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The Capacity of Low-Density Parity-Check Codes
Under Message-Passing Decoding

Thomas J. Richardson and Ridiger L. Urbanke

Abstract—in this paper, we present a general method for de- codes). For example, a rate one-half LDPC code of block
termining the capacityof low-density parity-check (LDPC) codes |ength 10 000 requires af, /N, of roughly 1.4 dB to achieve a
under message-passing decoding when used over any binary-inputyyit_error probability ofL0—3, whereas an equivalent turbo code

memoryless channel with discrete or continuous output alphabets. ith bl lexit hi th f
Transmitting at rates below this capacity, a randomly chosen ele- with comparabie complExity achieves the Same periormance

ment of the given ensemble will achieve an arbitrarily small target  at, roughly,E;, /No = 0.8 dB. Shannon capacity dictates that,
probability of error with a probability that approaches one expo- in order to achieve reliable transmission at a rate of one-half bit

nentially fast in the length of the code. (By concatenating with an per channel use over the continuous-input AWGN channel, an

appropriate outer code one can achieve a probability of error that E,/N, of at least 0 dB is required, and this increases to 0.187
approaches zero exponentially fast in the length of the code with ar- dB if we restrict the input to be bir{ary

bitrarily small loss in rate.) Conversely, transmitting at rates above . .
this capacity the probability of error is bounded away from zero It is well known, that any linear code can be expressed as
by a strictly positive constant which is independent of the length the set of solutiong of a parity-check equatioffz? = 07.
of the code and of the number of iterations performed. Our results - Furthermore, if the code is binary thdi takes elements in
are based on the observanon_that the concentration of the perfor- GF(2) and the arithmetic is also over this field.(&,, d.)-reg-
mance of the decoder around its average performance, as observed . ) . .
by Luby et al.[1] in the case of a binary-symmetric channel and a qlar LDPC code, as originally defln_e_d by Gallager, is a blnary_
binary message_passing a|gorithm, is a genera| phenomenon. For“near COde detel‘mlned by the Condltlon that eVery COdeWOFd b|t
the particularly important case of belief-propagation decoders, we participates in exactly, parity-check equations and that every
provide an effective algorithm to determine the corresponding ca- such check equation involves exactly codeword bits, where
pacity to any desired degree of accuracy. The ideas presented in; 434 are parameters that can be chosen fredly.other
this paper are broadly applicable and extensions of the general . . -
method to low-density parity-check codes over larger alphabets, words, the correspondlng parity-check math"f‘_SdV onesin
turbo codes, and other concatenated coding schemes are outlined.€ach column and. ones in each row. The modifier “low-den-
) o . . sity” conveys the fact that the fraction of nonzero entrieHiis
Index Terms—Belief propagation, iterative decoding, low-den- . . o .
sity parity-check (LDPC) codes, message-passing decoders, turboSmMall, in part!cular itis linearin ?he block length as compared
codes, turbo decoding. to “random” linear codes for which the expected fraction of ones
grows liken?. Following the lead of Lubyet al. [1] we do not
focus on particular LDPC codes in this paper, but rather analyze
the performance afnsemblesf codes. One way of constructing
|. INTRODUCTION an ensemble of LDPC codes would be to consider the set of all
B rity-check matrices of length which fulfill the above row
id column sum constraints for some fixed paramétérsd. ),
S‘Pd to equip this set with a uniform probability distribution. It
IS more convenient, however, to proceed as suggested in [1] and
define the ensemble of LDPC codes bipartite graphssee
ection lI-A, since the resulting ensemble is easier to anélyze.
any variations and extensions of Gallager’s original definition
re possible and these extensions are important in order to con-
truct LDPC codes that approach capacity. To mention only the
In their original (regular) incarnation, the performance otPNO most important ones: a) cpnstrugtmg irregular as pppos_,ed
LDPC codes over the binary-input additive white Gaussiatcﬁ regular codes [1], [9), [10], i.e., variables may parumpgte n
noise (BIAWGN) channel is only slightly inferior to that of !fferent numbers of che_cks, and check eql_Jatlons may involve
parallel or serially concatenated convolutional codes (tur fferent number_s of variables a_nd b) "?‘”O\ng nodes to repre-
sent groups of bits rather than single bits [11] (see also [5]).
Manuscript received November 16, 1999 revised August 18, 2000. In his thesis, Gallager discussed several decoding algorithms
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N the wake of the phenomenal success of turbo codes |
I another class of codes exhibiting similar characteristi
and performance was rediscovered [3], [4]. This class
codes, calledow-density parity-chec_.DPC) codes, was first
introduced by Gallager in his thesis in 1961 [5]. In the perio
between Gallager’s thesis and the invention of turbo cod
LDPC codes and their variants were largely neglected. Nota
exceptions are the work of Zyablov and Pinsker [6], Tanner [
and Margulis [8].
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the “variable” nodes, correspond to the variables, i.e., the cods-this approach is the following: even in the regular case it is
word bitsz; or, equivalently, the columns é&f, the other set, the not an easy task to construct codes which contain only large
“check” nodes, correspond to the constraints or, equivalenttycles and this task becomes almost hopeless once we allow ir-
the rows ofH . A variable node is connected to a constraint nodegular graphs. Sampling an element of an (irregular) ensemble,
in the graph if and only if the corresponding variable particien the other hand, is almost trivial. This approach was applied
pates in the corresponding constraint. The decoding algorithmigh great success in [1] to the analysis (and design) of LDPC
of interest workiteratively. Information is exchanged betweenensembles used over the binary erasure channel (BEC) as well
neighboring nodes in the graph by passing messages alongat¢he BSC when employed in conjunction with a one-bit mes-
edges. Each message can be associated to the codeword bitsaage-passing decoder.
responding to the variable node incident to the edge carryingThe contribution of the present paper is to extend the method
the message. Invariably, the messages can be interpreted as ebanalysis in [1] to a very broad class of channels and de-
veying an estimate of that bit’s value along with some reliabilityoding algorithms and to introduce some new tools for the anal-
information for that estimate. Associated with such a messagggs of these decoding systems. To clarify further the nature of
a hard decision: one can consider the bit's most likely value irthie results we briefly describe an example and formulate some
plied by the message. We will say that a message is “correct/alaims that represent what we consider to be the apex of the
correct” if its associated hard decision is correct/incorrect, i.¢heory. Let us consider the ensemble(8f 6)-regular LDPC
does/does not agree with the true value of the codeword bit.dodes (see Section Il for its definition) of lengtHor use over
the sequel, the precise meaning will be clear from context. a BIAWGNC, i.e., we transmit a codeword consistinguabits
Gallager [5] proposed the following step-by-step program to, € {+1} and receiver valuesy; = z; + z; where thez;
determine thavorst binary-symmetric chann@SC), i.e., the are independent and identically distributed (i.i.d.) zero-mean
BSC with the largest crossover probability, over which an appr@aussian random variables with variarde Choose a code at
priately constructe¢d,, d.)-regular LDPC code in conjunction random from this ensemble (see Section II), choose a message
with a given iterative decoding algorithm can be used to transmith uniform probability from the set of messages, and transmit
information reliably. the corresponding codeword. Decode the received word using
the belief-propagation algorithm. The following statements are

1) [Code Construction] For increasing length construct consequences of the theory:

a sequence ofd,, d.)-regular LDPC codes that do not
contain cycles of length less or equat2t{n ) where [Concentration] LetP*(¢) be the expected fraction of in-
correct messages which are passed in Afheiteration,
0(n) = ' where the expectation is over all instances of the code, the
In[(d. — 1)(d, — 1)] choice of the message, and the realization of the noise.
For anyé > 0, the probability that the actual fraction
2) [Density Evolution and Threshold Determination] Deter-  of incorrect messages which are passed in/heitera-
mine the average fraction of incorrect messages passed at tion for any particular such instance lies outside the range
the/th iteration assuming that the graph does not contain  (P7(¢) — 6, P*(¢) + &) converges to zero exponentially
cycles of length2¢ or less. For an iterative decoder with fast inn.
a finite message alphabet this fraction can be expressed
by means of a system of coupled recursive functions
which depend on the ensemble parametdysd. ), and
the channel parameter. Determine the maximum channel
parameter, called thehreshold with the property that
for all parameters strictly less than this threshold the
expected fraction of incorrect messages approaches zero
as the number of iterations increases.

dudc—dy—d,
In n —In SSgR=5

[Convergence to Cycle-Free CasE]*(¢) converges to
P°(¢) asn tends to infinity, whereP>°(¢) is the expected
fraction of incorrect messages passed indtedecoding
round assuming that the graph does not contain cycles of
length2¢ or less.

[Density Evolution and Threshold Determinatiaf° (¢)
is computable by a deterministic algorithm. Furthermore,

. . . there exists a channel parameter (in this cases*™ ~
3) Conclude that if one applies the chosen decoding algo- 0.88)% the thresholdwith the following property: ifs <

rithm to this sequence of codes witfx ) decoding rounds o* thenlim,_... P>°(£) = 0; if, on the other handy > o*

while operating over a BSC with parameter less thaq _the then there exists a constaytty) > 0 such thatP>>(¢) >

;hreshold founf'nL” Sthep 2) thgr; the blt—_e;ror protiabltllty ~(o) for all £ > 1. For the current example, using the
ecreases as *" , wherea and; are positive constants methods outlined in Section I1I-B to efficiently implement

which depend oitd,, dc) (one actually requires, > 2). density evolution, we get(s) > 0.068 for o > o*.

(Since the block-error probability is at mosttimes the

bit-error probability, it follows that the block-error prob-Thefirststatementassertsthat (almost) all codes behave alike and

ability can be upper-bounded in the same way.) so the determination of the average behavior of the ensemble

) o , suffices to characterize the individual behavior of (almost)
Although the analysis presented in this paper contains many
of the same elements as the program suggested by Gallager theé@llager attempted to compute the threshold for the BSC by a combinatorial

is one crucial difference. As remarked earlier, we do not foc@gproach. The complexity of his approach precluded considering more than a
icul f des b h few iterations though. For the threshold of tt#e 6)-regular LDPC ensemble
on any particular (sequence of) codes but rather on (sequengesirained the approximate lower boundidi7 whereas density evolution

of) ensembles as suggested in [1]. The main advantage gaipiees0.084.
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all codes. The second statement then claims that for lo#j°(¢). Finally, the existence of a threshold as asserted in the
codes this average behavior is equal to the behavior which dast statement requires more assumptions. It dependsotin
can observe on cycle-free graphs and that for the cycle-friee decoding algorithm used and the class of channels consid-
case this average behavior is computable by a determinigied. As we will see, such a threshold always exists if we are
algorithm. Finally, from the last statement we conclude that lordgaling with a family of channels which can be orderegbys-
codes will exhibit a threshold phenomenon, clearly separatiiggl degradation(see Section IlI-B1) and if the decoding algo-
the region where reliable transmission is possible from thathm respects this ordering. In some other instances, like in the
where it is not. As a consequence, if we want to transnmifise of decoders with finite message alphabets, the existence of
over the BIAWGNC using codes from tt§8, 6)-regular LDPC a threshold can often be shown by analyzing the corresponding
ensemble and a belief-propagation decoder we are confrontedursions directly.
with the following dichotomy. Ife < 0.88 and if we are given  Roughly speaking, the general statement is then of the fol-
any target bit-error probability, call i, then we can chooselowing kind. We are given a particular ensemble of codes, a
an appropriate number of decoding iteratidifs, o) and an family of channels, and a particular decoding algorithm. From
appropriate block length(e, o). We can then be assured thathese quantities we will be able to calculate the critical channel
all but at most an exponentially (in) small subset from the parameter which is called the threshold. Then almost any long
(3, 6)-regular LDPC ensemble of lengtiic, o) if decoded for enough code can be used to provide sufficiently reliable trans-
£(¢e, o) rounds will exhibit a bit-error probability of at mos#  mission of information if decoded by the given decoder for a
On the other hand, # > 0.88 and if we are willing to perform sufficiently large number of iterations provided that the actual
at most/ decoding rounds, wheris a fixed natural number, channel parameter is below this threshold. Conversely, reliable
then all but at most an exponentially () small subset of transmission over channels with parameter above this threshold
codes of the(3, 6)-regular LDPC ensemble will exhibit a bitis not possible with most codes chosen at random from “long”
error probability of at leasd.055 if decoded by means of atensembles. Therefore, one should think of the threshold as the
most/ rounds of a belief-propagation decoder. With regardsjuivalent of a “random capacity” for a given ensemble of codes
to this converse, we conjecture that actually the followingnd a particular decoder, except that in the case of random ca-
much stronger statement is true—namely, #ilhtodes in the pacity the channel is usually fixed and one is interested in the
(3,6)-regular LDPC ensemble have bit-error probability of dtrgest rate whereas for the threshold we fix the rate and ask for
least 0.05 regardless of their lengtland regardless of how the “worst” channel.
many iterationsare performed. This will follow if one can The outline of the paper is as follows. Section Il introduces
prove that cycles in the graph (and the resulting dependent®) class of codes, channels, and decoding algorithms con-
can only degrade the performance of the iterative decoder sidered in this paper. We show that under suitable symmetry
average ¢ a statement which seems intuitive but has so faonditions the error probability is independent of the trans-
eluded proof. mitted codeword. Section Il then focuses on the determination
Each of the above statements generalizes to some extenvftd’>°(¢) and the determination of the threshold value. We
a wide variety of codes, channels, and decoders. The concfarst investigate decoders with finite message alphabets. In this
tration result holds in essentially all cases and depends mainse, as pointed out aboves(¢) can be expressed by means
on the fact that decoding is “local.” Similarly, the convergencef multiple coupled recursive functions, and the existence of
of P(¢) to P>°(¢) is very general, holding for all cases of in-a threshold can be shown by a closer investigation of these
terest. It is a consequence of the fact that typically the decodiregursions. We will see that by a judicious choice of the mes-
neighborhoods become “tree-like” if we fix the number of itsages the resulting thresholds can be made surprisingly close
erations and let the block length tend to infinity. Concernin the ultimate limit as given by the (Shannon) capacity bound.
the density evolutionfor decoders with a message alphabet &f/e next investigate the important case of belief-propagation
sizeq the quantityP>°(¢) can in general be expressed by meardecoders. Despite the fact that the message alphabet is infinite,
of (¢ — 1) coupled recursive functions (see Section IlI-A). Fom this case we describe an efficient algorithm that can be used
message-passing algorithms wiitfinite message alphabets theto calculate P>°(¢) for a belief-propagation decoder for any
situation is quite more involved. Nevertheless, for the impobinary-input memoryless output-symmetric channel to any
tant case of the sum-product or belief-propagation decoder desired accuracy. We also show that in this case the existence of
will present in Section 11I-B an efficient algorithm to calculatea threshold is guaranteed if the channel family can be ordered
by physical degradation, as is the case for many important

4Although this is not the main focus of this paper, one can aCtua“Pé\milies of channels including the BEC. BSC. BIAWGNC. and
achieve anexponetially decreasing probability of errofo achieve this, ’ ! ’ ’

simply use an outer code which is capable of recovering from a small lindd€ binary-input Laplace (BIL) channel. In Section IV, we will

fraction of errors. If properly designed, the LDPC code will decrease the lhow that, as the length of the code increases, the behavior of
probability of error below this linear fraction with exponential probabilityindividual instances concentrates around the expected behavior
within a fixed number of decoding rounds. The outer code then removes

all remaining errors. Clearly, the incurred rate loss can be made as sn@ld that this expected behavior converges to the behavior for
as desired. the cycle-free case.

*Note thaty, the probability of sending aerroneous messageis at least  The ideas presented in this paper are broadly applicable, and
0.068. To this (‘Torres.ponds it-error p.ropablllty which is at least0.05. extensions of the general method to irregular LDPC codes,
6By constructing simple examples, it is not very hard to show that f rDPC d | Ibhab b d d oth
some specifichits the probability of error can actually be decreased tir codes over larger alphabets, turbo codes, and other

the presence of cycles. concatenated coding schemes are outlined in Section V.
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Il. BASIC NOTATION AND ASSUMPTIONS

In this section we will introduce and discuss some of the
basic notation and assumptions that we will use throughout this
paper. We start by giving a precise definition of #mgsemble
of (d,, d.)-regular LDPC codes that we will consider. We then
discuss the notion afecoding neighborhood%his notion will
play an important role when giving a proof of the concentration
theorem. After a brief look at the class loihary-input memo-
ryless channelsve will introduce the class ahessage-passing
decoders, which are iterative decoders working on the graph and
which obey thextrinsic information principlevell known from
turbo decoding. Finally, we will see that under a suitable set of
symmetry assumptiottse conditional decoding probability will
become independent of the transmitted codeword, allowing us
in the sequel to assume that thk-one codeword was trans-
mitted.

A. Ensembles

Letn be the length of the binary code given as the set of so-
lutions z to the parity-check equatiofz? = 0. We con-
struct a bipartite graph with variable nodes andn = ’zi—d
checknodes. Each variable node corresponds to one bit of the
codeword. i.e., to one column &f. and each check node Cor_Flg 1. A(3, 6)-regular code of lengthh0. There are 10 variable nodes and

P : i : five check nodes. Thed, = 30 = md. “sockets” of the variable and check
responds to one parity-check equation, i.e., to one roé of

X ) nodes are labeled (not shown).
Edges in the graph connect variable nodes to check nodes and

are in one-to-one correspondence with the nonzero entriés ofthink of an edge as a pair of nods c}, wherev andc are the

Since each check equation typically decreases the numbe{/ﬁiable and check nodes incident to the given edge. If the graph

degrees of freedom by one, it follows that thesignrate of the does not contain parallel edges then both descriptions are equiv-

code is alent and we can freely switch between the two representations.
n—m d, Although this constitutes a moderate abuse of notation, we will
= T 1- o maintain the notatioe = {v, c} even if parallel edges are not

excluded. The reader is then advised to think aBsomeedge

The actual rate of a given code may be higher since these cheglich connects the variable nodeo the check node. This
equations might not all be independent, but we shall generadiiynplifies the notation significantly and should not cause any
ignore this possibility. There ared, = md, edges in the bipar- confusion. By alirectededgeg we mean an ordered pd, ¢)
tite graph, edges incident to each variable node on the left ard (c, v) corresponding to the edge= {v, c}. When we say
d. edges incident to each check node on the right. Fig. 1 givémt a message traverses a directed edge mean that it tra-
an example of 43, 6)-regular code of lengthO. verses it in the indicated direction. When we say that a message

The ensembl&™(d,,d.) of (d,, d.)-regular LDPC codes traverses an undirected edgave mean that it traverses it in
of length n which we consider in this paper is defined asome direction.
follows. Assign to each nodé, or d. “sockets” according to
whether it is a variable node or a check node, respectiveB. Decoding Neighborhoods

Label the variable and check sockets separately with the sej pathin the graph is a directed sequence of directed edges
[ndy] := {1, ..., nd,} in some arbitrary fashion. Pick a per-g, & such that, ifé; = (u;, u’), then theu, = u;; for
mutations on nd, letters at random with uniform probability ; _— 1,..., k — 1. The length of the path is the number of
from the set of al(nd,)! such permutations. The correspondingjirected edges in it and we say that the path starts frarends
(labeled) bipartite graph is then defined by identifying edgeg uj,, and connects; to u}. Given two nodes in the graph, we
with pairs of sockets and letting the set of such pairs gy that they havdistanced < oc if they are connected by a
{(¢,7(4)), i =1, ..., ndy}. This induces a uniform distribu- path of length but not by a path of length less than(if the

tion on the set"(d,, d.) (the set oflabeled bipartite grapts  nodes are not connected then we day c.) For a given node

In practice, one usually modifies the permutation in an attempt e define itsneighborhood of deptH, denoted by\V¢, as

to obtain the best possible performance for the given lengifie induced subgraph consisting of all nodes reached and edges
In particular, one avoids double edges between the nodes gidersed by paths of length at mdstarting fromu (including

excessive overlap of the neighbor sets of the nodes. u). Note that for any two nodas andu, we have, by symmetry
Strictly speaking, edges are unordered pgirsr(¢)}, where f the distance function

¢ and#(¢) denote the corresponding variable node socket and
check node socket, respectively. It is often more convenient to up € /\/u‘ﬁ < up € /\/L‘,il. Q)
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check node ¢

variable node v

(dy — 1) check nodes

(dy — 1)(d. — 1) variable nodes

Fig. 2. The directed neighborhood of degtlof the directed edgé = (v, ¢).

Let e be a particular edge between variable nedmnd check ) 1-¢ )
nodec, i.e.,e = {v, c} according to our convention. Thedi-

rected neighborhood of depth of e, denoted by\¢, is de- X Yt
fined asV¢ := N4 U 2. We claim that for any pair of edges -1 - -1

e = {v, c} ande’ = {V, ¢’}

Fig. 3. The BSC with parameter

ec N} =€ e N (2)

The channel is depicted in Fig. 3. It is well known (see [12,
By symmetry, it is clearly enough to prove the implication ip. 186]), that the (Shannon) capacity of this channel is
one direction. Hence, assume that N¢. A directed version
of e, denoteck, lies on a path of length starting from either’ Crsc(e) == 1—h(e) 3)
o/r . It follqws tha't there exists a path starting from eith’e_or whereh(z) := —z log, @ — (1 — @) log,(1 — ) is the binary
¢’ and ending at either or c of length at most/ — 1. Reversing eptropy function [12, p. 13]
the orientation of the directed edges in the path we obtain a pa{h Py P 2ol
of length at most — 1 from eitherv or ¢ to eithen’ or¢’. Thus, Example 2 [Continuous Additive Channels: Gaussian and
there exists a path of length at m@sttarting from eithev orc  Laplace]: Consider a memoryless binary-input channel with
containing a directed version of the edé, ¢’}. We conclude continuous output alphabet and additive noise. More precisely,
thate’ € N2 let the channel be modeled by := z; + z;, wherez, € {+1}

The directed neighborhood of depth of € = (v, c¢), de- andwhere is a sequence of i.i.d. random variables with prob-

noted byA¥, is defined as the induced subgraph containing ability densityp(z). The best known example is the BIAWGN
edges and nodes on pa#s ..., €, starting fromv such that channel for which

€, # €. Fig. 2 gives an example of such a directed neighbor- 1 2
hood of depth2. A directed neighborhood of a directed edge pRIAWGN(Z) = N e 207,
€ = (c, v) is defined analogously. If the induced subgraph (cor- 2no

responding to a directed or undirected neighborhood) is a trElee capacity of the BIAWGN channel is given by

then we say that the neighborhoodrese-like otherwise, we say 1

that it is not tree-like. Note that the neighborhood is tree-like iUz swan(o) :=— /%(x) log, ¢o(x)dr—= log, (2reo?)
and only if all involved nodes are distinct. For< d, < d., 2

one can prove that the number of (distinct) nodes as well as the (4)
number of (distinct) edges in a neighborhood of a node or of gfare

edge (undirected or directed) of de@his upper-bounded by

2 2
2(d,de) (see [5, p. 92]). bl = L <6_ @ry? | el ) .
V8&no?

C. Binary-Input Memoryless Channels As a second example, we consider the BIL channel for which

The class of channels we consider in this paper is the class 1 I<|
of memoryless channels with binary input alphabet {41} pBIL(2) == ——¢ X,
and discrete or continuous output alphaBBetWe will, however, 21
indicate some extensions in Section V. The capacity of the BIL channel is given by

Example 1 [BSC]: Let ;, =; € Z := {£1}, be the channel —7 4 4 arctan(e=/?) 14 e 2/A
input at timet, t € Z. Lety,, y; € O := {&1}, be the output at Cpi(A) = 261/ log, 2 082 < B ) :
time ¢. The BSC with parameteris characterized by the rela- ‘ (5)

tion ¢, = (—1)*+2,, wherew; is a sequence of i.i.d. Bernoulli
random variables witlPr{w; = 0} =1—c andPr{w, = 1} =e. O
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D. Message-Passing Decoders all indicated random variables are independent, then the

Without loss of generality, we can assume that the chanrﬁ’é‘f’tg'buuon of W’ (mo, my, ..., mq_1) is, by definition,
output alphabe® is equal to the decoder input alphabet. Given &l (P, P, ..., P).
code and a channel model there are, in general, many reasonabWe define the map
decoding algorithms based oressage passingthe class of al- O, 7%t I,
gorithms we consider in this paper. These algorithms behave as ‘ M
follows. At time zero, every variable node, i € [n], has an as- " an analogous way.
sociated received messagea random variable taking values in
O. Messages are exchanged between nodes in the graph al
the edges in the graph in discrete time steps. First, each variabl¥ is helpful to think of the messages (and the received values)
nodev; sends back to each neighboring check nogda mes- in the following way. Each message represents an estimate of a
sagetaking values in sommessage alphabett. Typically, at particular codeword bit. More precisely, it contains an estimate
time zero, a variable nodesendsr; as its first message (this of its signand, possibly, some estimate of idiability. To be
requires® C M). Each check node; processes the mes-concrete, consider a discrete case and assume that the output
sages it receives and sends back to each neighboring vari&ghabet is
nodev; a message taking valu.esM._ Each variable_no.dei Oi={—ao, ~(to—1)s ... =1, 0,1, ..., (g0 — 1), g}
now processes the messages it receives together with its associ- _
ated received value; to produce new messages which it theAd that the message alphabet is
sends to its neighboring check nodes. For every finde= N, a M:={-q, —(¢g—1),...,-1,0,1,..., (¢g—1), q}.

cycle or iteration of message passing proceeds with check noﬁ&s . fih indicat hether the t itted bit
processing and transmitting messages followed by the varia © sign ot the message indicates whether e transmitied bit s
estimated to be-1 or 41, and the absolute value of the message

nodes processing and transmitting messages. ) A ) . .
An important condition on the processing is that a messagea measure of the reliability of this estimate. The sign of the

sent from a noder along an adjacent edgemay not depend articular value, which represents arasure is equally likely
on the message previously received along eelgehere is a to be a+1 or a—1. In the continuous case we may assume

; - : . thatO = M = R, or even® = M = [—o0, +o0]. Again,
good reason for excluding the incoming message alongeitige . o ’ f "
determining the outgoing message along edgeturbo coding the sign of the message indicates whether the transmitted bit is

terminology, this guarantees that ordytrinsicinformation is _estlmated tobe 1 or +1, and the absolute value of the message

passed along. This is known to be an important property of go@oa measure of the reliability of this estimate.

message-passing decoders. Even more importantly, it is eXacé}j?)ur subsequent analysis and notation will be greatly sim-

Bhéymmetry Assumptions: Restriction to All-One Codeword

this restriction that makes it possible to analyze the behavior led by assuming the. foIIowmg symmetry conditions on the
the decoder. annel and the decoding algorithm.

Let U$”: © x M%~1 — M, £ > 1, denote the variable node Definition 1 [Symmetry Conditions]:
message map and 1&”: AM%~1 — M, £ > 0, denote the . Channel symmetry: The channel isutput-symmetric
check node message map as a functios ef N. These func- ie.,
tions represent the processing performed at the variable nodes
and constraint nodes, respectively. Py = glee = 1) = p(ye = —gl#e = —1).

Note that, because of the imposed restriction on the depen-, check node symmetry: Signs factor out of check node
dence of messages, the outgoing message only depends on message maps
(d, — 1) incoming messages at a variable node édd— 1)

c

incoming messages at a check node. Note also that we allow ‘PEZ)(blmla ooy ba—1My.—1)
these maps to depend on the iteration number. We assume that © de—1
each node of the same degree invokes the same message map =W (my, ., My1) H bi
for each edge and that all edges connected to such a node are i=1
treated equally. For completeness, If”: © — A denote for any+1 sequencgby, ..., by, —1).
the initial message map, i.e., nodg initially transmits the * Variable node symmetry: Sign inversion invariance of
messagdfﬁo)(m) to all of its neighbors. variable node message maps holds

For any given set4, letI1 4 denote the space of probability \I/(@(—m . .
distribution defined oven. In our analysis the messages will be v 0 =M ~M,—1)

. Ir analysis 5589 : — _g®

random variables, and we are interested in tracking the evolution = =0 (mo, my, ..., My, 1), €21

of their distributions during the execution of the algorithm. To  andw{”(—mg) = —&{” (my).

this end, we define the ma
P Lemma 1 [Conditional Independence of Error Probability

*\I/\(/é); e % de\v;l — Iy Under Symmetry]:Let G be the bipartite graph representing a
given binary linear code (not necessarily an LDPC code) and for
as follows. If mg is a random variable distributed ac-a given message-passing algorithmﬂé@(m) denote the con-
cording to Py € Ilp, andm;, ¢ = 1,...,d, — 1, are ditional (bit or block) probability of error after théh decoding
random variables distributed according 1o € II., and iteration, assuming that codewaedvas sent. If the channel and
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the decoder fulfill the symmetry conditions stated in Definition We say that a message passed along an edgerisctif the

1 thenPe(,é) (z) is independent at. sign of the message agrees with the transmitted bit, and we say
Proof: To prove the claim, lep(q) denote the channel that a message iacorrectotherwise. Recall from Section II-E

transition probabilityp(y = ¢|# = 1). Now note that any bi- that we may assume that the all-one codeword was transmitted,

nary-input memoryless output-symmetric channel can be maaid, hence, the number of incorrect messages is equal to the

eled multiplicatively as number of messages with nonpositive sign. (By convention, we

will count an erasure as being incorrect with probabilif2.)

We start in Section 1lI-A by focusing on the case of mes-
wherez; is the input bitg, is the channel output, anglare i.i.d. sage-passing decoders witlscretemessage alphabets. As re-
random variables with distribution defined B¢{z = ¢} = marked already, in this case the expected fraction of erroneous
p(q). Letz denote an arbitrary codeword and et xzz be an messages passed in tfik iteration can be expressed through a
observation from the channel after transmittingvherez de-  system of linked recursive functions which depend(dp d.)
notes the channel realization (multiplication is componentwiggd the channel parameter. By investigating this system of recur-
and all three quantities are vectors of leng)h sive functions one can usually prove the existence of a threshold

Letv; denote an arbitrary variable node anddetlenote one and this threshold can then be determined numerically to any
of its neighboring check nodes. For any received woatdet desired degree of accuratfurthermore, we show that by a ju-
m§f>(w) denote the message sent frefio c; in iteration as-  dicious choice of the message maps one can construct iterative
sumingw was received and et («) denote the message sen€0ding systems with a threshold which is surprisingly close to
from ¢; to v, in iteration/ assumingu was received. From the the ultimate (Shannon) limit at very low complexities. For ex-
variable node symmetry &t= 0 we havemgg) (y) = zimgg)(z)_ ample, in many cases, d.ecoder E (see Example 5) which uses
Assume now that in iteratiofiwe havem@(y) _ w‘mé)(z) amessage alphabet o_f size three,_ pt_arforms surprisingly close to
Sinces is a codeword, we have] & z = ’1 7Z]Froﬁ b_elle_f_propagatlon, which uses an infinite message alphabet, and
the check node symm7etry condiﬁzoanezévek bcé%clude tﬁat S|g_n|f|cantly better than Gallager’'s de_coder B (see Example 4),

which uses a message alphabet of size two.
m](f'i_l)(y) = xim§f+1)(z). In Section 1lI-B, we investigate the most important case of
Furthermore, from the variable node symmetry condition it fofs MeSSage-passing decoder W!th|ra‘m|te message alphabet, .
lows that in iteratiory 4+ 1 the message sent from variable nodgamely, the sum-product or bellef-propag.atlon decoder. I'n this
. Case, one has to keep track of the evolution of mesdagsi-
v; to check node; is . . S ; . .
ties. We will present an efficient algorithm to accomplish this
mgf“)(y) = mimgf“)(z). task. We will also show that, in the case of the belief-propaga-
tion decoders, thresholds always exist if we consider a family of
channels which can be ordered jblyysical degradation.

Yt = T2t

Thus, by induction, all messages to and from variable ngde
wheny is received are equal to the productagfand the cor-
responding message wherns received. Hence, both decoders .

commit exactly the same number of errors (if any), which provéoé Discrete Alphabets

the claim. Moreover, we observe that the entire behavior of theWe start with message-passing algorithms that use discrete
decoder can be predicted from its behavior assuming transmisssage alphabets. P), ke{-gq ...,-1,0,1,...,q},

sion of the all-one codeword. O be the probability that the message sent at time zero is equal to

(0) B ess .
In the sequel we will assume that the symmetry conditiorﬁc' Letp, ’ denote the corresponding probabilities at iteraion

are fulfilled and that the all-one codeword was transmitted.

3ssuming that edgehas a tree-like directed neighborhood up

to at least deptl2f). Similarly, let q,(f) denote the probability
of messages sent from check nodes to variable nodes #ththe
[ll. DENSITY EVOLUTION AND THRESHOLDDETERMINATION iteration. Assume we are given a particular message-passing al-

. . . . . é) (é
Recall from the introduction that there are three componer®8/ithm, i.e., particular message maps” and W . As was
to our proposed analysis of message-passing decodersSRgwn by Gallager,itis then, in p””‘_:'plev?853'(5’191}0”“‘3 down
concentration show that almost all instances behave nearfyfecursion, expressing -~ as afunction op; *,p;~ "’ the code

the same; 2)convergence to cycle-free casshow that the Parametersd,, dc), and the channel parameter.

average behavior converges (i_n the blo_ck lengdhto that Example 3 [Gallager's Decoding Algorithm AJConsider
of the cycle-free case; 3jlensity evolution and thresholdine ensembles ofd,, d.)-regular graphs. Let the channel be

determinationanalyze the cycle-free case via what we termefle BSC of Example 1 with input and output alphabett, 1}
density evolutioras well as determine thearesholdfor the -4 crossover probability. Then, clearlyp(” = 1 _ cand

cycle-free case. p(_oi = ¢. The message alphabet is given by = {-1, 1}.

In 'FlrI"S sectlor:hwteﬂ:/wllj cong_entrat_e ﬁg tf;le tglrcfl CTteE{J[;‘;"e‘l'he message maps are time-invariant, i.e., they do not depend
we witl assume that the decoding neighbornood o Qﬂ on the iteration number, and are given f(mo) = mo,
tree-like and we will analyze the evolution of the densities a L . - T -

\,(mo7 ml,...,mdv,l) = —My if m = mg = -+ =

function of the iteration number.

7In the case of parallel edges, has to be counted according to the multi- 8In some instance, it is even possible to determine the threshold analytically
plicity of the edge. (see, e.g., [13)]).
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mg,—1 = —mg andW¥,(mg, my, ..., mg,_1) = mg otherwise, TABLE |
and MAXIMAL PARAMETER e€* FOR THEBSCAND GALLAGER’'S DECODING
ALGORITHMS A AND B, ALGORITHM E (ERASURES IN THEDECODEF?, AND
de—1 BELIEF PROPAGATION (BP). NOTE THAT ALGORITHMS A AND B ONLY
N o ) DIFFER FORdy > 3. ALSO, LISTED IS THE MAXIMUM ALLOWED VALUE
o(my, oy Mg—1) = H M. €opt ACCORDING TO(3)
=1
dy | d. | Rate | ¢ (A) [ ¢ (B) [ e* (E) | € (BP) | eopt
In words, check nodes send a message indicatingthemodt | 3| 6 05| 004 004 007] 0.084  0.11
two sum of theotherneighboring variables. The variable nodes | 4| 8| 05| 0.047 | 0.051 | 0.059 | 0.076 | 0.11
send their received value unless the incoming messages g 1(5) g-i 88(251 g-gg 8-832 8‘1)‘152 Ooizllé
unanimous, in which case the sign indicated by these messac : : ’ . ' :
is sent 9 y 1 4] 60333 0.066 | 0.074 0.09 0.116 | 0.174
: 3] 4| 025| 0.106 | 0.106 | 0.143 0.167 | 0.215
It follows that
£ £ £—1 £—1 £—1 £—1
(qgiv ‘ﬁ )) :*\ch ((pgl )7 PE )) I (pgl )7 pg )))
1 1\ &1 have the following: the message maps are the same as in the pre-
=5 <1 - (1 —2p ) ) vious example, except théltéz)(zmo, Mi, ..., Mg,_1) = —Mp
el if [{i:m;=—-mg}| > and¥§ )(mo, mi, ..., Mg,_1) = Mg
1+ (1 - 2p(_f )) ) otherwise.
and The evolution o&J(ﬁ is now given by (see [5, p. 50])
Q) (f)) d,—1
pI1,p ¢ 0 0 d,—1
( b P =p - < i )
:*\Ijv ((q(_ézvqgé)> 700 (q(_ézvqgé))) k=bi
bt 1+ (1 2 <f—1>)df‘1' *
0 14 v 0 14 — —
= (o ()" (1- ). , -
2
d,—1 d,—1
0 £ 0 £
b () (1 ()" ). : iyt
_ o (=Y
Eliminating ¢ we obtain, as in Gallager [5, p. 48] ) 1 (1 2p_y )
de—17%—1 2
1+ (1 - 2p(f)1_1) L i

2 =% =5

2 P Y (40

d,—1 k=b;

1— (1 - Zp“‘”)dc_1 - o1k
_ (0 -1 1— (1 _ 2]7([_1)) ¢
+ (1 p_l) 5 . (6) . -1
2
From (6) it is easy to see that, for a fixed valuepé[ffl), p(_éi _ - doo1q -1k
is an increasing function qi(f{. Likewise, for a fixed value of 1+ (1 - 2p(_1_ ))
p(ff, p(ﬁ is an increasing function cp‘ﬂﬂ‘”. Hence, by induc- ' 9

tion we conclude thqt(ﬁ is an increasing function qf_ol). Let _ L A o
¢* denote the supremum of all valuespS_?f € [0, 1] such that The optimal choice o, was also determined in [5] and is given

limg o p(_[{ = 0. By the above argument it follows that, forby the smallest integer for which

2b—d,+1
all valueSp(_Oi < ¥, limy_. oo p(_[i = 0. Thesethreshold values 1_ p(O) 1+ (1 _ 2p(_41—1))dc_1 -
¢* are listed for various pairs @fl,, d.) in Table I, where most (0)_1 < )
of the entries were already given by Gallagewe note that P 1— (1 - 2p(_[1_1))
this decoding algorithm iginiversalin that it does not require
knowledge of the channel parameter. 0 Adgain, lete” denote the supremum of all valueszdff such

. 0 - .

Example 4 [Gallager's Decoding Algorithm B]Ford, > 3 that l.lmz_m P-1 = .O' By an argument similar tc()))that |n*the
the following algorithm, also due to Gallager [5, p. 50, is morB€V!0US ((=,K>)<ample, it follows that, for all vaIu.gé_l < <
efficient. The message along edge= (v;, ¢;) equals the re- lime—oo p—; = 0. The threshold values' are listed for var-
ceived valuer; unless at leastincoming check messages (ex{0Us combinations ofd,, d) in Table I.

cluding the message along edgedisagree with the received Example 5 [BSC with Erasures in the Decodelgorithm

value, in which case the opposite of is sent. The value of g]. Assume now that we extend the previous example by
b = b9 is in general a function of,, d., and?. Formally, we
10This decoder was independently conceived and analyzed by M. Mitzen-
9Exactthreshold values for this case can be found in [13]. macher [14].
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allowing erasures in the decoder, i.e., the alphabet is now _(qié—l))i (q(él—l))j (q(()é—l))d”_l_i_j

M:={-1, 0, 1}. The decoding rule is the following. At step
£, the message node takes the real sum of all incoming

messages, except the message along édde;, v;), plusw®

times the received messagg wherew(® is an appropriately

chosen weight. The message along edge (v;, ¢;) is now

chosen as the sign of this sum. At check neglethe message
along edge&€ = (c;, v;) is equal to the product of all incoming

messages except the incoming message alongezdge, c;).

d,—1
(0) :
+pri Z < . ) )
(¢,4):i—g>wy T dv_].—[,—‘l

TN 7 eI /ey l—imd
() (57 ()
P4 =1-p" = p.
It remains to specify the sequence of weight$), £ > 1 (at

Thus, in this example, the message maps are specified tby= 0 there are no incoming messages at the variable nodes

(% (mo) =mo
d,—1
T (mo, my, ..., my,_1) = sgn(w®@mg + Z m;)

=1

and

s

de—1
\ch(mlv (RN mdv_l) = H ms.

=1

We easily obtain

©_ 1|/ @ o\t ey e-p\ET
T R )

©_ 1| @ @\t e e-n\ETt
= ) k)

i) =1- (1-p ™)

These equations explicitly represent the equation
QY = *\pgé)(P(é—l)7 e p(é—l))
where
Pe= (0, p4 p5)
and
PO ="wQY, ..., Q).
The quantitieg;gf), p§‘>, andp(_é_zL can now be expressed as
dy—1
© _ 0 v
Pom =k Z <LL dv—1—2i>
(4,5): i—j=0
=)\ { (e-D)\' [ (e-D)\PTITE
(V) () (a)
d, —1
Y < )

(171) i—j=—wy i? j? dV - 1 - 7’ - j

- (q§é_l))i (q(_éfl))j (q((f_l))dv_l_i_j
NP <i,j,dvdv—_11—i—j>

(i, 4): imj=w;

. (qy—l))i (q(fl—l))j (q(()é—l))dv—l—i—j
Wil S (i)

(¢,7):i—j>0

. (qgf—l))i (q(_él—l))j (q(()é—l))dv—l—i—j
L YR (PP

(i, 4): i—j>—we

and, hence, no weight is used). Note that, at any givené&tep
different choices of the weight© will result in different den-
sities(p(_é_zU p((f), p@) and that there is no clear (linear) ordering
among those alternatives. To find a good sequence of weights we
could proceed in the following way. Assume that we would like
to minimizep(_é_zL +ap((f) atthefth decoding iteration, whereis
some positive number, e.gv,= 1/2. We can then find the op-
timum weightsw®, ..., w© by means of dynamic program-
ming. For the 3, 6)-regular code, the optimum weight sequence
found by dynamic programming s’V = 2, andw® = 1,
£ > 2. The advantage of such an approach is that it is widely
applicable regardless of how many alternative maps there are
at any step and regardless of how many levels of quantization
we have. The major drawback is that this scheme is computa-
tionally intensive and that it quickly becomes infeasible if the
size of the message alphabet becomes large. It is often almost
equally effective, and much less labor-intensive, to find sensible
heuristics. In the sequel, we will assume that the weigft,
w® € N, maximizes

190"+ 0 (p67) — b (s, 1) @)
which is the capacity of a memoryless symmetric channel with
binary input and ternary output with a crossover probability of
p(ﬁ and an erasure probability q)ﬁz). For the(3, 6)-regular
code this leads to the same sequence of weights, but no claim is
made regarding the optimality of this decision scheme in gen-
eral. Table | summarizes the largest achievable parametins
the various code parameters. We see that all entries are signifi-
cantly larger than their corresponding entries for Gallager A and
B. Particularly impressive is the performance for (he6)-reg-
ular code. We will later see that with belief propagation, the code
has a threshold for the BSC of roughly 8.4%. Hence, the simple
decoder with erasures performs almost as well as a belief-prop-
agation decoder.

Example 6 [Quantized Continuous Channels with Erasures
in the Decoder]: Encouraged by the large increase in the
threshold for the BSC when allowing erasures in the decoder,
we apply the same kind of decoder to continuous output
channels.

Assume first that we pick a symmetric thresheldaround
zero, and quantize the continuous output of the channel into
negative values, erasures, and positive values, depending on
whether the continuous outpufulfills » < —7, —7 < r < 7,
orr > T, respectively.

We can now apply exactly the same algorithm as in the pre-
vious example. Clearly, the resulting threshefdwill depend
on the choice of the threshold valate and we can try to find
the optimum such threshold value. We can make even better use
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of the received values if we adapt the quantization at every step defined by

of the decoding algorithm. More precisely, rather than picking

the threshold value once and for all, we can pick a suitable Ppo(m) = 6m — 3sgnm
threshold value at every step of the decoding algorithm. At
every stef we pick that threshold, and that weights(© which and let

maximize (7). For the BIAWGN channel and tf& 6)-regular pam: M — {12, -8, -6, -2, 2, 6, 8, 12}
code, the threshold is* = 0.743, which corresponds to a rawpe defined by

bit-error probability of roughly 8.9%. Hence, by providing soft I
information at the input to the decoder, even when the messages da(m) = 2sgnm <|m| + {TD .
are only ternary, the threshold raw bit-error probability can be

raised by almost 2% compared to a decoder which is fed hard! he variable message mé(mo, m;, my) is determined by
decisions. O ¢o(mo) + ¢a(mi) + ¢aq(mz) and by the threshold set

Example 7 [Quantized Gaussian Channel, 3-Bit Messages, {~o0, —18, ~12, =6, 0, 6, 12, 18, co}.
(3,6)-Regular Codes]: From the previous example itis evident-or example, ifng = 1, m; = —4, andm; = 2 then
that a very coarse quantization of t_he inputand a very small mes- Ppo(1) + dar(—4) + par(2) =3 — 12+ 6 = —3
sage alphabet can already result in very good performance. Weth tth t00i i (si 6 30
now present a very simple time-invariant decoder whose perfSP at the outgoing message-is (since—6 < —3 < 0).

mance on thé3, 6)-regular code over the Gaussian channel is It is gvident that the computational requirements to imple-
close to the performance of belief propagation. ment this decoder are very small. This decoder oti3hé)-reg-

. code has a threshaldvalue ofc* = 0.847, corresponding
Letthe message alphabet and the received alphabet be eﬁnl?g{lraw error rate of about 11.9%. Later we will see that with be-
lief propagation the code has a threshold of rougtily= 0.88,
O=M={-4,-3, -2 -1,1,2, 3,4}, equivalent to a raw error rate of about 13.0%. Hence, the per-
formance of this simple decoder is very close to that of belief
In this example, we look at practical situation: a quantized vegropagation.

sion of the Gaussian channel. If the output of the channel at timeactually, as specified, this decoder has an error floor of about
tisz; + z then the corresponding log-likelihood raties .- 0.06%. The error floor is easily removed by replacing
is given by 2 (z; + z). Let the threshold set be given by do: O — {—21, ~15, —9, -3, 3,9, 15, 21}
T={7 oo, T_3, T2, T_1, T0, T1, T2, T3, Too}
={—00, —4.2, —2.8, —1.4, 0.0, 1.4, 2.8, 4.2, oo}
and quantize the log-likelihood value according to these thresh-

to

with the corresponding
Po: O —{-9, -9, -9, -3,3,9,9, 9}

olds, e.g., ifl.4 < 2 (X, + Z) < 28, then the associated after sufficiently many iterations. O
received value ig. From the previous examples the general method should now
The check message map(my, ..., mq._1) is specified as pe clear. For a given discrete memoryless channel and a decoder
We(my, ..., myg—1) =sM with discrete message alphabet it is always possible, although
where thesign s is given by cumbersome, to write down the recursion describing the evolu-
d—1 tion of the fraction of incorrect messages which are passed. If
g = H sgnm; the channel is parameterized by a single real value, then we can
iy find the supremum of all such values for which the fraction of in-

and whereM is thereliability specified by the following deci- correct messages passed atéthedecoding iteration converges
sion tree. Letr, be the number of received messages out of d) zero ag tends to infinity. This threshold value is, of course,
(d.— 1) messages under consideration with reliability (absolugefunction of the code parameters. We will see in Section IV
value)q, g € {1, 2, 3, 4}. For simplicity, we represent the de-that this quantity, which we derived under the assumption that
cision as a sequence of tests. Thus, in the list below, we perfottme graph did not contain small cycles describes the average be-
the tests in order, stopping as soondds determined. havior over all inputs. Quite surprisingly, it also describes the
behavior for almost all randomly chosen graphs and almost all

1) Ifny > 0orn, > 3thenM = 1. inputs up to an arbitrarily small deviation, once the code length

2) Ifny > 1thenM = 2. is sufficiently large.
3) If ny = 1andng > 1 thenM = 2. It should also be clear from the previous examples that there
4) If ny = 10rns > 2 thenM = 3. is an enormously rich family of message-passing algorithms,

whose surface we have only scratched, and that by choosing dif-
5) M = 4. . ’ A
ferent elements of this family we can trade off complexity with
We define the variable message map by first mapping the gerformance. From a practical point of view, it is interesting to
ceived messages and the incoming messages into suitable intde that very simple decoders (like the ones used in Examples
gers so that the decision rule can be based on the sum of all thesead 6) can already yield extremely good performance.

values. L
alues. Let 1We have not demonstrated monotonicity of this decoder, but monotonicity
po: O — {21, —15, -9, =3, 3, 9, 15, 21} is apparent.
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B. Continuous Message Alphabets: Belief Propagation tain *\W,(Fy, P, ..., Py,_1) using the fast Fourier transform

Assume now that the message alphabet is continuous and {RFED)- , . )
the channel output is discrete or continuous. From our previoud-€t US now consider a check node We are interested in the
experience with binary or ternary message-passing algorithfid{90ing message along edge= (c;, v;), wherey; is some
it seems a formidable task to determine the threshold in the cdAiable node incident to;. Label all other edges (excludirg
tinuous case. But for the most important case, namely, the cfigident toc; with the se{d. — 1], and let the incoming message
of a belief-propagation decoder, there is an efficient way of dalong edge: € [d. — 1] be given bylog 2. We can think of
scribing and evaluating density evolution, which we will noveach such message as representing a Féndom variabteign
present. that takes on the valu1 with probability p& ;. Furthermore,

To begin, we will assume that our alphabets are the real$of these(d. — 1) random variables are assumed independent.
and that probability density functions of interest are absolutefthe outgoing message along edgs thenlog p% wherep.
continuous with respect to Lebesgue measure. This assumpiigthe probability that the product of these random variables has
is not required, and we will consider discrete (input) probaalue+1.
bility densities later, but it simplifies the mathematical state- To calculatep, it is more convenient to switch to the fol-
ments. Throughout, we shall refer to probability density fung¢owing alternative representation: assume that the random vari-
tions simply as densities. ables take values ifD, 1}, instead of 1}, with the correspon-

Roughly speaking, in belief propagation the messages sgghce) «— 1,1 « —1, po < p1, andp; < p_1. The valuejy
on an edge represent posterior densities on the bit associatgghow the probability that theiod 2 sum of the(d. — 1) inde-
with the incident variable node. A (conditional) probability denpendent{(L 1}-valued random variables is equal to zero.
sity on a bit is a pair of nonnegative reals;, p; satisfying  Note that the probability vectdo, 51 ) is given by the cyclic
p—1 +p1 = 1. Such a pair can be represented by the corrgonvolution of the(d. — 1) probability vectorgpf;, pf). An ef-
sponding log-likelihood ratidog -2 and, to be specific, we ficient way of performing these convolutions is by means of a
shall assume that the messages use this representation. Eaehier transform. In general, if represents a function over
node acts under the assumption that each density communic&éd2) = 7/27, then its Fourier transform is defined over
to itin a given round is a conditional distribution on the bit, ando, 1} and is given by
that each message is conditionally independent of all others, i.e., .
the random variables on which the different messages are based FU0) = F0) + £(1)
are independent. After receiving its messages, a node transiAftd
to each neighboring node the conditional distribution of the bit F(H) = f(0) — f(1).
conditioned orall information not coming from that particular\yhen f is a probability mass function, we have, of course,
neighboring node. More precisely, consider the message emitge@c)(o) = 1. Thus, we have
by a variable node; along the edg&€ = (v;, ¢;) in the/th de- g1
coding round. Assuming that there are no cycles of lergth Fo—prL = H (o — pb)
or less, this message lisg ppfll wherep_; is thea posteriori
probability that the value of the associated variable nodelis L d-1, & &
given the observed values of all nodes in the directed neighbgi"nd aI;q;o =1l (?%j— Pr) - 1)
hood/\/’f‘. An equivalent statement is true for the messages sen{f mis a log-likelihoodlog pr’ then it follows that

k=1

out from check nodes. et SN (m)
If I1, 12, ..., I} are likelihood ratios of conditional distribu- Po=PL= G + ‘ 2/
tions of a given bit value conditioned on independent randogonversely, if; = po — p1, thenlog 2 = log # Thus, the
P —9q

variables, then the likelihood ratio of the bit value Conditionedppropriate definition for the check message map is
on all of the random variables ﬁ;;l l;. Therefore, since we

do—1
are using log likelihoods for messages, we have 1+ J] tanh % m;
dy—1 \I/C(ml, oo, My _1):2 10g =1
< de—1
¥y(mo, my, ..., my,_1) := Z m; . 1— J] tanh %mi
1=0 =1
Given densities on the real quantities, mq, ..., mg,_1, it Let us consider the evolution of the densities of the messages
follows that the density oft,(mo, ..., my, 1) is simply the at the check nodes according to the above scheme. It turns out
convolution (over the reals) of those densities. In other wordbat, for this purpose, the check node update is more conve-
we have niently expressed using yet another representation of the mes-

% sages. A probability densitypo, p1) can be represented as a
V,(Po, Pi, ..., P, 1) =FPo@PL® - @ Py _ o ’ :

(o, P,y Pat) =B @ L@ @ Py log-likelihoodlog 22, as used above, and it can also be repre-
where @ denotes convolution. Letting” denote the Fourier sented using the irollowing ordered pair:
transform (over the reals in this case) we have

*W(Py, Piy ..., Py_1) =F YF(RP)F(P)...F(Py_1)).

(Igsgn(po — p1), —log [po — p1]) € GF(2) x [0, o0)
where we define
In our computations, we shallhav® = 72, = .-- = P, _; and I, <0
all densities will be quantized; we can therefore efficiently ob- lgsgng = { 0, q > 0.
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(Ideally, Ig sgn0 is defined probabilistically, taking either valueand

0 or 1 with equal probability.) Note that the above essentially . k o A1

decomposeg, — p; into its sign and its (log) magnitude. The F(Q)(s, 1) = |[(Pi(s) = Pi(s)).

advantage of this representation arises from the fact that, under i=1

this representation, the check node message map in the giVéis, Q may be obtained by performing the inverse Fourier
space GRF2) x [0, c0) is simply addition. transform. The density) = *W (P, ..., Py _1) can now be

Given a densityP of log-likelihoods we can find the obtained fromQ by a change of variables.
equivalent densityP” over GH2) x [0, o) by making the  Let us summarize how we perform density evolution for be-
appropriate change of measure. Lret denote a log-likeli- lief propagation fo(d,, d.)-regular graphs. LeP(®) denote the
hood with density”, then we wish to derive the density ofcommon density associated with the messages from variable
(Igsgnm, —log [tanh(7 )|)), where we have used the fact thatnodes to check nodes in tlith round, and let, denote the
density of the received values. First we find the dengtty

m
lg sgn tanh (—) =1 . ! Ve .
§sgn tanli\ 3 gsgnm corresponding t@(©. This is done using the change of measure

If m > 0, then, lettingy := —log tanh (3 ), we find the sur- described above. We then determine the der3ify according
prising symmetrical relatiom = —log tanh(§). Similarly, if o
m < 0 then letting (0,0 A1 A—1),0  A(e—1),1\ %1
- - =P - P
y = —log (— tanh (T)) = —log <tanh <_m>> @ @ < )
2 2 B
. . A (0,0 (0,1 A (6=1),0 4 (6=1),1\ %L
we have-m = —log tanh(%). Let P"(y), y € [0, 00), be Q +0Q = <P + P ) (8)
defined by P(y) = P(y, 0) and letP'(y), v € [0, o0), be
i L) — P i iati i 2 (0),5 . )
dein(()a)d byP*(y) = P(y. 1). By differentiating we obtain (for where@ denotes the Laplace transform@f®: *. Finally,
Y ) 1 we obtainQ® by performing the appropriate change of mea-
Py = ——— P (— log tanh %) sure.
and sinh (y) Thus, completing the iteration, we have
; 1 y @Y = 7 (p® O}~
oy= —— » tanh = ) . F|P =F(P FlQ . 9)
C Sinh(y)P(log o 2) he ab (d b)d | ( h )( b(l )> ff I
o : ~ The above described algorithm enables one to effectively com-
Similarly, Pweh O
imiarly, givent=we have pute PHD from PO via judicious use of the FFT.
1 ~0 m .
P(m) = Siuh (m) P (—log tanh 5) Although we have assumed that the dendity?’ is abso-
t lutely continuous with respect to Lebesgue measure, the anal-
form > 0 and, form < 0 . . " .
1 , m ysis above easily extends to more general densities. In partic-
P(m) = Suh (—m) P! <— log tanh T) . ular, we may consider discrete densities. In some cases, we may
S11L —m

_ _ havefoojr PO (x) dz > 0for some¥, in which case special con-
Note that the space GE) x [0, ~c) is the direct product of tWo gjgeration must be taken for this probability mass. This can be

fields and that we are interested in computing the densities @1 in a straightforward manner, as we indicated earlier, and
the sum of putatively independent random variables over t{s| not be described further.

space given their individual densities. It follows, and this is the The apove algorithm can also be used to study quantization
point of the representation, that the density of this sum is thgects. I the messages are quantized versions of the messages
convolution of the densities of the summands. This convolutigRa would be obtained using belief propagation, then the perfor-
can be efficiently com_puted using (_generahzed) Fourier tranr_?fance can be evaluated as above by simply, for given messages,
forms. Here, the Fourier transform is the Laplace transform E?:)mputing the density of return messages assuming belief prop-

the second coordinate (in practice, we use the Fourier transfofghion and then quantizing the densities in accordance with the
over the reals) and the discrete Fourier transform ovet33 quantization of the messages.

the first coordinate. = Essentially, all our finite-alphabet examples can be in-

More specifically, let” , P denote the Laplace transformseerpreted as quantized versions of belief propagation. The

of P°, P*, respectively. The Fourier transform of the dengity eight-level message passing algorithm of Example 7, in partic-

is given by ular, was designed by hand to approximate belief propagation

]_-(P)(& 0) = ]’50(8) +]§,1(8) near the threshold ve}lue for that decoder. The quantization

levels were chosen visually from plots of the message den-

and o 1 sities arising from belief propagation and partially quantized

F(P)(s,1) =P (s)— P (s). belief propagation (we introduce quantization in stages). The

Let O denote the density 025;1 f; wherem; € GF(2) x rules given to desc_nbe. the algorithm are cpn5|stent W|th the
[0, o0) corresponds to a log-likelihood messagedistributed effect of the qqan.tlzat]o.n but are written in a form which

according taP,. We then have emphasizes their simplicity. We have not attempted to properly

koo . optimize the quantization levels, and we restricted ourselves

F(Q)(s, 0) = H(Pi(s) + P, (s)) to tlme_-lnvarl_ant quantlzathn. Clearl_y,_ the algorithm is n_ot
the optimal eight-level algorithm but it is surely close and its

=1
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construction indicates general principles that can guide theder operating on the output of the chankélhas a smaller

design of low-complexity decoders. probability of error than a belief-propagation decoder operating
1) Monotonicity—Threshold EffectsAssume we are given on the output of the chann@l”’,i.e.,p < p’. O

a class of channels fulfilling the required symmetry condition

and that this class is parameterizeddayThis parameter may

be real-valued, as is the case for all our examples (the crossover respect to a particular decodithe convergence for a pa-

probability e for the BSC, the standard deviatienfor the BI- rameter implies the converae for every parametésuch that
AWGNC, the parametek for the BILC), or may take values -, @ 1mp 9 yp

. . . a < a.

in a larger domain. For a fixed parameterwe can use the

above algorithm to determine if, for a givéd,, d.), the ex- Example 8 [BSC: Monotonicity by Self-Concatenatior]s-
pected fraction of incorrect messages tends to zero with an stme we are given two BSCs with parametérande, respec-
creasing number of iterations under density evolution. tively. It is then easy to see that their concatenation (in any

For all our examples, the parametereflects a natural or- order) is again a BSC and that the parameter of the concate-
ﬂ(?ded channel is

dering of the channels—the capacity decreases with increas
parametet. Itis, therefore, natural to ask whether in such cases
the convergence for a parameterautomatically implies the

convergence for every parameter such thato! < «. More Moreover, for any” > 0 and anye’ < ¢ there exists a posi-

generally, we mightwant to define a partial ordering of channeﬁ% e such that (10) is fulfilled. By Theorem 1, this proves the

with respect 1o a given code and a bel_ief—propggation dec?d%onotonicity of the class of BSCs with respect to a belief-prop-
Let a channelW be represented by its transition prObab'“tyagation decoder

pw (y|z). We say that a chann#&l” is physically degradedith
respect toV if pw (v |2) = po(v'|y)pw (y|2) for some auxil-
iary channek), see [12].

If a class of channels is parameterized by a real-valued pa-
rametere, we will say that the class of channelsngnotone

e/ =(1—-¢)e+(1—e). (10)

Equivalent statements are true for the class of BECs, the class
of BIAWGNCs channels, and the class of Cauchy channels with

A

Theorem 1 [Monotonicity for Physically Degraded Chan- PCauchy(2) = O )
m z

nels]: Let W andW’ be two given memoryless channels that
fulfill the required channel symmetry conditions. Assume that
W’ is physically degraded with respect #. For a given Example 9 [Monotonicity of the BILC]:As discussed in Sec-
code and a belief-propagation decoder,zdte the expected tion I, for the class of BILCs we have

fraction of incorrect messages passed at fite decoding

O

. ) X . i 2 1 _lz

iteration assuming tree-like neighborhoods and transmission priL(z) = BT e A

over channeW, and letp’ denote the equivalent quantity for

transmission over chann8l”. Thenp < p/. Although the concatenation of a BILC with a Laplace channel

Proof: Let€ = (v;, ¢;) be a given edge and assume thgLC) is not a BILC, one can check that the concatenation of a
/\/5‘ is tree-like. LetR be the result of passing a randomlBILC with parameter\’ with an additive memoryless channel
chosen codeword through chanf€l, and letR’ be the result with
of passingR through an additional auxiliary chann@l which ) )
is chosen so that the concatenatiorfand @ results in the (A (A 1 mE

. . . - p(z) = S(=)+ |1 e A
channeli¥’. Consider the following three maximum-likelihood N N 2X

(ML) estimators of the bit value associatedwtogiven all ob-
servations inVZ¢. The first estimator has input, the second whereé denotes the Dirac delta function, results in a BILC with

one has inputR, R'), and the third one has inplt’. Since Parametei. Hence, by Theorem 1, the class of BILC is mono-
the transmitted bit associated with variable negeas uniform tone with respect to a belief-propagation decoder. O
a priori probability, an ML estimator is equal to a maximum 2) Thresholds for Belief Propagation—Exampleor
a posterioriestimator, which is known to yield the minimumg,ch of the examples below we computed the corresponding
probability of error of all estimators based on the same obserygrashold value. Note that, in order to carry out the computa-
tion. The first two of the above three estimators clearly yield thg,,g the involved quantities have to be discretized. In order to
same probability of error since the additional infiitis con- - 5y5ig some of the resulting numerical precision problems, we
ditionally independent of the transmitted bit givéh Further- - a4e sure that the discretization was symmetric with respect
more, we can think of the third estimator as an estimator whigh 1o input parity. As a consequence, the computations cor-
has input( %, K') but ignores in his decision. Clearly, such resnond to actual implementable message-passing algorithms
an estimator cannot have smaller probability of error than th&antized, possibly probabilistic, approximations of belief
optimal (ML) estimator given inputi, R'). propagation). Since the values reported are those for which the
The claim now follows by observing that, for a belief-propprobability of error converged to zero (within machine preci-
agation decoder, the sign of the message sent alongeeuige sion,) it follows that the reported thresholds are guaranteed to
the ¢th decoding iteration is equal to the estimate of an ML ebe lower bounds. In all cases, the values presented are believed
timator based on the observations\i’rei‘" [15]. Our above state- (after extensive numerical checking) to be accurate (rounded
ments then translate into the fact that a belief-propagation dkwn) up to the number of digits given.
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TABLE I
THRESHOLDVALUE ¢* FOR THE BIAWGNC UNDER BELIEF PROPAGATION
FOR VARIOUS CODE PARAMETERS. ALSO LISTED IS THE MAXIMUM
ALLOWED VALUE 0,,; ACCORDING TO(4)

dy | d. | Rate | o* Topt
31 6 0.5 | 0.88 | 0.979
41 8 0.5 | 0.83 | 0.979
5110 0.5 { 0.79 | 0.979
3| 5 04110 |1.148
4| 60333 ] 1.01]1.295
3| 4| 02571.26|1.549
TABLE I

THRESHOLD VALUE A* FOR THE BILC UNDER BELIEF PROPAGATION FOR
VARIOUS CODE PARAMETERS. ALSO LISTED IS THEMAXIMUM ALLOWED
VALUE Aot ACCORDING TOEQUATION (5)

dv | de | Rate | A* Aopt
3| 6 0.5 | 0.65 | 0.752
41 8 0.5 | 0.62 | 0.752
5110 0.5 | 0.58 | 0.752
3| 5 0.4]0.77 | 0.914
4| 60.333 [ 0.78 | 1.055
3| 4| 0.25]1.02 | 1.298

Example 10 [BSC Under Belief Propagation|¥e start by
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corresponds to the output of an actual channel or not. One situ-
ation where such a criterion would be of great value is the sit-
uation of a channel mismatch. Assume, for example, that it is
known that the channel belongs to a certain class parameterized
by « but the exact value ak is unknown. Assume further that
the class is monotone and that the threshold*isin such a
situation, it is natural to inquire if a belief-propagation decoder
is “universal” in the sense that it may assume a parameter
and that it will decode correctly with high probability as long
as the actual parametelis strictly less thary*. Unfortunately,

this question cannot be answered by means of the monotonicity
theorem since the input to the decoder will, in general, not cor-
respond to the output of an actual channel.

IV. CONCENTRATION AND CONVERGENCE TO THE
CYCLE-FREE CASE

In this section, we will show that the average behavior of
individual instances (of the code and the noise) concentrates
around its expected behavior when the length of the code grows
and we will show that this average behavior converges to the
behavior of the cycle-free case.

The concentration result which we derive applies regardless
of whether the average fraction of incorrect messages passed at
the /th iteration converges to zero As— oo or not. Hence, as-

applying the above algorithm to the BSC with crossover probauming that the codeword lengthis large enough, for almost

bility . The initial densityF, is given by

Po(x)=¢b <$+10g <?>) +(1—e)8 <a:—10g <1:>> .

The resulting threshold values are given in Table I.

all codes in the ensembi&*(d,, d.) transmission will be reli-
able if and only if the parameter of the channel is below the cal-
culated threshold value. More precisely, if the parameter of the
channel is below the calculated threshold value, then, given any
arbitrarily small target error probability, it can be achieved using
£ iterations of the decoder (for some fixédlepending on the

Example 11 [BIAWGN Channel Under Belief Propagatarget error probability) with probability approaching one expo-
tion]: We next apply the above algorithm to the BIAWGNhentially inn by choosing a code at random frafi(d,, d.). If

channel with standard deviatien In this case we have

2 o —(z —1)?
P —_— = .
0 <02 x) o2 T 207
The resulting threshold values are given in Table 1. O

Example 12 [BILC Under Belief Propagation]As a final

example, we apply the above algorithm to the BILC with p

rameter\. In this case we have

1 2 1 2 2 1 o+
P0<x>:§5<x+x)+§(’”<x‘x)+z@‘ T Xjel<2

where
y . 1, lz| < 3
2z =
FEST 0, el > 2,
The resulting threshold values are given in Table 111 O

the parameter of the channel is above the calculated threshold
value, then there is an > 0 such that, for any fixed number

of iterations?, the decoder will yield an error rate larger than
with probability approaching one exponentiallyinvhen using

a code chosen at random frai(d,, d..). (Note that if we could
prove that loops in the graph degrade average performance, and
we conjecture that this is actually the case, then we could allow

at_he number of iterations to be arbitrary.)

In order to simplify some of the subsequent notation, we will
assume that the number of iterations that the decoder performs
is fixed and we will denote this number Wy All subsequent
guantities are then the quantities at iteratfoand, hence, we
often omit the index.

Assume that we are in th¢h iteration and recall that the mes-
sage passed from variable nodt check node is a function
of the chosen graph and the input to the decoderA.be the
number of incorrect messages amongiall variable-to-check
messages sent out in tlth iteration and lefE[Z] be the ex-

As we have seen in the previous example, the monotonicjigcted value o where the expectation is over all graphs and
theorem is a powerful tool. Nevertheless, in some situationsait decoder inputs. For a given edge/hose directed neighbor-
would be desirable to have alternative sufficient conditions ftiood of deptl2/ is tree-like, let be the expected number of in-
convergence of the density evolution according to a belief-properrect messages (including half the number of erasures) passed
agation decoder. These conditions should depend only on #leng this edge at théh iteration, averaged over all inputs. We
shape of the input density, regardless of whether this denditgve seen in the previous section hpwan be determined in
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most cases of interest. Note that in the case of continuous magerage is over all graphs and all decoder inputs. Then, by lin-

sage alphabetgp,is given as earity of expectation and by symmetry
0 o+ E[Zl= Y E[Z]=ndE[Z]
pi= / P(z)dz+ % P(z)dr i€lnd)]
= o Furthermore

whe_reP(x) describes the density of the messages af.’ﬂﬂndi— E[Z]=E [le-egz is tree-likg Pr {N-EN is tree-like}
eration. Although we will not make use of this fact in the se- ot - , Lo .
quel, we note that the same concentration result applies to the ~ TE [Z1|NZ is not tree-likg Pr { A is not tree-likg
more general case of a random variaBlethat corresponds to where/\/g?f denotes the directed neighborhood of deptiof
messages in the range 6foc, | for anyz € R. The pre- edgeg;. Itis shown in Appendix A that

vious case is then just the special case= Z,. More impor- ar20 . i

tantly, sinceZ,, andE[Z,] are increasing functions with range Pr{Ngis not tree-like} < n

[0, 1], uniform convergence to withia follows from conver- for some positive constant Furthermore, we have

gence at finitely many points determined BjZ,]. For ex- E[Z,|N2! is tree-lik§ =p
ample, ifE[Z,] is continuous inc, then we may take the points . &

whereE[Z,] = €/2 + me for m = 0,1, ..., [}] — 1. f Py definition and

Z. is within ¢/2 of E[Z,] at these points, the&,. is within |E[Z1|NZ¢ is not tree-likg| < 1

e of E[Z,] for all z. If E[Z,] is discontinuous, then, in gen-givially
eral, we must consider left and right limits at eacland we ' ~y ~y
obtain uniform convergence of these limits. These uniform con- ndyp (1 - 5) < E[Z] < nd, (p + ﬁ)
vergence results shpw thgt the cumulatlve_ message dlStI_’IbutIgI"]‘aE[Z] — ndp| < dyy. It follows that if n > 2 then
computed for tree-like neighborhoods uniformly approximates €

the actual message distributions to withimith a probability |E[Z] — ndyp| < ndye/2.

that decays exponentially im. It remains to prove (11). Recall thatdenotes the number of
The equivalent of the fOIIOWing main theorem for the binar}hcorrect variable-to-check node messages amon%“/ari-
erasure channel and binary messages was proved in [1].  aple-to-check node messages passed irftihéteration for a

Theorem 2:Over the probability space of all graphdParticular(G, R) € €, whereG is a graph in the ensemble
¢"(d,,d.) and channel realizations I&f be the number of C" (¢ dc), Kt is @ particular input to the decoder, afids the
incorrect messages among alk, variable-to-check node Probability space. Let;, 0 < @ < (dy + 1)n =: m, be a
messages passed at iteratibriet p be the expected numberS€duence of equivalence relations{mrdered by refinement,

1 ! / _ 1 AN H ! / _ 1! 1!
of incorrect messages passed along an edge with a tree-life (G £') =i (G, R") implies (G, R) =, (G", R").
directed neighborhood of depth at leaétat the/th iteration. These equivalence classes are defined by partial equalities. In

Then, there exist positive constants = A(d,, d, £) and particular, suppose we expose the edges of the graph one at
v = y(dy, de, ) such that atime, i.e., at step< d,n we expose the particular check node

_ socketr(¢) which is connected to théh variable node socket,
[Concentration Around Expected Value] For any 0 we  and, similarly, in the following: steps we expose thereceived
have valuesr; one at a time. Then we hayé&’, R') =; (G”, R") if

hence

PN and only if the information revealed in the firssteps for both
Pr{|Z — E[Z]| > nd,e/2} < 2¢ . (11) pairs is the same.
N fineZy, Z1, ..., Znm
[Convergence to Cycle-Free Case] For any 0 andn > ow, defineZo, 21, ..., Zm by
2 we have Zi(G, R) :=E[Z(G", R)|(G', R) = (G, R)].
By construction 7y, Z1, ..., Z,, is a Doob’s Martingale
[E[Z] - ndup| < ndye/2. (12) Procesg16, p. 90], whereZ, = E[Z] andZ,,, = Z. As noted

. in Appendix B, one can give bounds on
[Concentration Around Cycle-Free Case] For any 0
andn > Z¥ we have Pr{|Z — E[Z]| > ndve/2} = Pr{|Zy, — Zo| > ndye/2}

if we can prove that
|Zi+1(G, R) — Zi(G, R)| < oy, i=0,..., h—1 (14)

Ior some suitable constants which may depend od,, d., and
fibut preferably not om.

Pr{|Z — nd,p| > nd,e} < 20, (13)

Proof: As noted before, Theorem 2 is an extension of |
Theorem 1] to nonbinary channel output alphabets and non i ) .
nary messages. As we will see, we can use essentially the sam@ first prove (14) fori € [nd,], i.e,, for the steps where

arguments as were given in [1]. Since the proof in [1] is rath¥f€ €xpose the edges. Recall thaf) = j means that theth
brief, we give an explicit account of the necessary steps. variable node socket is connected to jitte check node socket.

First note that (13) follows immediately from (11) and (12)_Letg(G, ¢) be the set of graphs in the ensembte d,, ) such

We start by proving (12). LéE[Z:], € [nd,], be the expected that the first; edges are equal to the edgesini.e.,
number of incorrect messages passed along Edgehere the 6(G, 1) ={G: (@, R) =, (G, R)}.
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Fig. 4. Left: a graph“ in the ensembl€1?(3, 6). Middle: a graphH from the ensemblg. (G, 7) (note that the labels of the sockets are not shown—these
labels should be inferred from the order of the connections in the middle figure); the first seven eddges#tsan common witlz are drawn in bold. Right: the
associated graph:, s (H ). The two dashed lines correspond to the two edges whose end points are switched.

LetG;(G, i) be the subset @ (G, ¢) consisting of those graphsan exchange of the endpoints of two edges if one (or both) of

for which# (i + 1) = j. Thus,G(G, 4) = U;G;(G, 4). the two edges is (are) in the directed neighborhdgl. As
We have stated in the beginning of this section, a neighborhood contains
Lo
Z.(G. R) =E[Z(&. R)|& a. i at most2(d,d. )" distinct edges and, by the symmetry property
(& B) Z(c, ]l ) E/g( /’ ] . expressed in (2), an edge can be in at n29d}d. )¢ neighbor-
= Y E[Z(d, R)|G €G,(G, i) hoods. It follows that at most(d,d.)¢ neighborhoods can be
jCmdc] affected by the exchange of the endpoints of two edges, which
-PH{G € G;(G, 1)|G" € G(G, 1))}. (15) proves claim (17).
We claim that ifj andk are such that " Stince</>j7k is a bijection and preserves probability, it follows
a

Pr{G" € G;(G, )IG" € G(G, 1)} #0 E[Z(C, R)|G € Gu(G, )]

=E[Z(¢;,x(T), R)|G € G;(G, )].

By (17), any paitZ(H, R) andZ(¢; »(H), R) has difference
bounded by8&(d,d.)* and, since for any random variable
E[Z(G', R)|G € 6,(G, )] —E[Z(G', R)|G € G(G, )]| [E[W]| < E[[W]], claim (16) follows. Finally, note that, by def-
< 8(ddo)t. (16) inition, Z;41 (G, R) is equal toE[Z(G, R))|G' € G;(G, )]

‘ for somej € U; where¥; C [md.] denotes the set of unoccu-

To prove this claim define a map; 1: G,;(G, ©) — Gr(G, i) @S pied sockets on the check node side after revealiedges of
follows. Letn be the permutation defining the edge assignmept j e W, = [md]\{(1): I < i}. Hence

for a given graph € G;(G, i) and leti’ = =~ 1(k). Define a
permutationr’ by 7’ = 7 exceptthair’(i+1) = k andr’(¢’) =

and
Pr{G € Gx(G, )|G' € G(G, )} #0
then

|Zi+1(G, R) — Zi(G, R)|

j. Let H' denote the resulting graph, théfi € G,(G, ¢). By < E’%%XHE[Z(G/’ RNG € G;(G, )] - Zi(G, R)|
definition, H = ¢; (H ). The construction is shown in Fig. 4. ' P .
Clearly,¢;, « is a bijection and, since every (edge-labeled) graph = jffgffg B2, RIIG € 6;(G, 0)]

in the ensemble has uniform probability, such a bijection pre- —E[Z(F, R)|@ € G(aG, D]|

serves probabilities. We claim that < 8(dyd.)*
= vHC

|Z(H, R) = Z(¢),x(H), B)| < 8(cvde)’ (17) " where we have used the representatiorZgfG, R) given in
for all decoder inputsk. To see this, note that for any edge (15). This proves (14) foi € [nd,] with o; = 8(d,d.)*.
the message along this edge is only a function of the directedt remains to show that the inequality is also fulfilled for the
neighborhood/\/gl. Therefore, a message is only affected blastn steps. The idea of the proof is very similar and we will be
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brief. When we reveal a received value at a particular messe 0.05
nodev then messages whose directed neighborhood include
nodev can be affected. By the node symmetry property (1) th 0.04
is equal to the number of nodes in the neighborhd@éand by
our above estimate this number is upper-boundeg(byd, )*. 0.03
This proves (14) foi € nd, + 1, ..., (n + 1)d, with «; =
2(d,d.)". 0.02
Theorem 2 now follows by applying Azuma’s inequality
to the given martingale. The parametef? can be chosen 0.01
as544d2¢=1d%*. We remark that this is by no means the be
possible constant. O 0

As discussed before, it follows from this concentration the 0 001 002 003 004 005 0.06 007 008 0.09

orem that (for sufficiently large) almost all codes can transmit _

reliably up to the threshold value, but that they have an errg):?. 5. Bit-error probability versus parameter for the (3, 6)-regular

o semble transmitting over the BSC channel for three decoding algorithms.
probability bounded away from zero above the threshold valuge leftmost curves correspond to Gallager's decoding algorithm A, the
The required size of, according to the proofs, could be apmiddle curves correspond to decoding with erasures and the rightmost curves
' L carrespond to a belief-propagation decoder. The solid curves correspond to a
surdly large. The proofs, however, are Yefy PeSS”mSt'C' We Q:gaeword length of 1000, whereas the dashed and the dotted-dashed curves
sume, for example, that any loop effectively introduces an err@irespond to codeword lengths of 10000 and 100000, respectively. The
into every message it affects. With similar pessimism we assuiews indicate the_threshold values= 0.04, 0.07, and0.084, respecti_vely. )
that laci ived val ith ther ind dent Observe how the lines move closer to these threshold values for increasing
at replacing one received value with another independent Qi yord lengths.
can produce an error in every message the replacement affects.
In summary, the analysis rests on the idea that loops and local 0.05
changes are perturbations that are irrelevant asymptotically. In ™
practice, however, large loops may have only a small effect and 0.04
local changes tend to disappear under correct decoding. The ef ™
fects are therefore much milder than predicted andritre-
quired to observe near threshold performance is significantly
smaller than any bound that can be obtained from the results.
Fig. 5 depicts some simulation results for the BSC. Fig. 6
depicts corresponding simulation results for the BIAWGN ; ; : ;
channel. The curves indicate bit-error probabilities observed 0.01 78 I §
. o Dol s 1 s
as a function of the channel parameter. Results are indicated _/// I i‘/’/ ,'il” 1
for n = 102, 10%, and10’ for several different decoding algo- ‘ ‘ ‘
rithms. Also shown is the predicted threshold value for each 0.75 0.775 0.8 0.825 0.85 0.875 0.9 0.925 0.95

algonthm' We observe the convergence to a sharp threshl(?ilg(;j. 6. Bit-error probability versus parameterfor the (3, 6)-regular code

effect at the predicted Yalue asncrea's_e_s- used over the BIAWGN channel. The left curves correspond to the message
We remark that the bit-error probabilities are the result of rupassing algorithm with eight messages described in Example 7, whereas the

nina the decoder for 100 iterations. (For shorter lengths thisfight curves correspond to belief propagation. The solid curves correspond
9 ( 9 to,a codeword length of 1000, whereas the dashed and the dotted—dashed

far more than_ necessa_-ry-) In §qme cages, in particular for G@Jr'ves correspond to codeword lengths of 10000 and 100 000, respectively.
lager’s decoding algorithm A, it is possible to slightly lower th@he arrows indicate the corresponding threshold vakres= 0.847 and
measured bit-error rate by exploiting the observation that wheén = 0-88. Observe how the lines move closer to this threshold value for

. . . . increasing codeword lengths.
the decoding fails the number of errors is typically larger than
the uncoded error rate (this is not true for belief propagation). _ '
Since decoding failure is virtually always detected, one can d&€ graph are bounded, the concentration theorem applies essen-

code to the received values and reap a small gain in this caséially unchanged to such an ensemble of codes, requiring only
adjustments of the constants. Leandp be polynomials repre-

senting the variable node and check node degree distributions,

. _ . _ respectively. More precisely
In this section, we outline some extensions that are slated to

be subjects of further work. -
First, consider irregular graphs. As proposed in [1], better A(z) = Z Ai!

LDPC codes can be constructed if we allow varying degrees, 122

i.e., if we allow variable nodes to participate in different numand

_____________________________

R R

V. EXTENSIONS

max
dv

bers of checks and check equations to involve different num- gy i1
bers of variables. One can check that, as long as the degrees in plz) = Z pit
i>2

12Some of the proposed work has been carried out subsequent to the pré(}ﬁg-ere)‘i andp; deno_te the fraction of ?dges incident to V_ariable
ration of this paper, see, e.g., [10]. and check nodes with degréaespectively. The calculation of
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the message densities under the tree-like assumption requined important open question to find a larger class of decoding
only minor modifications to accommodate irregular degree salgorithms for turbo codes that allow one to trade off perfor-

guences. In fact, the only changes required are the followingance with complexity in a larger range.

(8) becomes We conclude this section by presenting our view of the overall

(0,0 40,1 A (6=1),0 A (£=1),1 structure of LDPC codes and belief-propagation decoders. Let
Q -Q =p <P - P ) us first consider the structure of the code and the meaning of the
2 (0,0 (0,1 A(6-1),1 A(e-D),1

Q +Q =p <P + P )

and (9) becomes .

() =) (£(0))

Hence, for given degree sequences and a given memoryless
channel, we can calculate the resulting threshold of a be-
lief-propagation decoder in an efficient manner. In [1], the

graph. In general,

the variablew; take values:; in some ring and

check nodes represent weighted sum constraints. More
precisely, each check nodg represents a constraint of

the form
)

4: Je=(v;, ¢;)

0= w;T;

authors propose a particular degree sequence for a rate one-half where the weightsy; are elements of the ring.

code. The degree distributions are given by the followig:

1
)\({L’) = 6($2+$4+$8+$16+$32+$64)
p(x) = p7a®+psx” + prox’® + p20a'® + psax® 4 pgsa® °
where

pr =0.154078  pg = 0.147471  pro = 0.121201
p20 =0.228596  pgy = 0.218999  pgs = 0.129654.

Although this particular degree distribution was optimized for
erasure channels, we can use our extended algorithm to calcu-
late the resulting threshold for other channels. For example, we *
gete* = 0.094 for the BSC and* = 0.92 (¢* = 0.92 corre-
sponds taF;, /Ny = 0.72) for the BIAWGNC. Some very good ~ *
degree distributions for various channels and message-passing
algorithms are described in [10].

Next, let us consider LDPC codes over larger fields, or rings,
under belief-propagation decoding. Again itis easy to check that
the concentration results apply to both regular and, with proper
conditions as mentioned above, irregular graphs.

Another area into which the methods used in this paper ex-
tend is that of turbo codes. Although this is not immediately
apparent, the notion of a neighborhood of a variable and the no-
tion of a tree-like such neighborhood, which played important
roles in proving concentration results for LDPC codes, can be
suitably extended to the setting of turbo codes. This is the ke
observation in proving equivalent concentration results for turbo
codes. The determination of the average performance (unﬁ}er
tree-like assumptions) may not be directly computationally feﬁi
sible, but simulations should nevertheless be sufficient to deter-
mine the densities of the messages passed between constituén
decoders. This opens the possibility of calculating thresh(fg
values for turbo codes under turbo decoding. For a more
tailed account of this extension, see [17] and [18]. As we s
in this paper, LDPC codes admit a large family of decoding
gorithms, allowing a tradeoff between performance and com
plexity. To date there are only a few decoding algorithms known
for turbo codes, such as the standard turbo decoding using the
Bahl-Cocker—Jelinek—Raviv (BCJR) algorithm, or the simpler
version employing the SOVA algorithm [19]. Itis an interesting

W,
al-

13Note that the left degrees are of the foRh + 1 (the exponents of the
polynomials are one less than the corresponding degrees).

Under belief propagation we have the following general de-
scription of the meaning of the messages.

A message is a (representation of a) conditional distribu-
tion of the variable associated with the variable node.

All messages arriving at a node at a particular stage (in-
cluding the received value in the case of a variable node)
are assumed to be conditional distributions of the asso-
ciated variable, each independent of the others, i.e., each
conditioned on independent random variables.

At the variable nodes the outgoing messages are point-
wise products of the densities from incoming messages.

The outgoing messages from the check nodes represent
the distribution of the (additive group) inverse of some
weighted sum of variables. The variables participating in
the sum are assumed to have the distributions indicated
by the associated incoming message, and each is assumed
independent of the others. Thus, the outgoing message
represents the convolution of the participating incoming
messages (suitably adjusted for any multiplicative factor).
Typically, the additive group possesses a Fourier trans-
form so that efficient computation of the convolution can
be done in the Fourier domain.

Thus, at the message nodes, the distributions should be inter-
Yeted in the Fourier domain, and then the outgoing messages
re just pointwise products. For example, in the case ofZ3F,

e additive group operative at the check nodes i$Z3F. Thus,

e appropriate Fourier transform is just the multidimensional
verstion of the one used for binary parity-check codes. This ob-
rvation leads to a new efficient implementation of the decoder
or this case.

We now address the problem odmputing aveage asymp-

tic performanceHere, we interpret the messages themselves
as random variables for which we desire the density.

In each case, i.e., at both sets of nodes, we move to a
log domain so that pointwise products become pointwise
sums.

Once in the log domain, the density of an outgoing mes-
sage is the convolution of the density of incoming mes-
sages. Typically, the log domain can be suitably repre-
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sented so that a Fourier transform exists over the spacermt create a loop i Me—k)d, Assuming that is sufficiently

nd,—M;—k
which the densities are defined. The update of the densifyge, we now have ‘
can then be computed efficiently in this Fourier domain.
— M, — k)d, M, +k)(d,—1
This applies both at the variable nodes and at the check % =1- ( 2+ E\E[ 3 )
nodes, but the spaces may be different in both cases. vy = e J\/}z v e
In the case of GF2™), for example, the Fourier transform 21- n

e et o b e o s o A 1, ety 1 e g £ 5
9 ol ’ bprop 9tree-like is lower-bounded bt — Mt )Mesi =M

domain is a multidimensional version of the one appearing in T 20" - o
the binary case. Unfortunately, the dimensionality of the spa]celt now follows that the probability that/z" is tree-like is
lower-bounded by

renders computation of the densities infeasible except for qw?gv

smallm (e.g.,m = 2). M\ Me Cp \
Other examples of interest are codes ovgfy or codes <1 T, ) <1 - ) :

overZ?%/(q1, q2). The latter example introduces the possibilit .

of designing LDPC codes directly for QAM-type signaling"ence' forn sufficiently large

schemes. Again, it is the existence of the Fourier transform M2 4+ &2

over these spaces that renders the necessary computation atthe ~ Pr{NZ‘ is not tree-likg < iy

check nodes efficient.

n

APPENDIX B
AZUMA’S INEQUALITY

APPENDIX A
PROBABILITY OF TREE-LIKE NEIGHBORHOOD
LetZ = 3" Z, be asum of independent random variables. We
can then use the Chernoff bound to give an exponential bound
Pr{/\/gé* is not tree-likg < x on the probability thatZ will deviate from its mean by more
7 than a fractiore.
for some constant, where€ = (v, ¢) is a given edge in a Sometimes it is possible to give strong bounds even when the
randomly chosen element 6f (d, d.) and2¢* is a fixed depth. random variables are notindependent. In one particularly useful
Note that there are, in total, case the random variables form a martingale.

In this section we will give a short proof that

! ; ; Theorem 3 [Azuma’s Inequality]Let Z,, Z;, ... be a mar-
Mo == (dy = 1)'(de = 1) tingale sequence such that for edckr 1
1=0

. T <
variable nodes and |Zx — Zy—1| < ag

-1 ‘ ‘ where the constant; may depend ok. Then, forall/ > 1 and
Co =14 (d, = 1)) (d, - 1)'(d. — 1) any\ > 0
i=0 a2
* «
check nodes itV?¢" assuming it is tree-like. Recall that de- 23 a2
notes the number of check nodes in the full graph. Fisnd Pr{|Z; — Zo| 2 A} < 2¢ =

let£ < £°. Assuming that\ is tree-like, we ask this: what is For proofs and applications of Azuma’s inequality see, for ex-
the probability thatV2‘+! is tree-like? We obtain a bound by b PP quality see,
€ rre1ple, [16], [20].

revealing the outgoing edges of the variable node leaves of l
tree given byV?* one at a time and bounding the probability that
this revelation creates a loop. Assume thadditional edges ACKNOWLEDGMENT

have been revealed at this stage without creating a loop; then th?he authors would like to thank Richard Blahut, Amin

probability that the next revealed edge does not create a IOo%i‘?okrollahi, Emre Telatar, and Igal Sason for their comments
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