P < Q (P is absolutely continuous with respect to Q), A is positive with probability one
under both P and Q; in fact A™ is a version of the Radon-Nikodym derivative dP/dQ. Conse-
quently, we can only expect to discredit P in favour of Q, and not conversely. (Any attempt
to test Q, by specifying an event A, with Q(4) =0, whose occurrence would be taken to dis-
credit Q, would equally discredit P when 4 occurred). We might thus regard Q as at least as
good as P for prequential purposes, at any rate asymptotically. This is borne out by a Theorem
of Blackwell and Dubins (1962): if P<Q then, with P-probability one, the conditional
distributions over the infinite future, given X(), made under éach of P and Q, will be
asymptotically indistinguishable.

If P~ Q, (P and Q are mutually absolutely continuous), then we cannot expect ever to be
able to make a definitive choice between P and Q, which, by the above result, will in any case
yield asymptotically indistinguishable forecasts. (We see here another instance of Jeffreys’s Law
at work.) We can therefore regard such P and Q as equivalent PFS’s.

8. CONSISTENCY

We now return to the statistical set -up of Section 4. Let P* be a SFS for 2 . Suppose that
P* dominates 2 , so that Py <P*, all . In this case, the theorem of Blackwell and Dubins
1mp11es that, with probability one under any Py, the forecasts of the infinite future made by
P* will be asymptotically indistinguishable from those made under the correct Py. We might
then call P* completely consistent for 2 .

If, for example, & is finite or countable, then a suitable P* would be any Bayes1an rule
P* = Z4 1(0)Py, with m(6) > 0and Zg m(0) = 1.

In general, however, .2 will not be dominated, and complete consistency will be unattain-
able. Consider, for instance, the uniform-prior Bayesian PFS, Py say, for Bernoulli trials (Example
1). Any of the model distributions Py = corresponds to a prior distribution concentrated at o,
-which is singular with respect to the uniform prior. Consequently, Pz and P, are mutually
singular, for all 4. And, correspondingly, conditional on any data there exist future events whose
predictive probabilities under P and Py are very different: an example is 4 = “rin—>0,", for
which Py (A4 | xM)=1, Pg(4 | x(m)=0.

Neverfheless, we shall generally be able to attam (simple) consistency, defined as asymptotic
equivalence of the one-step prequential forecasts P, and P, g, with Pg-probability 1 for every 0.
For instance, in Example 2, X,, - 6. with Py-probability 1, so that both prequential distributions
there considered, A (¥,,1) and A (%,, 1 +n '), will asymptotically agree with the true fore-
cast A" (6,1). Clearly this behaviour will hold in some generality (given suitable regularity
conditions) when @ is consistently estimable. We could plug in a consistent estimator of 8, or use a
Bayesian SFS with a positive prior density (the posterior then placing the bulk of its mass near
the true 6-value).

Example 3 (continued). Under Py, the forecast distribution P, 41, 5 for X, 4, given X() = x(?)
is normal with mean {npX, + (1 — p)u}/{1 + (n — 1)p }, and variance ¢r(l -p)+{l+(n—-1)p}™].
For large n, this is approximately [ (%,, (1 - p)¢) if p >0, or A" (u, ¢) if p =0. The plug-in
rule in either case is thus approximately

. :
N (xn: n! Z (x; _-’?n)2> .
i=1
The variance term in this converges, with probability one under Py, to the true asymptotic pre-
diction variance (1 — p)¢. Consequently, although the m.l.e. is not consistent in the usual sense, it

yields a consistent SFS. So, too, would a typical Bayesian SFS be consistent.
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In order to gain some understanding of the unexpectedly good prequential behaviour in the
above example, we can give the following general analysis. For a model 2 ={Py}, define an
equivalence relation =~ on values of 8 by: 8, ~0, if Py, ~ Pp,. The full parameter 8 is
consistently estimable if and only if Py, 1Py, (mutually singular) for 6, #6,, and the
equivalence classes are then one-point sets. More generally, it will typically be the case that
Py, L Py, whenever 0; # 6,. This we now assume. We can label the equivalence classes with a
parameter «, and the distributions within an equivalence class by a further parameter 8. Then
Po,g, ~ Pag,, all B1,B;, but Pa,,p, L Pa,p, if @y #a,. This holds in Example 3, with
a=(1-p)$,B=(u pg)

An infinite sequence x of data-values will not be able to discriminate between distributions in
a given equivalence class, but can do so between different, mutually singular, equivalence classes.
In other words, « is a maximal consistently estimable parameter. We can plug in a consistent
estimator &, for a, but have no obvious way of substituting for 8. However, just because
Py, ~ Py,g, for all By, B,, the forecast distribution Py,,,s Will not depend, asymptotically,
on f3, so that it will not matter that we cannot estimate 8. That is, asymptotically, the forecast
distributions will only depend on a parameter « that can be consistently estimated. Any reasonable
SFS (plug-in, Bayes, etc.) will then be consistent, this thus holding in very much greater
generality than required for classical (parametric) consistency. The preceding argument can even
be extended to cases where different model distributions are neither mutually absolutely
continuous nor mutually singular. In general, Jeffreys’s Law comes to our rescue: things we shall
never find much out about cannot be very important for prediction.

9. EQUIVALENT STATISTICAL FORECASTING SYSTEMS AND EFFICIENCY
Let Qand R be SFS’s for 2 , and

n
A= TT (aifri)

i=1
their prequential likelihood ratio for data X("). Extending slightly the argument of Section 7, we
can regard Q) as no better than R for forecasting 2 if A, converges to A < o with Py-probability
one for all 8. We call Q and R equivalent for 2 if each is no better than the other. In this case
the forecasts for the whole infinite future, given X(®), made by Q and R will be asymptotically
indistinguishable, with Py -probability one for all 6.

Example 2 (continued). Let Q and R be the given plug-in and fiducial SFS’s respectively. Note
that both densities q; and r, are undefined. We therefore condition on X; =x,, so yielding
the slightly modified likelihood-ratio comparison

A= TT ().
i=2

We have
2 log g; = —log (2m) — (X; — X;_1)?,
2log r; =—log (2m) —{(—1)/i} (X; — X;—1)? = log i +log (i — 1).
So

n

Up=2log Ay == 3 (X;=X;-1)*/i +logn.
i=2
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Now, under any Py (as under R),

X=X )P fi~ xHE- ),
independently for each i. Thus

n-1

E(U,)=logn—=Y it->-y

i=1

where v is Euler’s constant 0.577 . . .,

n
var (Up,)=2 Y i2->m*/3.

i=1

1
In fact, U, > U as. [Ps], where U has characteristic function {I'(1 —2it)}*. Consequently
0 <A*=1lim (Ak)<ooas. [Py], so that Q and R are equivalent SFS’s for Z .

Aitchison (1975) has argued strongly that fiducial or Bayesian predictive distributions, as
provided by R, are preferable to plug-in type distributions such as Q. In our prequential setting,
where the plug-in values are adjusted to take account of each new observation, this superiority
turns out to be asymptotically unimportant. Aitchison’s argument is nevertheless valid to the
extent that large data-sets may be needed to approach the asymptotic limit.

Now let 2 ={Fy: 0 €@}, where ©C R k and let R be a Bayesian SFS based on a prior
density m(0) > 0. Let Q be an arbitrary SFS for # . Then

1=R(A, > A<%)= S Pg (A, > A<)m(8)d0,

whence Py (A, > A <e0)=1 for almost all § ;i.e. R cannot be improved upon, except perhaps
for a null set of parameter-values.

Any SFS R sharing this property may be called efficient. Essentially, this holds if and only if
R is mutually absolutely continuous with respect to a positive-density Bayesian rule. A sequence
of estimators may be called prequentially efficient if it yields an efficient plug-in rule. (The
possibility of “super-efficiency” cannot be ruled out, but must be confined to a Lebesgue-null
set.)

This new definition of estimator efficiency makes almost no assumptions about the family 2 .
In the traditional context of ii.d. (independent identically distributed) variables (X;), with
suitably differentiable density p(x | @ ), it may be demonstrated, by an argument somewhat
parallel to that of Example 2 (continued), to be equivalent to Fisher’s definition. Only recently
have attempts been made to generalize the notion of Fisher efficiency to apply to stochastic
process models: problems arise here when the distribution of the observed information does not
become degenerate (Feigin, 1978). It is conjectured that prequential efficiency in this case is
essentially the same as efficiency in the sense of Heyde (1975), a property possessed by maximum
likelihood estimation. Indeed, under smoothness conditions, the m.l.e. may well prove to be pre-
quentially efficient in still greater generality, as in cases such as Example 3. But the prequential
definition of efficiency applies just as well to “non-regular” problems, for example, where the
support of the distribution varies with the parameter value; and it further provides a unifying
mechanism with which to probe still more distant departures from the regular i.i.d. case.

10. THE LIKELIHOOD OF A MODEL
Let P* be an efficient SFS for 2 ={P, }. Then P* yields, asymptotically, the most effective
way of analysing past data for the purpose of predicting the future. The success of Z in explain-
ing a data sequence x( should thus be measured, at least for large n, in terms of the fit of P*
to the data. For purposes of comparing # with an alternative model 2 ={Qy}, we might
wish to examine the likelihood ratio



1984] Present Position and Potential Developments 287

n
A= T #ifed,

where Q¥ is efficient for 2 and pf =pf(x; | xG-1), etc. We would prefer 2 to 2 if A}
is large, with such preference becoming definitive if A} > o0 asn - o.
We thus define the (prequential) likelihood of the model 2 on data x(™ as

n

i=1

and prefer models with large likelihoods, at least for large n. Two models whose likelihood ratio
stays bounded (and away from zero) will be, asymptotically, equally acceptable. Note that it does
not matter, for this criterion, which efficient SFS is employed to represent a model £ :a change
from one to another w111 just multiply the limiting likelihood by a non-zero constant.

If one takes for P* the m.l. plug-in rule, which, it is conjectured, will be prequentially efficient
in very great generality, one obtains the likelihood

n
Ly(2)= [] pi(xi 1xG-D; 6;_y).

i=1

(Initial terms for which 5;_1 is perhaps undefined may be ignored.) The typical term of this
measures how well 2 did in forecasting X; when the parameter was replaced by its estimate
based on previous data x(-1) only. This avoids the over-optimism which would be typical of a
pseudo-likelihood such as

n
Ln( 9’)=sgpp(x(")|6)= [T pixi1x69; 4,),
i=1

wherein x; itself contributes to the estimation of the value of § used in “forecasting” it. In this
property, prequential likelihood is similar to cross-validatory likelihood (Stone, 1977), but with
the advantage of being more amenable to theoretical study. Over-fitting is properly penalized by
L,(?): typically, if # C 2 , and the data arise from a distribution in £ , then
L,(P)[L,(2)—> 0 as n—>o (Q* being consistent, but not efficient, for 2 .)

Use of L,(2) is particularly appropriate if the purpose of modelling is forecasting, since it
judges 2 precisely on how well it has performed in doing its best at forecasting the future.
While there can never be any assurance that past forecasting performance will prove a reliable
guide to future performance, what other reasonable guide can we follow? Even when forecasting
is not the major aim, L, (#) forms a naturally appealing measure of the quality of P .

We note, as is to be expected, that L, (?)< L,(2). For letr, = Ln(ﬂ)/L (#). Then

n+1 n

[T G IxG-1;8;_) [T pCx; | xG=1); 6,)
i=1 i=1

rn+1/rn =
n+1 n

[T pGi 1xG-1:0,,00) ] pGx; | xG-1D;6; 1)
i=1 i=1



288 DAWID [Part 2,

n+1 ~ n+1 N
= l_[ p(xi l x(i_l); en)f l_[ p(xi lx(i—l); 0n+l)
i=1 i=1

= p(x®* ) 1 6,)p(x@*+1) | §,,,)

<1.

Also, Li(2)=p(x; 100)<p(x, |10,)=L;(2?), however we define 6,. The result follows by
induction.

To investigate Ln(ﬂ’)/L (2) further, suppose that # ={Pg}, where @ rangesover R ¢ (or
some suitable subset thereof), and let L,(0) = log p(x(™ | @ ). We_suppose L, to be suitably
differentiable, and suppose further that 0,, converges to a limit 90, and that the matrix of
second derivatives Ly ( Gn) is asymptotically of the form —nJ with J finite and non-singular.
These properties will hold, with probability 1, under the usual assumptions of independent
identically distributed variables, but also more generally. For example, we do not require J to be
non-random, thus allowing the sort of model termed “non- ergodlc by Basawa and Scott (1983).

Instead of a plug-in rule, we use the (efficient) Bayesian PFS P* based on a continuous positive
prior density m( 0 ). Then

L,(?)=p*(x™) = j p(x™ 1 9)m(0)d 0.

(Incidentally, this form of L,(#) does not depend on the order in which the observations are
presented. Consequently, the effect of this order on any efficient plug-in rule can be of no
asymptotic importance.)

We have

Ln(g))/in(y) = g exXp {Ln(e) _zn(an)} m(0)d 0

gexp{ n(0 —0n)1(0 — 9)}17(9)d0

~7(8,) @) “{det (1)}

Thus log L,(#)=log L,(?)—%dlogn +k, where k is bounded. Consequently, for large n at
least, the prequential log- hkehhood of a model may be approximated by penalizing the
maximized value, log p(x( IB ), by a term % dlog n. This is basically the Bayesian argument
and conclusion given by Jeffreys (1936); see also Schwarz (1976) and Akaike (1978). However,
the prequential argument justifies using this, even if one does not take a Bayesian approach, as
an approximation to any reasonable likelihood assessment of predictive performance. (Note that
the AIC is also based on an assessment of predictive performance, but for an entirely hypothetical
new, independent problem with the same structure as that providing the data (Akaike, 1969,
1970, 1974). Our predictive assessment is confined to the data actually being collected, and
deliberately eschews purely conceptual repetitions of the whole process.)

11. FURTHER APPLICATIONS

The scope of the prequential approach to Statistics is not limited to the theoretical aspects
surveyed here, but also takes in a wide variety of practical problems of data analysis. It can, for
example, be used as a very general alternative to procedures such as AIC or cross-validation for
assessing strategies of analysis, and selecting between rival models. Applications that have been
investigated by students at University College London include choice of symptom variables for
medical diagnosis (Seillier, 1982), order selection for Markov models of daily rainfall occurrence
(Edwards, 1983; Jain, 1983; Dawid, 1984) and the vetting of items proposed for inclusion in a
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battery of educational tests (Opie, 1983). Other promising applications, out of many further
possibilities, might be the choice of kernel width in density estimation (Hall, 1982), or of the
number of groups in cluster analysis. There is a good deal of common ground with, and much to
be gleaned from, the whole field of Stochastic Control Theory; see, for example, Maybeck
(1979-82). There is particular scope for related computational methods of recursive estimation,
such as stochastic approximation and the Kalman-Bucy filter.

Further insight from a prequential approach is foreseen into a host of theoretical topics which
are the subject of current research activity, such as asymptotic and conditional inference,
particularly in relation to general stochastic processes. The possible developments and applications
are manifold, and my sincere hope is that, by making this personal forecast of a prequential future
for Statistical Theory, I may stimulate others to apply themselves to these problems, and so prove
the forecast empirically valid.
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INVITED DISCUSSION

O. E. Barndorff-Nielsen (Aarhus University): Prediction is a subject that has not attracted the
attention from theoretical statisticians that it deserves, and Professor Dawid’s interesting paper is
a welcome contribution towards rectifying this state of affairs.

The conceptual difficulties in establishing a satisfactory theory of prediction begin already with
the implicit possible situation, that in which it is desired to predict the outcome of a single experi-
ment governed by a fully known distributional law. Suppose the outcome is a scalar variate x with
a probability (density) function p(x). What value of x should be considered the most “likely”?
Or, if we want to delineate a 99 per cent prediction region how should this be done? Standard
proposals for a predictate are the mean or the mode of p(x). But, outside a decision-theoretic
framework, what rational reasons might be given for any particular such choice?

Professor Dawid’s definitions of a “prequential principle” and of “Jeffreys’s law’, as well as
those of prequential efficiency and prequential likelihood of a model, must constitute essential
elements for a theory of prequential statistics and these conceptual clarifications seem of very
considerable value. I was also much interested to read the author’s discussion of “Jeffreys’s law”
in its relation to models with parameters that cannot all be estimated consistently and to non-
ergodic models.

Ideas related to those of the prequential approach have been discussed by P. Martin-Lof and
S. L. Lauritzen (see Lauritzen, 1974, 1984, and references there), and it would be useful to have
this connection commented on.

An obvious reason why the literature on prediction is rather limited is that in statistical practice
problems of forecasting are not very commonly met. For this same reason, I have reservations as to
the usefulness for statistical theory in general of the approach proposed here by Professor Dawid.
On the other hand, the development of a stringently thought out theory of prediction seems
bound to reflect fruitfully on other parts of statistics.

Since we are here not only to discuss prediction theory but also to make some actual predictions
on the future developments, as well as the present state of statistical theory, it will be in order, I
trust, if I outline here some areas of statistical theory that seem to me of particular importance
and in which we are witnessing or are likely in the near future to see some substantial advances.

Parametric statistical models and likelihood constitute the backbone of statistics, and will
undoubtedly continue to do so.

Due both to the application of advanced mathematical methods, such as those of differential
and integral geometry or of graph theory and combinatorics, and to the use of computers, we are
able to handle more and more structured models, and to take better advantage of their structures
in the inference. Important classes of such models are full and curved exponential models, trans-
formation models, the CG models developed by Lauritzen and Wermuth (1983, 1984), the
intricate normal multifactor models presently being studied by R. A. Bailey and T. P. Speed and
others, the Cox-type models for survival analysis, the developments of Nelder and Wedderburn’s
generalized linear models, models for multivariate time series and models for spatial variation.

Hand in hand with these advances go further developments of the ideas and techniques of
separate inference. A breakthrough in this area came with David Cox’s idea of partial likelihood
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(Cox, 1975a) and we have not, I believe, seen the full potentials of this yet. There are connections
to S-ancillarity and cuts and to the exogeneity concepts of econometrics, cf. Engle et al. (1983),
Johansen (1983). Some very recent and interesting results on sufficiency have been obtained by
Remon (1984) and McCullagh (1984). Remon defines a statistic ¢ to be sufficient with respect to
a parameter of interest Y if the distribution of ¢ depends on Y only and if the profile likelihood
for Y depends on the data through ¢ only. Surprisingly, this simple idea encompasses not only
the ordinary sufficiency concept but also the seemingly disparate definitions of S-sufficiency
and G-sufficiency due, respectively, to Fraser (1956) and Barnard (1963). The title “Local
sufficiency” of McCullagh (1984) echoes the “Local ancillarity” of Cox (1980). McCullagh bases
his arguments on a statistic ¢ of fixed dimension p, such as a vector of lower order derivatives of
the log likelihood function, and he shows by asymptotic analysis, as the underlying sample size
n tends to infinity, that there exists a one-to-one transformation ¢ = (s, @) such that s has the same
dimension d as the parameter w of the model while a, of dimension p —d, is approximately
ancillary and independent of s locally at the governing value of w, to a degree of approximation
that makes conditioning on ¢ unnecessary. As a consequence one is, in a specific sense, able to
make “conditional inference without conditioning”. The tools of the derivation are cumulants
and Edgeworth expansions. A rather different approach (Barndorff-Nielsen, 1984b, c) uses mixed
derivatives of the log-model function and expansions derived from the formula c¢|j |7 L for the
conditional distribution of the maximum likelihood estimator. This approach allows
“conditional inference without conditioning and without integrations over the sample space”.
The “Problem of the Nile” is an element in much of this work. Although its solution is known for
transformation models and to a large extent for exponential models (Amari, 1984; Barndorff-
Nielsen, 1980, 1984a), much remains to be done.

It would seem of some interest to explore the relations between the works of McCullagh and
Remon referred to above and the concept of modified profile likelihood (Barndorff-Nielsen,
1983).

For a particular use of the latter concept, in a study of distributional shape, see Barndorff-
Nielsen et al. (1983).

The various results discussed above, as well as other recent investigations, strongly underline
the fundamental character of R. A. Fisher’s concept of likelihood.

In recent years there has been considerable activity, comprising much of the above, in the area
of what might be called “intermediate asymptotics’. This is concerned with sharpening the usual
kind of “Oth order” asymptotic results, based on the central limit theorem, so as to include the

correction terms of order O(n”%) and O(n“l). This, among otherlthings, allows a unified

formulation of certain exact and asymptotic results, the formula ¢ lf |7z L being a case in point.
The use of Bartlett adjustment factors has a natural place in this framework, cf. Barndorff-Nielsen
and Cox (1984). There are also interesting and illuminating connections to differential geometry;
see Amari (1984), Barndorff-Nielsen (1984c). We are likely to see this activity continue in
substantial measure.

In addition to prediction, another fairly underdeveloped area that seems ripe for advances is
that of parametric robustness studies, with the associated concept of robust pivotals, cf. Barnard
(1981, 1983). Many of the above-mentioned results should be instrumental here and, again,
likelihood must be of central importance; in this connection, see Cox (1975b), and Barndorff-
Nielsen (1981).

Some further fields where we are likely to see exciting progress are: (i) sample surveys, (ii)
stereology, (iii) inference for stochastic processes and (iv) the connections to statistical physics
and chemistry.

In the meantime, the more foundational problems should not be left out of sight. For instance,
the method of setting confidence regions, in spite of its great usefulness, rests on a somewhat
unsatisfactory foundation.

All in all, however, we are entitled to feel, I think, that statistics has come of age as a mature
and highly vigorous and substantial science, due indeed in large measure to the efforts of the
Royal Statistical Society.
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