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Approximate Bayesian Inference in Conditionally
Independent Hierarchical Models (Parametric

ROBERT E. KASS and DUANE STEFFEY*

Empirical Bayes Models)

We consider two-stage models of the kind used in parametric empirical Bayes (PEB) methodology, calling them conditionally
independent hierarchical models. We suppose that there are k “units,” which may be experimental subjects, cities, study centers,
etcetera. At the first stage, the observation vectors Y, for unitsi = 1, . . ., k are independently distributed with densities p(y,
| 8)), or more generally, p(y; | 6., 4). At the second stage, the unit-specific parameter vectors 6, are iid with densities p(6, | A).
The PEB approach proceeds by regarding the second-stage distribution as a prior and noting that, if 1 were known, inference
about 6 could be based on its posterior. Since 4 is not known, the simplest PEB methods estimate the parameter 4 by maximum
likelihood or some variant, and then treat 4 as if it were known to be equal to this estimate. Although this procedure is
sometimes satisfactory, a well-known defect is that it neglects the uncertainty due to the estimation of A. In this article we
suggest that approximate Bayesian inference can provide simple and manageable solutions to this problem. In Bayesian
inferences, a prior density z(-) on A is introduced, the posterior p(4 | y) is calculated, and the posterior density of 6, is then
equal to the expectation, with respect to p(4 | y), of the conditional posterior p(6; | y,, A). From the Bayesian point of view,
the PEB estimate is of interest because it is a first-order approximation to the posterior mean [having an error of order O(k~?)].
Letting E; and V; denote the expectation and variance with respect to p(4 | y), we may write the posterior variance of 6, as
V(6.y) = EXV(8,|y., )} + V{E(8;|y., A)}. The conditional posterior variance V(6, | y;, 1), where 1 is the maximum likelihood
estimator, approximates only the first term. When we include an approximation to the second term we obtain a first-order
approximation to the posterior variance itself. In many examples, this elementary method, incorporating approximations to
both terms, will substantially account for the estimation of 4. We briefly consider second-order approximations, noting that
the work of Deely and Lindley (1981) may be extended using expansions derived by Lindley (1980), Mosteller and Wallace
(1964), Tierney and Kadane (1986), and Tierney, Kass, and Kadane (1989). We suggest that second-order approximations
provide rough and, often, easily computed assessments of accuracy of first-order approximations. Although we confine our
data-analytical examples to simple models, we believe the methods will be useful in general settings. An important area of
application is longitudinal data analysis.

KEY WORDS: Asymptotic posterior; Asymptotic variance; Bayes empirical Bayes; Hyperparameters; Laplace’s method;

Longitudinal analysis; Mixed models; Random-effects models.

1. INTRODUCTION

When data are collected from many units that are some-
how similar, such as subjects, animals, cities, etcetera, the
statistical problem is to combine the information from the
various units to understand better the phenomenon under
study. Usually there is substantial variability among units,
and a natural way to approach the problem is to build a
two-stage ‘‘hierarchical model” and then use it to make
inferences. In general, a two-stage hierarchical model for
a random vector Y is a specification of a first-stage fam-
ily of densities {p(y | 6, ) : 6 € ©, A € A} for Y condi-
tional on 0 and A and a second-stage family of densities
{p(6 | A) : A € A} for @ conditional on a second-stage
parameter 4; the parameter spaces ® and A may be multi-
dimensional. Here, we are concerned with two-stage hi-
erarchical models for observation vectors Y; of length n;
onunitsi = 1, . . ., k, in which the first-stage parameters
6, which have their distribution modeled in the second
stage, are unit-specific, that is, they are indexed by a sub-
script i.

* Robert E. Kass is Associate Professor, Department of Statistics,
Carnegie-Mellon University, Pittsburgh, PA 15213. His work was sup-
ported by National Science Foundation Grants DMS-8503019 and DMS-
8705646. Duane Steffey is Assistant Professor, Department of Mathe-
matical Sciences, San Diego State University, San Diego, CA 92182.
The authors gratefully acknowledge the many helpful comments and
suggestions of the referees and the associate editor, which led to sub-
stantial improvements in the article.

We assume that the vector pairs (Y, 6;) are independent
across units, conditionally on A. Put differently, we have
the following specification for what we will call a condi-
tionally independent hierarchical model (CIHM).

Stage 1. Conditionally on (6, . . . , 6,) and A, the vec-
tors Y; are independent with densities p(y; | 6;, ) (i =
1, ..., k) belonging to a family {p(y | 6, 4) : 6 € O,
1 € A}

Stage 2. Conditionally on A, the vectors 0; are iid with
density belonging to a family {p(6 | 1) : 1 € A}.

We take the dimension of ® to be p and that of A to
be m. In this article, using an approach similar to that
taken previously by Deely and Lindley (1981) for one-
parameter problems, we discuss approximate Bayesian in-
ference about the unit-specific parameters 0, . . . , O,
which accounts for the uncertainty introduced through the
estimation of 1. We use several examples to illustrate el-
ementary asymptotic results, focusing much of our atten-
tion on a ‘“‘delta method” approximation to the posterior
variance.

CIHM’s are sometimes called “parametric empirical
Bayes models” because the obvious interpretation of the
second-stage densities as priors led to the development of
“parametric empirical Bayes” (PEB) methodology (Efron
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and Morris 1973, 1975), following on the earlier nonpara-
metric empirical Bayes approach of Robbins (1964). Since
that terminology should refer to statistical methods rather
than probabilistic models, however, we prefer the more
descriptive label we have introduced here. In Bayesian
inference, a prior n(+) on A is introduced, and inferences
are based on the posterior distributions of the #,’s and 4.
Our Stage 2 is often called a prior, rather than being part
of “the model,” but from the Bayesian point of view this
distinction is unimportant. We prefer our terminology be-
cause, in our treatment, the role played by the distribution
on A is analogous to that of the prior in a single-stage
model. We also note that when CIHM’s are applied in the
context of repeated-measures analysis, the usual termi-
nology (e.g., of Laird and Ware 1982) distinguishes the
parameters 6, and 4 by saying that they refer to “random”
and “‘fixed” effects. This makes sense from the non-Bayes-
ian point of view, but the connotation would rarely be
appropriate within the Bayesian paradigm. The more fun-
damental characterization is that the 6,’s vary among units
and A is common to all units, so we prefer to call the 6’s
unit-specific parameters and A the common parameter. See
Lindley (1971) for an early discussion of the Bayesian
approach to CIHM’s [see, too, the comment on that paper
by Kempthorne, as well as Good (1980), for historical
remarks about hierarchical models].

To emphasize the purpose of our discussion, we remind

the reader that in PEB methodology, once 4 is estimated .

by maximum likelihood or some variant, inferences about
the 6’s are based on their conditional posterior means,
conditionally on A, with 4 set equal to its estimated value;
that is, in familiar notation, E(6; | y;, i) is used to estimate
0;. Other related estimators are sometimes used as well.
For a review of the basic methodology, see Morris (1983).
From the Bayesian point of view, the PEB approach ef-
fectively substitutes the conditional posterior density
p(0, ] y;, ), with A = 1, for the correct posterior density
given by

P01y = [ pO1y. DpG 1Y d2 (1D
where the posterior density p(4 | y) is based on the prior
n(4). Thus the PEB approximation p(6; | y,, 4), with 1 =
1, fails to take account of the uncertainty about A, which
enters (1.1) through the posterior density p(4 | y). On
the one hand, it is well known that the PEB estimate
E(0; | y;, ) is approximately equal to the posterior mean
E(0; | y). On the other hand, it is equally well recognized
that the corresponding variance estimate V(6; | y;, A) is too
small. In Section 3 we formalize these observations with
asymptotic statements that furnish approximations as k —
o, and we obtain a correction term for the variance. This
follows a list of several important consequences of the
CIHM structure, in Section 2. We provide some interpre-
tation of the corrected first-order variance approximation,
having relative error of order O(k~'), and then briefly
discuss second-order approximations, recommending their
use to check accuracy of first-order approximations. In
Section 4 we exemplify and interpret the approximations
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in four examples, three of which are data-analytical, and
in Section 5 we comment on several remaining issues.
Though our treatment is Bayesian throughout, we be-
lieve the first-order variance approximation we present in
Section 3 could also be justified as a variance estimate in
non-Bayesian theory. For a recent non-Bayesian alter-
native, based on the bootstrap, see Laird and Louis (1987).

2. CONDITIONALLY INDEPENDENT
HIERARCHICAL MODELS

For subsequent use we review here several immediate
consequences of the conditional independence structure
of CIHM’s. The first is due to the independence of Y,
..., Y, conditionally on 1. The compound sampling den-
sity of the datay = (y;, . . ., yx) becomes

Py 4 = o] D) @.1)
where
pOD = [Pl 0 Dp@ 1 D a0, 22)
and the likelihood function L(-) on A becomes
L(4) = lIiIlL,-(/l), (2.3)

where L,(1) = p(y, | A). Similarly, we have the simplifi-
cation

p(0: 1y, A) = p(0: | y:, 2). (2.4)
Now suppose that g is a real-valued function on ®. From
(2.4), the conditional posterior expectation of g(6,) satis-
fies E(g(0) |y, A) = E(g(6) | yi, 4), so the posterior

expectation of g(6,), E(g(6) | y) = [ [ g(0)p(0; |y, )p(4
| y) db, d4, satisfies

E(g(6) |y) = E{E(g(6) | y., M}, (2.5)

where E, is the expectation with respect to the posterior
distribution of A. The corresponding expression for the
variance is

V(g®) |y) = E{V(g(8) |y, H} + VAE(g(0) | y., M},
(2.6)

where V, is the variance with respect to the posterior dis-
tribution of 4.

3. ASYMPTOTIC APPROXIMATIONS

3.1 First-Order Approximations

From (2.1), conditionally on A, the Y;’s are iid obser-
vations from the compound parametric family of distri-
butions with densities p(y; | 4). Under mild regularity con-
ditions the posterior distribution on 1 is asymptotically
Normal with mean and variance given by the posterior
mode / and the inverse of the negative Hessian of the log
posterior evaluated at the mode 3 = (— D2og(Ln)(1))"".
In addition to limiting Normality, we have

E(A|y) =1+ O™ (3.1
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and
V(A|y) = 2 + O(k™?). (3.2)

Now, if G is a smooth real-valued function on A having
nonzero derivative (Jacobian) DG at A, then a Taylor se-
ries expansion (the delta method) yields

E(G(4)|y) = G() + O(k™) (3.3)

and
V(G(A) |y) = (DG)TS(DG) + O(k™?), (3.4)

where DG = DG(J). Assuming that G is of constant order
li.e., G(A) = O(1) and 1/G(4) = O(1)] and both G(3)
and DG(2) are nonzero, these approximations are equiv-
alent to the multiplicative versions

E(G(4)|y) = G({1 + O(k™1} (3.5)

and
V(G(A) |y) = (DG)TE(DG){1 + O(k™Y)}. (3.6)

For our application here it is somewhat preferable to use
the multiplicative form because it allows G to decrease to
0 as k becomes infinite, as when G(A) = V(g(6) | yi, 4)
and n; becomes infinite along with k.

These elementary Normality and moment results are
proved by Laplace’s method, which is described briefly in
Section 3.2. The method is sufficiently simple that it is
often re-invented and not often referenced by this name.
Equations (3.5) and (3.6) require the assumption that
G(J) is nonzero and the first two derivatives of G at 1 are
of the same order as, or smaller order than, G(1). In
addition, the posterior must be a probability distribution
for some sample size k,. This is a nontrivial assumption,
because the likelihood function may not vanish at the
boundary of A; in practice, however, a uniform prior on
A may be considered to be uniform on some compact
subset of A and 0 elsewhere. We now come to the results
of interest.

Result 1: First-Order Expectation Approximation.

E(g(6) |y) = E(g(0) | yi, X1 + O™} (3.7)
Result 2: First-Order Variance Approximation.
V(g®)|y) = {V(g(gi) | yi, 4) + Zh &ihgjgh}
x {1 + O(k™1)}, (3.8)

where G, is the (j, h)-component of 3 and §; = (3/34,)
E(g(0) | yi» M) i-z-

Proofs. Letting G(4) = E(g(0) | y:, 4) we get (3.7)
from (3.5) and (2.5). To obtain (3.8), we apply (3.5)
to the first term on the right side of (2.6) with G(1) =
V(g(8) | y:, ) and (3.6) to the second term with G() =

E(g(0) | yis A).

Remark 1. As k — o, the effect of any given prior
n(4) on the expectation and variance is of the same order
as the terms neglected by the approximations (3.1)—(3.8).
This implies that the values of 1 and 3, may be computed

using a prior different from (1) without altering the va-
lidity of (3.1)—(3.8). When the uniform prior on 4 is sub-
stituted for 7(4), 4 and 2 become the maximum likelihood
estimator (MLE) and the inverse of observed information
(which is the inverse of the negative Hessian of the log-
likelihood evaluated at the MLE). In other words, the
MLE and inverse of observed information could be sub-
stituted for A and ¥ without altering the order of the ap-
proximations in (3.1)-(3.8). By substituting the MLE 1
for the mode 1 in (3.7), we have a statement of the well-
known fact that PEB estimates are also approximate fully
Bayesian posterior means.

Remark 2. The statements made in Remark 1 concern
asymptotics when a prior is held fixed as kK — «. In prac-
tice, as Example 2 in Section 4 shows, even when ap-
proximations (3.7) and (3.8) are fairly accurate for both
a uniform prior and an informative prior, the results, which
are based on the MLE and the posterior mode, respec-
tively, can be quite different. We comment on this point
in Section 5.

Remark 3. When (3.8) is based on the MLE, it is
invariant to reparameterization of A. For the first term this
is immediate; for the second term it follows from the trans-
formation properties of observed information and is easily
verified. When the mode is used, results for alternative
parameterizations will be different, but will agree to the
order specified by (3.8).

Formula (3.8) is not only useful computationally, it is
also easy to interpret. Note first that the two terms in (2.6)
[and thus (3.8)] are of possibly different orders: Assuming

that y; = (ya, . . ., yi) We have

ELV(8(0) | yi» M} = O(ni) (3.9a)
and

VAE(g(0) | yi, A} = O(k™). (3.9b)

The approximation to each term incurs a multiplicative
error of order O(k~'). From (3.9) we see that when n; is
small and k is large the first term in (3.8) will dominate
and, applying Remark 1, the common practice of using
the conditional posterior variance at the MLE A, as an
approximation to the true posterior variance, will be ap-
propriate. In this situation, the additional uncertainty due
to the estimation of 4 (i.e., due to the nonzero spread in
the posterior on A) will be negligible. From the first term
of (3.8), knowledge of g(6;) will be more precise for some
units than for others according to the conditional posterior
precision, which will depend on the individual unit sample
sizes n;. When k is moderate in size or n; is not small,
however, the second term will become important. In this
case, the second term of (3.8) is large when the conditional
expectation is changing rapidly at / in directions of A cor-
responding to substantial posterior uncertainty.

Further interpretation may be obtained when the first
stage of the model is a one-parameter exponential family
and the second stage is its conjugate prior. Suppose that
the random variable Z has density f(z | 6) = a(z)exp[z0
— w(0)], where () = log [ a(z)exp[z0] dz. The con-
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jugate prior is a two-parameter exponential family with
density p(6 | &, v) = exp[v(¢0 — w(8)) — x(&, v)], where
%(&, v) = log [ exp[v(¢6 — w(6))] db. Using the mean
value parameter 4 = E(Z | 8) = y'(6) and applying in-
tegration by parts [as in Deely and Lindley (1981)], the
prior mean of x given (¢, v) is found to be &; by conjugacy,
the posterior mean is E(u | z, &, v) = (z + &v)/(v + 1).

Now suppose that 6, are iid according to p(6; | &, v)
above, Z, are independent according to f(z | 6,), and Y, is
the sum of #, iid observations from the distribution of Z,,

fori =1,..., k. Setting u; = E(Z, | 0,), we obtain the
posterior mean

E(ui |y, & v) = wé + (1 — w)(y/n), (3.10)
where w;, = v/(v + n) = n;/' - (v7' + n )" Trans-

forming v to p = log v and putting g(6;) = x, and 1 = (¢,
p), according to the definition of 0, immediately after (3.8)
we get

0, = W, (3.11a)
and

6 = —w(@1 - w)(y/n = &), (3.11b)
where w; = /(7 + n;). These expressions provide addi-

tional interpretation of (3.8). Here, the weights W, are
small for the units having large sample sizes n,. For such
units there is little proportional shrinkage, and the con-
tribution to the variance from the second term will remain
small as long as the magnitude of the shrinkage |w;(y./n,
— ¢)| remains small. On the other hand, for units having
large n;, the contribution of the variance from the second
term will be large when y,/n, is far from &. This is quite
intuitive: the units that shrink a lot also tend to have greater
uncertainty attached to them; this may happen because
either the sample sizes are relatively small (which increases
the proportion of shrinkage and the first term of the vari-
ance) or the distance from the sample mean to the esti-
mated second-stage mean is relatively large (which in-
creases the magnitude of shrinkage and the second term
of the variance). The examples in Section 4 illustrate the
behavior described here.

3.2 Second-Order Approximations

In this section we briefly review available second-order
approximations to the posterior expectation (and vari-
ance) of a function G(1), which have error of order O(k ).
These may be used to check the accuracy of first-order
approximations, as illustrated in Section 4. We also indi-
cate how the first-order approximations of Section 3.1 are
derived.

The posterior expectation of G(4) may be written in the
form

J GR)L(Dr(A) dA
[ L)r(2) dr
and then the numerator and denominator integrals may

be evaluated by asymptotic approximation using Laplace’s
method (e.g., see Erdelyi 1956). In general, if / is a smooth

E(G(A) |y) = (3.12)
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function of an m-dimensional vector 4 having a minimum
at A and b is some other smooth function of A, then, under
suitable regularity conditions, we may expand / and b
about 1 to obtain

f b(A)exp| — kh(2)] d

= (2n/k)m2det(D*h(1))~2b(A)exp[ — kh(D){1 + O(k~")}
(3.13)

as k — o, where Dzh(/Al) is the Hessian of 4 at 4, the order
O(k~'?) terms having vanished on integration. Applying
(3.13) with & = h, (1) = —k ! - log(L(4)n(4)) to both the
numerator and denominator of (3.12) yields (3.5). The
first-moment approximation (3.1) follows as a special case
and, although Laplace’s method is often not referenced
by name, this is the argument used to derive (3.1). Simple
regularity conditions and further references are given by
Kass, Tierney, and Kadane (in press, a).

By carrying out higher-order expansions, the first ne-
glected term in (3.13) may be calculated; it involves the
first four derivatives of 4 and the first two of b. Applying
the result to (3.12), there is cancellation of terms involving
fourth derivatives of 4 and we obtain

EG@ 1Y) = 60) + 15, 50 { G = 6. S s}
a,b c,d
+ O(k™%), (3.14)
where Z(/l) log(L(4)n(4)) is the log-posterior density,

having / as its maximum, ,, = . With S = (-D¥(A))",

and the subscripts on G and [ indicate partial derlvatlves
evaluated at 1. If (3.14) is applied to approximate E(G(4)?
| y) and then the square of the approximation to E(G(4)
| y) is subtracted, we arrive at (3.4) and (3.6). Again, this
is the argument used to derive (3.2). If [ and the posterior
mode 1 are replaced by the log-likelihood / and the MLE
A (and the derivatives are evaluated at 1), the term
30500 Gapy, Where p(1) = log(n(4)), must be added to
the right side of (3.14), whereas (3.5) and (3.6) remain
valid as written. These expansions have been given in this
and other contexts by various authors [e.g., Lindley (1961,
1980) and Mosteller and Wallace (1964, sec. 4.6); we note
that eq. (3) of Lindley (1980) omits a minus sign—see
Tsutakawa (1985) for an application and Kass, Tierney,
and Kadane (1988) for additional references].

In addition to its use in justifying the first-order variance
approximation (3.2), Equation (3.14) is of direct interest
as a second-order approximation to the posterior expec-
tation of G(1). An alternative second-order approxima-
tion, due to Tierney and Kadane (1986), applies when G
is a positive function. With [ and 3 defined as in (3.14),
letting *(4) = I(1) + log(G(4)), with maximum A*, and
3* = (= D*(A*))"', we have

det(2*)¥? exp(l* (/1*)){
det(E)”2 exp(I(1))

E(G()|y) = O(k=?)}.

(3.15)
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This results from an application of (3.13) to the numerator
and denominator of (3.12) once the numerator integrand
is put in the fully exponential form exp(/*(4)); the error
is of order O(k~?) rather than O(k~!) because of cancel-
lation of the order O(k~!) factor. A second-order vari-
ance approximation may be obtained by approximating
E(G(A)?) along with E(G(4)), and then substituting the
approximations in the formula V(G(1)) = E(G(1)*) —
(E(G(4)))*. Extensions to nonpositive functions G are dis-
cussed in detail by Tierney, Kass, and Kadane (1989). A
numerical comparison of alternative expansions was made
by Mazzuchi and Soyer (1987), and a PEB application of
(3.15) was discussed by Gaver and O’Muircheartaigh (1987).

3.3 Tractable and Intractable Problems

The formulas of Sections 3.1 and 3.2 may be applied
without difficulty when (a) the model is conjugate, so each
likelihood factor L,, as defined in (2.3), may be evaluated
analytically and (b) the function G(1) may be obtained
analytically. When either (a) or (b) fails, however, further
techniques are needed, both for the approximations (3.7)
and (3.8) and for those of Section 3.2. When (a) fails but
the dimensionality of @ is small, numerical quadrature
(together with differentiation under the integral) may be
used. These conjugate and nonconjugate situations are
illustrated in Examples 1 and 2 of Section 4. In some
problems, (a) holds but (b) does not. This is the case in
Example 3, where Monte Carlo integration is used in con-
junction with first- and second-order approximations.

Finally, when (a) fails and the dimensionality of O is
not small, the problem becomes more difficult. Maximi-
zation of the posterior on 4 itself can be problematic [but
see Stiratelli, Laird, and Ware (1984) and Racine-Poon
(1985) for approximate EM-like methods]. The special
structure of CIHM’s may still provide some simplification.
For instance, in many models 4 does not appear in the
first stage; models in which a common parameter, such as
a scale parameter, does appear in the first stage may often
be altered so that the common parameter is eliminated
from that stage, as by allowing the scale parameter itself
to be unit-dependent according to a further second-stage
distribution. In this case, writing [, (1) = log(p(y. | 6,) p(6;
| 4)) and (1) = log(L(A)), and differentiating under the
integral, we have

DI(2) = E(DIy(2) | yi, A), (3.16)
where the expectation is taken with respect to the posterior
distribution of 6; conditional on A. Similarly,

D) = E(Ds(2) | yi, ) + V(DI(A) | y,, A).
(3.17)

Computation of the expectations and variance appearing
in (3.16) and (3.17) are amenable to asymptotic and nu-
merical methods; thus, although we do not pursue the
matter further, we observe that these expressions may be
helpful in applications involving intractable CIHM’s.
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4. EXAMPLES

We begin by introducing an especially simple CIHM,
the Normal-Normal model with known first-stage vari-
ances. Although the application of this model is often
somewhat artificial, it is the starting point of many dis-
cussions of “shrinkage” estimation (e.g., Lindley and Smith
1972).

Example 1. Suppose that conditionally on (6, . . .,
0,), Yy, ..., Y, are independently Normal(6;, ¢?) with
g1, . - . , 0 known, and conditionally on (u, 1), 6, are iid
Normal(y, 7%). This model is a CIHM with 1 = (u, 7).
Letting g(6) = 6, and w; = o2(6? + %)~ ! we have the
familiar expressions E(6; | y;, ) = wu + (1 — w)y; =
yi — wi(y; — u) as a version of (3.10). Transforming 7 to
p = —2log 7 and setting A = (u, p) gives §; = W0, =
-wi(1 — w)(y; — j1) as a version of (3.11), where w; =
o?(o? + 7?)~1. Thus we see that the second component of
variance can be large for those units for which the weight
w; on the mode i of the location hyperparameter is large
or the deviation y; — g is substantial. (Although some
formulas are more naturally expressed in terms of 7, we
have used p because it leads to a form of §, that is sym-
metrical in w,; in addition, its appearance here may help
emphasize that p is generally preferable to t in numerical
work.)

As a numerical illustration, we consider data from a
microbiology experiment in which 13 strains of E. coli
bacteria were examined for association of two traits. The
raw data for each strain were two pairs of sample sizes
and corresponding proportions (n,;, p,;) and (1, p.»), the
problem being to compare the underlying proportions p;;
and p;, among the 13 strains. Of particular interest was
the possibility that for some strains the proportions p,, and
Di» might be nearly the same. We assume here that the
data are distributed as binomial proportions, we transform
to the logit scale according to Y; = log[ pi(1 — p,)/ (Pl
— Pn))], we assume Y; to be Normally distributed, and we
take o7 to be known and equal to the first-order approx-
imate variance based on binomial sampling, 6? = [n, p;(1
— p)]™' + [rapa(1 — pn)]~!. This is, of course, some-
what crude, but by carrying out the analysis in this form
we obtain an illustration of the Normal-Normal CIHM,
with known first-stage variances. [The raw data appear in
Sklar and Strauss (1980), except for those from strain 11,
which were in a prepublication draft but were omitted from
the published paper; a paired-binomial or paired-Poisson
CIHM could be used instead, though we doubt that either
would lead to substantially different conclusions.]

The transformed data and the first-order results are shown
in Table 1. Here we use the mode (4, p) resulting from a
uniform prior on (u, p). The two components of the ap-
proximate variance are given in the last two columns of
the table. We wish to emphasize here the importance of
the second component of the approximate variance, which
is often ignored; in many strains it is substantial compared
with the first. In strain 10, the second component V2 is
much larger than the first component V1. This may be
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Table 1. Approximations for E. coli Data

Strain 7 a, 0 SD V1 V2
1 1.36 .28 1.35 2.63 .07 .002
2 2.26 1.04 1.56 .621 .32 .07
3 2.23 .75 1.68 .568 .25 .08
4 1.32 .36 1.31 319 10 .003
5 1.21 .38 1.24 .339 1 .004
6 1.27 49 1.28 .403 .16 .007
7 1.43 57 1.37 441 .18 .01
8 1.85 .54 1.62 453 .18 .03
9 1.34 .56 1.32 444 .19 .01

10 3.44 .73 2.20 .738 .24 .30
11 —.42 .69 .53 642 .23 .18
12 -.10 31 17 354 .08 .05
13 1.25 .39 1.27 342 A1 .004

NOTE: 4 and SD are the approximate means and standard deviations given by (3.7) and (3.8).
V1 and V2 are the two terms in (3.8). The posterior mode of (4, p) based on the uniform prior
is (1.30, —.47).

understood as coming from the large deviation of y;, away
from the modal value g = 1.30; the shrinkage is substantial
and so is the resulting uncertainty. In contrast, strain 2
has a much larger first component than strain 10, but a
much smaller second component (the observation being
less extreme), leading to a smaller standard deviation (SD)
when the two components are combined. Similarly, the
ninth and eleventh strains may be compared: the two first
variance components are not drastically different, but the
two second components are; there is much uncertainty
associated with strain 11, which is greatly shrunk toward
a. From a substantive point of view, strain 12 had a raw
difference of logits greater than that of strain 11. A pos-
teriori, however, the difference of logits is concentrated
near 0 for strain 12, whereas that for strain 11 is less
concentrated and its location has shrunk to a larger pos-
itive value.

Remark. In the homogeneous case of this Normal-
Normal CIHM, in which ¢; = -+ = 0, = o, when a
uniform prior is used on (u, p), (3.8) produces V(6 | y)
= w1 — W) + we'lk + QRa'k)(y; — YPHL +
O(k™Y)}, where s2 = (k — 1)' 2k, (y; — y)?and w =
o¥(o? + ?)~1, with 2 = exp(—p) being the modal value,
that is, the second component of the MLE of (u, 7?). This
approximate variance turns out to be the exact posterior
variance based on a uniform prior on (i, 7?) (e.g., compare
Morris 1986).

Example 2. Another simple case is that of dichoto-
mous data, in which Y; given 6; is binomial(r;; 0,). As the
second-stage distribution we consider first a conjugate
beta(vé, v(1 — ¢&)) distribution and then, as in Leonard
(1972), a Normal(y, t2) distribution on #, = log[0/(1 —
6))]. In the latter case we consider both a flat prior on the
parameters (u, w), where w = log 7, and an “informative”
proper prior. In each case we take g(6) = 6. For nu-
merical illustration we use the last 10 cities of the toxo-
plasmosis data set analyzed by Efron (1986). (Although
the qualitative features of the approximations are similar
when the full data set is used, the results are more striking
when the sample size is reduced by a factor of 3.) The
data (y;, n;) are number of subjects tested to be positive
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for toxoplasmosis and number of subjects tested in each
of many (here, 10) cities in El Salvador.

We begin with the conjugate beta second stage. With
the (&, v) parameterization, (3.10) and (3.11) apply. The
data and results based on a uniform prior on (&, p), where
p = log(v), are given in Table 2. We again emphasize the
importance of the second component of the approximate
variance, and we also draw attention to comparisons be-
tween cities: the sixth has a larger sample size than the
fifth, yet there is much more variability in its posterior
because it has shrunk much farther. Similarly, the first
variance components for the seventh and eighth cities are
comparable, but the second component is much larger for
the eighth city.

As a quick check on accuracy, (3.15) may be applied
with G(4) = E(0; | y;, ). The results are presented as
E(6; | y) in Table 2. In this case, first-order and second-
order values are quite close.

In the nonconjugate logit-Normal model, the quantities
entering (3.7) and (3.8) cannot be evaluated analytically.
In this case, as discussed in Section 3.3, results may be
obtained using one-dimensional numerical quadrature
over ®. When we use the nonconjugate Normal second
stage together with a uniform prior on 4 = (4, w), the
approximate posterior means given by (3.7) agree to three
digits with those obtained from the conjugate model, shown
in Table 2. The variances given by (3.8) agree with those
of Table 2 to the accuracy given in that table except for
three cities (the largest discrepancy being .0038 and .0055
for the variance terms for the eighth city, as opposed to
.0037 and .0053 obtained for the conjugate model). In this
example, with a tight second-stage distribution centered
near E(6;| 1) = .5, the conjugate and logit-Normal models
are very similar. Thus the results and interpretation are
essentially unchanged.

In contrast, if a more informative prior is specified for
A = (4, w), the results can be dramatically different. To
illustrate, we leave the prior on u flat but take w to be
Normally distributed with mean .8035 and standard de-
viation .797. We chose this prior in a rather arbitrary fash-
ion: we set u = u, = 0 and determined two values of w,
by setting Pr{.05 < 6, < .95 | u = py, ® = w} equal to

Table 2. Approximations for Toxoplasmosis Data Using the
Conjugate Model

cty vy, n b 6 E@ly SO vi V2
1 24 51 47 515 531 .067 23 22
2 7 16 44 .530 535 .078 34 27
3 46 82 .56 .559 562 .045 18 2
4 9 13 .69 .582 .584 .073 35 18
5 23 43 .54 547 553 .056 25 6
6 53 75 71 .642 .625 .076 17 41
7 8 13 .61 567 570 .067 35 10
8 3 10 .30 517 .520 .095 37 53
9 1 6 A7 518 518 .098 39 57
10 23 37 .62 .582 .580 .060 26 10

NOTE: B, is yi/n,, 6, and E(6, | y) are the first-order and second-order approximate means
given by (3.7) and (3.15), SD is the first-order approximate standard deviation given by (3.8),
and V1 and V2 are 10* times the first and second variance terms in (3.8). The posterior mode
of A = (¢, p) based on the uniform prior was found to be (.556, 4.08), with first-order asymptotic
standard deviations (.038, .13) and correlation .31.
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.5 and .99. We then interpreted the corresponding values
of w, (1.473 and .134, respectively) as the 80th and 20th
percentiles of the Normal prior on w.

Under this Normal prior, the posterior mode is (4,
exp(@)) = (.18, .51), compared with (.55, .27) obtained
under the uniform prior; in the probability scale, exp(z)/
(1 + exp(@)) = .55, compared with .63. The approximate
(modal) standard deviations for (u, exp(w)) are (.21, .40)
with a correlation of —.18. The comparable quantities
under the flat prior are (.16, .64) with a correlation of
-.28.

First-stage approximations using this more informative
prior are presented in Table 3. Because of the larger value
of @ there is much less shrinkage among the posterior
means [toward a smaller value, exp(@) = .55]. Corre-
spondingly, the second component of the variance dimin-
ishes while the first increases; thus the second component
contributes less than before. It is still consequential in
some cases: For city 9 the second component is 84% of
the first (yielding an increase of 36% in the standard de-
viation). Second-order expectation approximations using
(3.15) are given as E(6; | y).

We checked the accuracy of these approximations in
both the conjugate flat prior and the nonconjugate in-
formative prior models using (respectively) Monte Carlo
simulation and Gauss—Hermite quadrature (Naylor and
Smith 1982) over A. In both the beta-binomial and logit-
Normal models, the second-order approximations given
by (3.15) and the exact posterior means were identical to
three digits for 6 of the 10 cities; for the other 4 cities, the
values differed by no more than one unit in the third digit.
In the nonconjugate model, the first-order variance ap-
proximations given by (3.8) and exact posterior variances
differed by at most four units in the second digit—for
example, for city 6 the approximate variance was .0031
compared with an exact (quadrature) value of .0027. In
terms of standard deviation, the approximate value for
city 6 was 7% larger than the exact value.

Example 3. In hierarchical models involving multi-
nomial data Y; = (Y}, ..., Y},), the conjugate model
entails specifying a Dirichlet(v, &) prior for the first-stage
parameter vector 6; = E(Y;)/n;, where n; = E,‘Ll Y. Here,
the parameterization is such that & = (&, . . ., &,-1), &
=1-¢& = = ¢,.q,and E(0;| v, &) = ¢;. Under this

Table 3. Approximations for Toxoplasmosis Data Using a
Nonconjugate Model and an Informative Prior

City 3 6, E@©|y) SD v1 v2
1 47 488 489 .064 37 4
2 44 490 486 .097 76 18
3 .56 .558 .559 .051 25 7
4 69 609 616 .099 77 21
5 54 537 538 .066 42 2
6 71 677 677 .056 23 7
7 .61 575 579 .095 80 10
8 30 450 437 12 91 56
9 A7 441 421 14 105 88

10 62 598 599 070 44 5

NOTE: Headings for the second through sixth columns are defined in the note to Table 2.
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model, 4 = (v, &) and if we take G(4) to be a component
of E(0; | y;, 4), the mean vector of a Dirichlet random
vector, then an analytic result is available—namely, E(6;
|yi, A) = (W& + yy)/(v + m) forj = 1,. .., q.If instead,
asin the case of a2 X 2 table with ¢ = 4, we are interested
in the log odds g(6,) = log[(6:0.4)/(0,0,3)] and take G(4)
to be some functional of its distribution, then G(4) may
not have an analytic expression. For illustration, we con-
sider the data from Beitler and Landis (1985), reproduced
here in Table 4, which were originally obtained from a
multicenter randomized clinical trial investigating the ef-
ficacy of two topical cream preparations (active drug, con-
trol) in curing an infection. As shown in Table 4, in seven
of eight clinics the drug produced a higher proportion of
favorable responses, but there exists substantial variation
in the overall rate of favorable response (combining both
drug and control groups), ranging from 4.8% to 76.9%
across the clinics. We focus here on clinic 8, which is un-
usual in that it has the smallest sample size, and it is the
only clinic for which the observed proportion of favorable
responses is higher for the control group than for the treat-
ment group.

Suppose that we are interested in the posterior proba-
bility that the treatment will be ineffective for clinic 8. Let
y(6s) = I{g(0s) < 0}, where I(-) is the indicator function,
and assume a uniform prior on (log v, £). Then, the desired
probability can be expressed as the posterior expectation
of G(1), where G(1) = E(y(65) | ys, A). Letting A denote
the MLE (the mode) of 4 = (v, &), a first-order approx-
imation is given by

G() = f YO p(0s | ys. ) dbs.

In conducting the data analysis, we obtained the following
MLE’s for the hyperparameters: = 9.326, & = .205,
& = .135, and & = .288. The approximate density p(6;
| y;, ) is Dirichlet with parameters v* =  + n, and &
= (\‘/f, + y;)/(¥ + n;). Hence the integral in (4.1) can be
computed by a Monte Carlo method in which Dirichlet
observations are generated and the fraction yielding neg-

(4.1)

Table 4. Distribution of Favorable Response to Active Drug and
Control Treatments From a Multicenter Randomized Clinical Trial

Response

Proportion

Clinic  Treatment Favorable Unfavorable Total  favorable
1 Drug 11 25 36 .306
Control 10 27 37 .270
2 Drug 16 4 20 .800
Control 22 10 32 .688
3 Drug 14 5 19 .737
Control 7 12 19 .368
4 Drug 2 14 16 125
Control 1 16 17 .059
Drug 6 11 17 .353
Control 0 12 12 .000
6 Drug 1 10 11 .091
Control 0 10 10 .000
7 Drug 1 4 5 .200
Control 1 8 9 A1
8 Drug 4 2 6 .667
Control 6 1 7 .857
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ative log odds are tallied. Based on a simulation of 10,000
Dirichlet observations, we found Pr{g(fs) < 0| ys, A} =
.625(%.0048). The =+ figure is the Monte Carlo standard
deviation of the estimated probability computed as .0048
= [(.625)(.375)/10,000]"2.

The approximation (4.1) can be refined by using a sec-
ond-order approximation p,(- | y) to the posterior density
p(6s | y). With the first-order density approximation serv-
ing as an importance function for Monte Carlo integration,
the second-order approximate probability can be written
as

Pr{g(0s) < 0|y}

= [y [ﬁf%’%] p(0s | ys, ) db,. (4.2)

In this case, we have implemented the MLE version of
the second-order approximation (3.14) with G(1) = p(6s
| yi» 2). Under the conjugate specification, analytic expres-
sions can be derived for the second and third derivatives
of the log-likelihood I(4), as well as for G(4) and its first
derivatives. Numerical differentiation is used to obtain the
second derivatives of G(4), which involve the second log-
arithmic derivative of the gamma function. The compu-
tation of (4.2) is then accomplished by Monte Carlo in-
tegration, the only difference from the computation of
(4.1) being that the ratio of second-order to first-order
approximate densities serves as a weight function. Using
a sample size of 20,000 (so that the standard deviations of
the estimated probabilities are comparable), we found the
second-order approximate probability to be .648(+.0053),
reflecting a change in the second significant digit.

Example 4. 'We now consider the generalization of Ex-
ample 1 to the class of general linear models in which there
are k individual units and, for the ith unit, ¥; = X,a +
Zb; + e, In the notation and terminology of Harville
(1977) and Laird and Ware (1982), Y;is an n; X 1 vector
of responses, ais a p X 1 vector of unknown population
parameters, and X; is a known n; X p matrix linking a to
Y. In addition, b;is a ¢ X 1 vector of unknown individual
effects, Z; is a known n; X g matrix linking b, to Y;, and
e; is an n; X 1 vector of random errors. Models of this
form are widely used in the analysis of longitudinal data.
Analysis of panel data from economic surveys was re-
viewed by Johnson (1977, 1980) and Dielman (1983). Re-
peated-measures applications of the kind that occur fre-
quently in prospective studies of human subjects were
discussed by Laird and Ware (1982), following Dempster,
Rubin, and Tsutakawa (1981). Because of the importance
of these models, we present here the expressions needed
in computing approximate posterior variances according
to (3.8). Further details may be found in Kass and Steffey
(1986).

In our terminology, a is a vector of common parameters
and b; is a vector of unit-specific parameters for the ith
individual unit. This “mixed effects” model can be for-
mulated as a conditionally independent hierarchical
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model. At the first stage, we regard a and b; as fixed, and
the e; are assumed to be independent and normally dis-
tributed as N(0, R;), where R;is an n; X n; positive-definite
covariance matrix. Although R; depends on i through its
dimension n;, the set of unknown parameters in R, will not
depend on i. At the second stage, we take the b; to be
distributed as N(0, D), independently of each other and
of the ¢;, where D is a ¢ X g positive-definite covariance
matrix. Let { denote the vector of variance and covariance
parameters found in R; (i = 1, . . . , k) and D.

The posterior distribution of b; given « and ¢ is Normal
with E(b; | yi, &, {) = DZIVi'(y; — Xa) and V(b; | y,,
a,{) = (D' + ZIR;'Z)"!, where V; = R, + Z,DZ].
Substituting the posterior mode (&, £) for (a, ¢) in the
foregoing expressions yields, respectively, the approxi-
mate posterior mean and the first term of the approximate
posterior variance. The second term in the variance ap-
proximation, which accounts for the uncertainty in esti-
mating « and {, requires the second-order partial deriv-
atives of the log-likelihood function and the first-order
partial derivatives of G(a, {) = E(b; | y;, a, {), both
evaluated at (&, ). First- and second-order derivatives of
the log-likelihood may be found in Kass and Steffey (1986)
and are analogous to expressions given by Harville (1977).
We find

and
8G/aL; = [(0D/aL)ZF — DZIV:\(aVi/al)|Vit
X (yi — Xia). (4.4)

Computation of the negative Hessian of the log prior and
substitution of & and { for @ and ¢ in (4.3) and (4.4) then
provides the appropriate terms in (3.8).

An important simplification occurs when the prior on a
is uniform and 7(a, {) = p({), so integration over a may
be performed analytically. In this case, the integrated like-
lihood function L,({) = [ L(a, {) da plays a role anal-
ogous to the full likelihood L(a, {) in the general case
and, conditionally on {, the posterior expectation and vari-
ance of b; may be computed in closed form. Putting G({)
= E(b;| y;, {), we obtain

9G/3¢; = [(9D/8L)ZT — DZIP(aVi/aL)]Py,, (4.5)

where P, = Vil — ViIX(ZE, XTViX) ' XTV L. Ap-
proximations to the posterior mean and variance based on
(3.7) and (3.8) now follow, again, by computing the Hes-
sian of log(L,) and of the log prior and replacing  in (4.5)
with the mode of L, - n. Details are given in Kass and
Steffey (1986). We note that the maximum of L, is the
restricted maximum likelihood estimate introduced by Pat-
terson and Thompson (1971) [see Dempster, Rubin, and
Tsutakawa (1981) for discussion)].

In the foregoing expressions we have not given explicit
forms for the derivatives of D and V, because these matri-
ces might be assumed to have a special structure. For
instance, when R; is a multiple of the identity we obtain
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oVildl,, = Z,jZln, where (,, is the (j, m)th element of
the covariance matrix D and Z,, denotes the jth column
of Z,. Another important special case occurs when, in
addition, D is assumed to be diagonal. An approximate
Bayesian analysis of this case was given by Broemeling
(1985, chap. 4).

5. DISCUSSION

Deely and Lindley (1981) pointed out that approximate
Bayesian methods may be used with models employed in
PEB technology. We have elaborated on that theme by
introducing an alternative terminology, deriving and in-
terpreting the first-order approximation to the posterior
variance of the parameter estimated with the PEB meth-
ods, and discussing second-order approximations. The ac-
curacy of the variance approximation depends on the num-
ber k of units, rather than the number »; of observations
on a particular unit. Although when k becomes sufficiently
large, with n; remaining small, the first term in (3.8) will
suffice, we have found in several examples that it is ad-
visable to compute both terms. We have proceeded heur-
istically. Rigorous justification for expansions based on
Laplace’s method may be found in Kass et al. (in press,
a). We now add some comments on the role of approxi-
mate Bayesian methods in analysis with CIHM’s.

Although we chose to illustrate the methodology we
discussed with small data sets and simple models, part of
our purpose has been to develop tools that may be used
with large data sets and more elaborate models. In par-
ticular, we believe that approximate inference in CIHM’s
can be effective for analyzing data that are collected in
longitudinal studies. The methodology we have described
should complement existing technology, as used, for in-
stance, by Waternaux, Laird, and Ware (1989), and allow
generalizations beyond those already available. We refer
here not only to the first-order variance approximations,
but also to second-order asymptotic expressions: Longi-
tudinal data usually include covariates and, even with only
a few, we quickly reach a sufficiently large number of
common parameters that a substantial computational ef-
fort may be required to produce ‘“‘exact” posteriors.

Part of our emphasis on first-order asymptotics is due
to the great simplification provided when the posterior is
approximately Normal, with mean and variance given by
first-order approximations. A priority in data analysis
should be to check these approximations. Second-order
asymptotics can be useful for this purpose, in that agree-
ment of first- and second-order results at least provides
some reassurance, and disagreement indicates inaccuracy.
See Kass et al. (in press, b) for further development of
methodology in the context of single-stage models. It re-
mains advisable, whenever possible, to check at least some
features of the posterior using nonasymptotic numerical
techniques. For references and discussion, see Shaw (1988)
and Kass et al. (1988) (and the discussion to these papers).

Asymptotic analysis provides motivation for approxi-
mations and helps explain accuracy. Order of accuracy,
however, must be interpreted with care. For instance, one
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might consider the approximation to the posterior distri-
bution of g() given by the conditional posterior distri-
bution, conditional on 4 = A. This would seem to furnish
a valid first-order approximation, in the sense that Pr{g(6))
< ¢ | y} may be approximated by Pr{g(0,) < c|y,, 4}, with
multiplicative error of order O(k™!). Yet, use of the con-
ditional posterior entails use of the first term of the vari-
ance approximation (3.8) without the second term and, as
we have seen in the examples, this can seriously understate
the posterior variance. Thus the seemingly appropriate
order O(k ") approximation to the distribution function
may not be of much inferential use; furthermore, this in-
accuracy may occur even in cases for which the order
O(k~') approximation to the variance given by (3.8) is
quite adequate.

In addition, we have seen in Example 2 the important
effects of the prior distribution of 4. On the one hand, the
variance was shown to be well approximated by (3.8) in
that case. Yet, on the other hand, in Remark 1 following
(3.8) we noted that, to the order of the approximation,
the prior is irrelevant. This indicates to us that the asymp-
totic argument we gave was not appropriate for treating
the informative prior case. That argument assumes that
the prior precision is of constant order and the observed
information — D(4) is of order O(k); when these preci-
sions are instead of the same order of magnitude, that
assumption will not be satisfied. An alternative analysis
assumes instead that the prior precision is also of order
O(k) [formally, by assuming that the prior contains a scale
parameter that decreases at the rate O(k~"?)]. Laplace’s
method may be applied as in (3.13), and all results go
through, but it is now no longer true that the prior may
be omitted from the function being maximized in (3.13);
therefore, the mode may no longer be replaced by the
MLE. The practical observation, then, is that there is
sometimes a serious discrepancy between results obtained
using the mode and those obtained using the MLE and,
when there is, the mode is likely to be preferable.

Example 2 also furnishes a reminder that the estimate
of second-stage precision controls shrinkage, and that this
may be strongly affected by the prior on A, especially
when information about inter-unit variability is weak (see
also Hill 1965, 1977). Here we proceeded by reparame-
terizing and putting a Normal prior on p, with the as-
sumption that the posterior would be approximately Nor-
mal on (u, p). An alternative would be to develop
approximations that are appropriate for the variance com-
ponents directly [proceeding, for instance, along the lines
developed by Box and Tiao (1973, chap. S)]. This is an
important topic for further research.

Finally, a first-stage distribution is often selected for
some fairly good reason, whereas the second stage is cho-
sen purely for analytical convenience. In other situations
there may be several plausible candidates for the second-
stage model. With regard to Example 3 of this article,
some authors (Fienberg and Holland 1973; Sutherland,
Holland, and Fienberg 1974) elected to use the Dirichlet
second stage, and others (Laird 1978; Leonard 1975; Leon-
ard and Novick 1986) used Normal distributions on log-
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linear model parameters. Sensitivity and robustness con-
siderations need special attention in such instances.

[Received December 1986. Revised February 1989.]
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