
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001 599

The Capacity of Low-Density Parity-Check Codes
Under Message-Passing Decoding

Thomas J. Richardson and Rüdiger L. Urbanke

Abstract—In this paper, we present a general method for de-
termining the capacityof low-density parity-check (LDPC) codes
under message-passing decoding when used over any binary-input
memoryless channel with discrete or continuous output alphabets.
Transmitting at rates below this capacity, a randomly chosen ele-
ment of the given ensemble will achieve an arbitrarily small target
probability of error with a probability that approaches one expo-
nentially fast in the length of the code. (By concatenating with an
appropriate outer code one can achieve a probability of error that
approaches zero exponentially fast in the length of the code with ar-
bitrarily small loss in rate.) Conversely, transmitting at rates above
this capacity the probability of error is bounded away from zero
by a strictly positive constant which is independent of the length
of the code and of the number of iterations performed. Our results
are based on the observation that the concentration of the perfor-
mance of the decoder around its average performance, as observed
by Luby et al. [1] in the case of a binary-symmetric channel and a
binary message-passing algorithm, is a general phenomenon. For
the particularly important case of belief-propagation decoders, we
provide an effective algorithm to determine the corresponding ca-
pacity to any desired degree of accuracy. The ideas presented in
this paper are broadly applicable and extensions of the general
method to low-density parity-check codes over larger alphabets,
turbo codes, and other concatenated coding schemes are outlined.

Index Terms—Belief propagation, iterative decoding, low-den-
sity parity-check (LDPC) codes, message-passing decoders, turbo
codes, turbo decoding.

I. INTRODUCTION

I N the wake of the phenomenal success of turbo codes [2],
another class of codes exhibiting similar characteristics

and performance was rediscovered [3], [4]. This class of
codes, calledlow-density parity-check(LDPC) codes, was first
introduced by Gallager in his thesis in 1961 [5]. In the period
between Gallager’s thesis and the invention of turbo codes,
LDPC codes and their variants were largely neglected. Notable
exceptions are the work of Zyablov and Pinsker [6], Tanner [7],
and Margulis [8].

In their original (regular) incarnation, the performance of
LDPC codes over the binary-input additive white Gaussian
noise (BIAWGN) channel is only slightly inferior to that of
parallel or serially concatenated convolutional codes (turbo

Manuscript received November 16, 1999; revised August 18, 2000.
T. J. Richardson was with Bell Labs, Lucent Technologies, Murray Hill, NJ

07974 USA. He is now with Flarion Technologies, Bedminster, NJ 07921 USA
(e-mail: richardson@flarion.com).

R. L. Urbanke was with Bell Labs, Lucent Technologies, Murray Hill, NJ
07974 USA. He is now with the EPFL, LTHC-DSC, CH-1015 Lausanne,
Switzerland (e-mail: rudiger.urbanke@epfl.ch).

Communicated by F. R. Kschischang, Associate Editor for Coding Theory.
Publisher Item Identifier S 0018-9448(01)00737-4.

codes). For example, a rate one-half LDPC code of block
length 10 000 requires an of roughly 1.4 dB to achieve a
bit-error probability of , whereas an equivalent turbo code
with comparable complexity achieves the same performance
at, roughly, 0.8 dB. Shannon capacity dictates that,
in order to achieve reliable transmission at a rate of one-half bit
per channel use over the continuous-input AWGN channel, an

of at least 0 dB is required, and this increases to 0.187
dB if we restrict the input to be binary.

It is well known, that any linear code can be expressed as
the set of solutions of a parity-check equation .
Furthermore, if the code is binary then takes elements in
GF and the arithmetic is also over this field. A -reg-
ular LDPC code, as originally defined by Gallager, is a binary
linear code determined by the condition that every codeword bit
participates in exactly parity-check equations and that every
such check equation involves exactlycodeword bits, where

and are parameters that can be chosen freely.1 In other
words, the corresponding parity-check matrixhas ones in
each column and ones in each row. The modifier “low-den-
sity” conveys the fact that the fraction of nonzero entries inis
small, in particular it is linear in the block length, as compared
to “random” linear codes for which the expected fraction of ones
grows like . Following the lead of Lubyet al. [1] we do not
focus on particular LDPC codes in this paper, but rather analyze
the performance ofensemblesof codes. One way of constructing
an ensemble of LDPC codes would be to consider the set of all
parity-check matrices of length which fulfill the above row
and column sum constraints for some fixed parameters ,
and to equip this set with a uniform probability distribution. It
is more convenient, however, to proceed as suggested in [1] and
to define the ensemble of LDPC codes viabipartite graphs,see
Section II-A, since the resulting ensemble is easier to analyze.2

Many variations and extensions of Gallager’s original definition
are possible and these extensions are important in order to con-
struct LDPC codes that approach capacity. To mention only the
two most important ones: a) constructing irregular as opposed
to regular codes [1], [9], [10], i.e., variables may participate in
different numbers of checks, and check equations may involve
different numbers of variables and b) allowing nodes to repre-
sent groups of bits rather than single bits [11] (see also [5]).

In his thesis, Gallager discussed several decoding algorithms
that work directly on the nodes and edges of the bipartite graph
(see Section II) representing the code. Here, one set of nodes,

1As we will discuss in more detail in Section II-A, thedesign rateof such a
code is equal to1 � .

2In any case, these two ensembles are essentially identical if we consider large
block lengths.

0018–9448/01$10.00 © 2001 IEEE

600 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

the “variable” nodes, correspond to the variables, i.e., the code-
word bits or, equivalently, the columns of , the other set, the
“check” nodes, correspond to the constraints or, equivalently,
the rows of . A variable node is connected to a constraint node
in the graph if and only if the corresponding variable partici-
pates in the corresponding constraint. The decoding algorithms
of interest workiteratively. Information is exchanged between
neighboring nodes in the graph by passing messages along the
edges. Each message can be associated to the codeword bit cor-
responding to the variable node incident to the edge carrying
the message. Invariably, the messages can be interpreted as con-
veying an estimate of that bit’s value along with some reliability
information for that estimate. Associated with such a message is
a hard decision: one can consider the bit’s most likely value im-
plied by the message. We will say that a message is “correct/in-
correct” if its associated hard decision is correct/incorrect, i.e.,
does/does not agree with the true value of the codeword bit. In
the sequel, the precise meaning will be clear from context.

Gallager [5] proposed the following step-by-step program to
determine theworst binary-symmetric channel(BSC), i.e., the
BSC with the largest crossover probability, over which an appro-
priately constructed -regular LDPC code in conjunction
with a given iterative decoding algorithm can be used to transmit
information reliably.

1) [Code Construction] For increasing length, construct
a sequence of -regular LDPC codes that do not
contain cycles of length less or equal to where

2) [Density Evolution and Threshold Determination] Deter-
mine the average fraction of incorrect messages passed at
the th iteration assuming that the graph does not contain
cycles of length or less. For an iterative decoder with
a finite message alphabet this fraction can be expressed
by means of a system of coupled recursive functions
which depend on the ensemble parameters and
the channel parameter. Determine the maximum channel
parameter, called thethreshold, with the property that
for all parameters strictly less than this threshold the
expected fraction of incorrect messages approaches zero
as the number of iterations increases.

3) Conclude that if one applies the chosen decoding algo-
rithm to this sequence of codes with decoding rounds
while operating over a BSC with parameter less than the
threshold found in Step 2), then the bit-error probability
decreases as , where and are positive constants
which depend on (one actually requires).
(Since the block-error probability is at mosttimes the
bit-error probability, it follows that the block-error prob-
ability can be upper-bounded in the same way.)

Although the analysis presented in this paper contains many
of the same elements as the program suggested by Gallager there
is one crucial difference. As remarked earlier, we do not focus
on any particular (sequence of) codes but rather on (sequences
of) ensembles as suggested in [1]. The main advantage gained

by this approach is the following: even in the regular case it is
not an easy task to construct codes which contain only large
cycles and this task becomes almost hopeless once we allow ir-
regular graphs. Sampling an element of an (irregular) ensemble,
on the other hand, is almost trivial. This approach was applied
with great success in [1] to the analysis (and design) of LDPC
ensembles used over the binary erasure channel (BEC) as well
as the BSC when employed in conjunction with a one-bit mes-
sage-passing decoder.

The contribution of the present paper is to extend the method
of analysis in [1] to a very broad class of channels and de-
coding algorithms and to introduce some new tools for the anal-
ysis of these decoding systems. To clarify further the nature of
the results we briefly describe an example and formulate some
claims that represent what we consider to be the apex of the
theory. Let us consider the ensemble of -regular LDPC
codes (see Section II for its definition) of lengthfor use over
a BIAWGNC, i.e., we transmit a codeword consisting ofbits

and receive values where the
are independent and identically distributed (i.i.d.) zero-mean
Gaussian random variables with variance. Choose a code at
random from this ensemble (see Section II), choose a message
with uniform probability from the set of messages, and transmit
the corresponding codeword. Decode the received word using
the belief-propagation algorithm. The following statements are
consequences of the theory:

[Concentration] Let be the expected fraction of in-
correct messages which are passed in theth iteration,
where the expectation is over all instances of the code, the
choice of the message, and the realization of the noise.
For any , the probability that the actual fraction
of incorrect messages which are passed in theth itera-
tion for any particular such instance lies outside the range

converges to zero exponentially
fast in .

[Convergence to Cycle-Free Case] converges to
as tends to infinity, where is the expected

fraction of incorrect messages passed in theth decoding
round assuming that the graph does not contain cycles of
length or less.

[Density Evolution and Threshold Determination]
is computable by a deterministic algorithm. Furthermore,
there exists a channel parameter (in this case

),3 the thresholdwith the following property: if
then ; if, on the other hand,

then there exists a constant such that
for all . For the current example, using the

methods outlined in Section III-B to efficiently implement
density evolution, we get for .

The firststatementasserts that (almost)all codesbehavealikeand
so the determination of the average behavior of the ensemble
suffices to characterize the individual behavior of (almost)

3Gallager attempted to compute the threshold for the BSC by a combinatorial
approach. The complexity of his approach precluded considering more than a
few iterations though. For the threshold of the(3; 6)-regular LDPC ensemble
he obtained the approximate lower bound of0:07 whereas density evolution
gives0:084.

RICHARDSON AND URBANKE: THE CAPACITY OF LOW-DENSITY PARITY-CHECK CODES 601

all codes. The second statement then claims that for long
codes this average behavior is equal to the behavior which one
can observe on cycle-free graphs and that for the cycle-free
case this average behavior is computable by a deterministic
algorithm. Finally, from the last statement we conclude that long
codes will exhibit a threshold phenomenon, clearly separating
the region where reliable transmission is possible from that
where it is not. As a consequence, if we want to transmit
over the BIAWGNC using codes from the -regular LDPC
ensemble and a belief-propagation decoder we are confronted
with the following dichotomy. If and if we are given
any target bit-error probability, call it, then we can choose
an appropriate number of decoding iterations and an
appropriate block length . We can then be assured that
all but at most an exponentially (in) small subset from the

-regular LDPC ensemble of length if decoded for
rounds will exhibit a bit-error probability of at most.4

On the other hand, if and if we are willing to perform
at most decoding rounds, whereis a fixed natural number,
then all but at most an exponentially (in) small subset of
codes of the -regular LDPC ensemble will exhibit a bit
error probability of at least 5 if decoded by means of at
most rounds of a belief-propagation decoder. With regards
to this converse, we conjecture that actually the following
much stronger statement is true—namely, thatall codes in the

-regular LDPC ensemble have bit-error probability of at
least regardless of their lengthand regardless of how
many iterationsare performed. This will follow if one can
prove that cycles in the graph (and the resulting dependence)
can only degrade the performance of the iterative decoder on
average, 6 a statement which seems intuitive but has so far
eluded proof.

Each of the above statements generalizes to some extent to
a wide variety of codes, channels, and decoders. The concen-
tration result holds in essentially all cases and depends mainly
on the fact that decoding is “local.” Similarly, the convergence
of to is very general, holding for all cases of in-
terest. It is a consequence of the fact that typically the decoding
neighborhoods become “tree-like” if we fix the number of it-
erations and let the block length tend to infinity. Concerning
thedensity evolution, for decoders with a message alphabet of
size the quantity can in general be expressed by means
of coupled recursive functions (see Section III-A). For
message-passing algorithms withinfinite message alphabets the
situation is quite more involved. Nevertheless, for the impor-
tant case of the sum-product or belief-propagation decoder we
will present in Section III-B an efficient algorithm to calculate

4Although this is not the main focus of this paper, one can actually
achieve anexponetially decreasing probability of error.To achieve this,
simply use an outer code which is capable of recovering from a small linear
fraction of errors. If properly designed, the LDPC code will decrease the bit
probability of error below this linear fraction with exponential probability
within a fixed number of decoding rounds. The outer code then removes
all remaining errors. Clearly, the incurred rate loss can be made as small
as desired.

5Note that
, the probability of sending anerroneous messages, is at least
0:068. To this corresponds abit-error probability which is at least0:05.

6By constructing simple examples, it is not very hard to show that for
some specificbits the probability of error can actually be decreased by
the presence of cycles.

. Finally, the existence of a threshold as asserted in the
last statement requires more assumptions. It depends onboth
the decoding algorithm used and the class of channels consid-
ered. As we will see, such a threshold always exists if we are
dealing with a family of channels which can be ordered byphys-
ical degradation(see Section III-B1) and if the decoding algo-
rithm respects this ordering. In some other instances, like in the
case of decoders with finite message alphabets, the existence of
a threshold can often be shown by analyzing the corresponding
recursions directly.

Roughly speaking, the general statement is then of the fol-
lowing kind. We are given a particular ensemble of codes, a
family of channels, and a particular decoding algorithm. From
these quantities we will be able to calculate the critical channel
parameter which is called the threshold. Then almost any long
enough code can be used to provide sufficiently reliable trans-
mission of information if decoded by the given decoder for a
sufficiently large number of iterations provided that the actual
channel parameter is below this threshold. Conversely, reliable
transmission over channels with parameter above this threshold
is not possible with most codes chosen at random from “long”
ensembles. Therefore, one should think of the threshold as the
equivalent of a “random capacity” for a given ensemble of codes
and a particular decoder, except that in the case of random ca-
pacity the channel is usually fixed and one is interested in the
largest rate whereas for the threshold we fix the rate and ask for
the “worst” channel.

The outline of the paper is as follows. Section II introduces
the class of codes, channels, and decoding algorithms con-
sidered in this paper. We show that under suitable symmetry
conditions the error probability is independent of the trans-
mitted codeword. Section III then focuses on the determination
of and the determination of the threshold value. We
first investigate decoders with finite message alphabets. In this
case, as pointed out above, can be expressed by means
of multiple coupled recursive functions, and the existence of
a threshold can be shown by a closer investigation of these
recursions. We will see that by a judicious choice of the mes-
sages the resulting thresholds can be made surprisingly close
to the ultimate limit as given by the (Shannon) capacity bound.
We next investigate the important case of belief-propagation
decoders. Despite the fact that the message alphabet is infinite,
in this case we describe an efficient algorithm that can be used
to calculate for a belief-propagation decoder for any
binary-input memoryless output-symmetric channel to any
desired accuracy. We also show that in this case the existence of
a threshold is guaranteed if the channel family can be ordered
by physical degradation, as is the case for many important
families of channels, including the BEC, BSC, BIAWGNC, and
the binary-input Laplace (BIL) channel. In Section IV, we will
show that, as the length of the code increases, the behavior of
individual instances concentrates around the expected behavior
and that this expected behavior converges to the behavior for
the cycle-free case.

The ideas presented in this paper are broadly applicable, and
extensions of the general method to irregular LDPC codes,
LDPC codes over larger alphabets, turbo codes, and other
concatenated coding schemes are outlined in Section V.

602 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

II. BASIC NOTATION AND ASSUMPTIONS

In this section we will introduce and discuss some of the
basic notation and assumptions that we will use throughout this
paper. We start by giving a precise definition of theensemble
of -regular LDPC codes that we will consider. We then
discuss the notion ofdecoding neighborhoods.This notion will
play an important role when giving a proof of the concentration
theorem. After a brief look at the class ofbinary-input memo-
ryless channelswe will introduce the class ofmessage-passing
decoders, which are iterative decoders working on the graph and
which obey theextrinsic information principlewell known from
turbo decoding. Finally, we will see that under a suitable set of
symmetry assumptionsthe conditional decoding probability will
become independent of the transmitted codeword, allowing us
in the sequel to assume that theall-one codeword was trans-
mitted.

A. Ensembles

Let be the length of the binary code given as the set of so-
lutions to the parity-check equation . We con-
struct a bipartite graph with variable nodes and
checknodes. Each variable node corresponds to one bit of the
codeword, i.e., to one column of , and each check node cor-
responds to one parity-check equation, i.e., to one row of.
Edges in the graph connect variable nodes to check nodes and
are in one-to-one correspondence with the nonzero entries of.

Since each check equation typically decreases the number of
degrees of freedom by one, it follows that thedesignrate of the
code is

The actual rate of a given code may be higher since these check
equations might not all be independent, but we shall generally
ignore this possibility. There are edges in the bipar-
tite graph, edges incident to each variable node on the left and

edges incident to each check node on the right. Fig. 1 gives
an example of a -regular code of length .

The ensemble of -regular LDPC codes
of length which we consider in this paper is defined as
follows. Assign to each node or “sockets” according to
whether it is a variable node or a check node, respectively.
Label the variable and check sockets separately with the set

in some arbitrary fashion. Pick a per-
mutation on letters at random with uniform probability
from the set of all such permutations. The corresponding
(labeled) bipartite graph is then defined by identifying edges
with pairs of sockets and letting the set of such pairs be

. This induces a uniform distribu-
tion on the set (the set oflabeled bipartite graphs).
In practice, one usually modifies the permutation in an attempt
to obtain the best possible performance for the given length.
In particular, one avoids double edges between the nodes and
excessive overlap of the neighbor sets of the nodes.

Strictly speaking, edges are unordered pairs where
and denote the corresponding variable node socket and

check node socket, respectively. It is often more convenient to

Fig. 1. A (3; 6)-regular code of length10. There are 10 variable nodes and
five check nodes. Thend = 30 = md “sockets” of the variable and check
nodes are labeled (not shown).

think of an edge as a pair of nodes where and are the
variable and check nodes incident to the given edge. If the graph
does not contain parallel edges then both descriptions are equiv-
alent and we can freely switch between the two representations.
Although this constitutes a moderate abuse of notation, we will
maintain the notation even if parallel edges are not
excluded. The reader is then advised to think ofassomeedge
which connects the variable nodeto the check node. This
simplifies the notation significantly and should not cause any
confusion. By adirectededge we mean an ordered pair
or corresponding to the edge . When we say
that a message traverses a directed edgewe mean that it tra-
verses it in the indicated direction. When we say that a message
traverses an undirected edgewe mean that it traverses it in
some direction.

B. Decoding Neighborhoods

A path in the graph is a directed sequence of directed edges
such that, if then the for

. The length of the path is the number of
directed edges in it and we say that the path starts from, ends
at , and connects to . Given two nodes in the graph, we
say that they havedistance if they are connected by a
path of length but not by a path of length less than. (If the
nodes are not connected then we say .) For a given node
, we define itsneighborhood of depth, denoted by , as

the induced subgraph consisting of all nodes reached and edges
traversed by paths of length at moststarting from (including
). Note that for any two nodes and we have, by symmetry

of the distance function

(1)

RICHARDSON AND URBANKE: THE CAPACITY OF LOW-DENSITY PARITY-CHECK CODES 603

Fig. 2. The directed neighborhood of depth2 of the directed edge~ = (;).

Let be a particular edge between variable nodeand check
node , i.e., according to our convention. Theundi-
rected neighborhood of depth of , denoted by , is de-
fined as . We claim that for any pair of edges

and

(2)

By symmetry, it is clearly enough to prove the implication in
one direction. Hence, assume that . A directed version
of , denoted , lies on a path of length starting from either
or . It follows that there exists a path starting from eitheror

and ending at eitheror of length at most . Reversing
the orientation of the directed edges in the path we obtain a path
of length at most from either or to either or . Thus,
there exists a path of length at moststarting from either or
containing a directed version of the edge . We conclude
that .

The directed neighborhood of depth of , de-
noted by , is defined as the induced subgraph containing all
edges and nodes on paths starting from such that

. Fig. 2 gives an example of such a directed neighbor-
hood of depth . A directed neighborhood of a directed edge

is defined analogously. If the induced subgraph (cor-
responding to a directed or undirected neighborhood) is a tree
then we say that the neighborhood istree-like, otherwise, we say
that it is not tree-like. Note that the neighborhood is tree-like if
and only if all involved nodes are distinct. For ,
one can prove that the number of (distinct) nodes as well as the
number of (distinct) edges in a neighborhood of a node or of an
edge (undirected or directed) of depthis upper-bounded by

(see [5, p. 92]).

C. Binary-Input Memoryless Channels

The class of channels we consider in this paper is the class
of memoryless channels with binary input alphabet
and discrete or continuous output alphabet. We will, however,
indicate some extensions in Section V.

Example 1 [BSC]: Let , , be the channel
input at time , . Let , , be the output at
time . The BSC with parameteris characterized by the rela-
tion , where is a sequence of i.i.d. Bernoulli
random variables with and .

Fig. 3. The BSC with parameter�.

The channel is depicted in Fig. 3. It is well known (see [12,
p. 186]), that the (Shannon) capacity of this channel is

(3)

where is the binary
entropy function [12, p. 13].

Example 2 [Continuous Additive Channels: Gaussian and
Laplace]: Consider a memoryless binary-input channel with
continuous output alphabet and additive noise. More precisely,
let the channel be modeled by , where
and where is a sequence of i.i.d. random variables with prob-
ability density . The best known example is the BIAWGN
channel for which

The capacity of the BIAWGN channel is given by

(4)

where

As a second example, we consider the BIL channel for which

The capacity of the BIL channel is given by

(5)

604 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

D. Message-Passing Decoders

Without loss of generality, we can assume that the channel
output alphabet is equal to the decoder input alphabet. Given a
code and a channel model there are, in general, many reasonable
decoding algorithms based onmessage passing—the class of al-
gorithms we consider in this paper. These algorithms behave as
follows. At time zero, every variable node, , has an as-
sociated received message, a random variable taking values in

. Messages are exchanged between nodes in the graph along
the edges in the graph in discrete time steps. First, each variable
node sends back to each neighboring check nodea mes-
sagetaking values in somemessage alphabet . Typically, at
time zero, a variable nodesends as its first message (this
requires). Each check node processes the mes-
sages it receives and sends back to each neighboring variable
node a message taking values in . Each variable node
now processes the messages it receives together with its associ-
ated received value to produce new messages which it then
sends to its neighboring check nodes. For every time, , a
cycle or iteration of message passing proceeds with check nodes
processing and transmitting messages followed by the variable
nodes processing and transmitting messages.

An important condition on the processing is that a message
sent from a node along an adjacent edgemay not depend
on the message previously received along edge. There is a
good reason for excluding the incoming message along edgein
determining the outgoing message along edge. In turbo coding
terminology, this guarantees that onlyextrinsic information is
passed along. This is known to be an important property of good
message-passing decoders. Even more importantly, it is exactly
this restriction that makes it possible to analyze the behavior of
the decoder.

Let , , denote the variable node
message map and let , , denote the
check node message map as a function of . These func-
tions represent the processing performed at the variable nodes
and constraint nodes, respectively.

Note that, because of the imposed restriction on the depen-
dence of messages, the outgoing message only depends on

incoming messages at a variable node and
incoming messages at a check node. Note also that we allow
these maps to depend on the iteration number. We assume that
each node of the same degree invokes the same message map
for each edge and that all edges connected to such a node are
treated equally. For completeness, let denote
the initial message map, i.e., node initially transmits the
message to all of its neighbors.

For any given set , let denote the space of probability
distribution defined over . In our analysis the messages will be
random variables, and we are interested in tracking the evolution
of their distributions during the execution of the algorithm. To
this end, we define the map

as follows. If is a random variable distributed ac-
cording to , and , are
random variables distributed according to , and

all indicated random variables are independent, then the
distribution of is, by definition,

.
We define the map

in an analogous way.

E. Symmetry Assumptions: Restriction to All-One Codeword

It is helpful to think of the messages (and the received values)
in the following way. Each message represents an estimate of a
particular codeword bit. More precisely, it contains an estimate
of its signand, possibly, some estimate of itsreliability. To be
concrete, consider a discrete case and assume that the output
alphabet is

and that the message alphabet is

The sign of the message indicates whether the transmitted bit is
estimated to be or , and the absolute value of the message
is a measure of the reliability of this estimate. The sign of the
particular value , which represents anerasure, is equally likely
to be a or a . In the continuous case we may assume
that , or even . Again,
the sign of the message indicates whether the transmitted bit is
estimated to be or , and the absolute value of the message
is a measure of the reliability of this estimate.

Our subsequent analysis and notation will be greatly sim-
plified by assuming the following symmetry conditions on the
channel and the decoding algorithm.

Definition 1 [Symmetry Conditions]:

• Channel symmetry: The channel isoutput-symmetric,
i.e.,

• Check node symmetry:Signs factor out of check node
message maps

for any sequence .

• Variable node symmetry: Sign inversion invariance of
variable node message maps holds

and .

Lemma 1 [Conditional Independence of Error Probability
Under Symmetry]:Let be the bipartite graph representing a
given binary linear code (not necessarily an LDPC code) and for
a given message-passing algorithm let denote the con-
ditional (bit or block) probability of error after theth decoding
iteration, assuming that codewordwas sent. If the channel and

RICHARDSON AND URBANKE: THE CAPACITY OF LOW-DENSITY PARITY-CHECK CODES 605

the decoder fulfill the symmetry conditions stated in Definition
1 then is independent of .

Proof: To prove the claim, let denote the channel
transition probability . Now note that any bi-
nary-input memoryless output-symmetric channel can be mod-
eled multiplicatively as

where is the input bit, is the channel output, andare i.i.d.
random variables with distribution defined by

. Let denote an arbitrary codeword and let be an
observation from the channel after transmitting, where de-
notes the channel realization (multiplication is componentwise
and all three quantities are vectors of length).

Let denote an arbitrary variable node and letdenote one
of its neighboring check nodes. For any received word, let

denote the message sent fromto in iteration as-

suming was received and let denote the message sent
from to in iteration assuming was received. From the
variable node symmetry at we have .

Assume now that in iterationwe have
Since is a codeword, we have .7 From
the check node symmetry condition we conclude that

Furthermore, from the variable node symmetry condition it fol-
lows that in iteration the message sent from variable node

to check node is

Thus, by induction, all messages to and from variable node
when is received are equal to the product ofand the cor-
responding message whenis received. Hence, both decoders
commit exactly the same number of errors (if any), which proves
the claim. Moreover, we observe that the entire behavior of the
decoder can be predicted from its behavior assuming transmis-
sion of the all-one codeword.

In the sequel we will assume that the symmetry conditions
are fulfilled and that the all-one codeword was transmitted.

III. D ENSITY EVOLUTION AND THRESHOLDDETERMINATION

Recall from the introduction that there are three components
to our proposed analysis of message-passing decoders: 1)
concentration: show that almost all instances behave nearly
the same; 2)convergence to cycle-free case: show that the
average behavior converges (in the block length) to that
of the cycle-free case; 3)density evolution and threshold
determination: analyze the cycle-free case via what we termed
density evolutionas well as determine thethreshold for the
cycle-free case.

In this section we will concentrate on the third step, i.e.,
we will assume that the decoding neighborhood of depthis
tree-like and we will analyze the evolution of the densities as a
function of the iteration number.

7In the case of parallel edges,xxx has to be counted according to the multi-
plicity of the edge.

We say that a message passed along an edge iscorrect if the
sign of the message agrees with the transmitted bit, and we say
that a message isincorrectotherwise. Recall from Section II-E
that we may assume that the all-one codeword was transmitted,
and, hence, the number of incorrect messages is equal to the
number of messages with nonpositive sign. (By convention, we
will count an erasure as being incorrect with probability .)

We start in Section III-A by focusing on the case of mes-
sage-passing decoders withdiscretemessage alphabets. As re-
marked already, in this case the expected fraction of erroneous
messages passed in theth iteration can be expressed through a
system of linked recursive functions which depend on
and the channel parameter. By investigating this system of recur-
sive functions one can usually prove the existence of a threshold
and this threshold can then be determined numerically to any
desired degree of accuracy.8 Furthermore, we show that by a ju-
dicious choice of the message maps one can construct iterative
coding systems with a threshold which is surprisingly close to
the ultimate (Shannon) limit at very low complexities. For ex-
ample, in many cases, decoder E (see Example 5), which uses
a message alphabet of size three, performs surprisingly close to
belief propagation, which uses an infinite message alphabet, and
significantly better than Gallager’s decoder B (see Example 4),
which uses a message alphabet of size two.

In Section III-B, we investigate the most important case of
a message-passing decoder with aninfinite message alphabet,
namely, the sum-product or belief-propagation decoder. In this
case, one has to keep track of the evolution of messagedensi-
ties.We will present an efficient algorithm to accomplish this
task. We will also show that, in the case of the belief-propaga-
tion decoders, thresholds always exist if we consider a family of
channels which can be ordered byphysical degradation.

A. Discrete Alphabets

We start with message-passing algorithms that use discrete
message alphabets. Let , ,
be the probability that the message sent at time zero is equal to

. Let denote the corresponding probabilities at iteration
(assuming that edgehas a tree-like directed neighborhood up
to at least depth). Similarly, let denote the probability
of messages sent from check nodes to variable nodes in theth
iteration. Assume we are given a particular message-passing al-
gorithm, i.e., particular message maps and . As was
shown by Gallager, it is then, in principle, possible to write down
a recursion, expressing as a function of , the code
parameters , and the channel parameter.

Example 3 [Gallager’s Decoding Algorithm A]:Consider
the ensembles of -regular graphs. Let the channel be
the BSC of Example 1 with input and output alphabet
and crossover probability. Then, clearly, and

. The message alphabet is given by .
The message maps are time-invariant, i.e., they do not depend
on the iteration number, and are given by ,

if

8In some instance, it is even possible to determine the threshold analytically
(see , e.g., [13]).

606 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

and otherwise,
and

In words, check nodes send a message indicating the modulo
two sum of theotherneighboring variables. The variable nodes
send their received value unless the incoming messages are
unanimous, in which case the sign indicated by these messages
is sent.

It follows that

and

Eliminating we obtain, as in Gallager [5, p. 48]

(6)

From (6) it is easy to see that, for a fixed value of ,

is an increasing function of . Likewise, for a fixed value of
, is an increasing function of . Hence, by induc-

tion we conclude that is an increasing function of . Let

denote the supremum of all values of such that
. By the above argument it follows that, for

all values , . Thesethreshold values
are listed for various pairs of in Table I, where most

of the entries were already given by Gallager.9 We note that
this decoding algorithm isuniversalin that it does not require
knowledge of the channel parameter.

Example 4 [Gallager’s Decoding Algorithm B]:For
the following algorithm, also due to Gallager [5, p. 50], is more
efficient. The message along edge equals the re-
ceived value unless at least incoming check messages (ex-
cluding the message along edge) disagree with the received
value, in which case the opposite of is sent. The value of

is in general a function of , , and . Formally, we

9Exactthreshold values for this case can be found in [13].

TABLE I
MAXIMAL PARAMETER � FOR THEBSC AND GALLAGER’S DECODING

ALGORITHMS A AND B, ALGORITHM E (ERASURES IN THEDECODER), AND

BELIEF PROPAGATION (BP). NOTE THAT ALGORITHMS A AND B ONLY

DIFFER FORd > 3. ALSO, LISTED IS THE MAXIMUM ALLOWED VALUE

� ACCORDING TO(3)

have the following: the message maps are the same as in the pre-
vious example, except that
if and
otherwise.

The evolution of is now given by (see [5, p. 50])

The optimal choice of was also determined in [5] and is given
by the smallest integerfor which

Again, let denote the supremum of all values of such
that . By an argument similar to that in the

previous example, it follows that, for all values ,
. The threshold values are listed for var-

ious combinations of in Table I.

Example 5 [BSC with Erasures in the Decoder:10 Algorithm
E]: Assume now that we extend the previous example by

10This decoder was independently conceived and analyzed by M. Mitzen-
macher [14].

RICHARDSON AND URBANKE: THE CAPACITY OF LOW-DENSITY PARITY-CHECK CODES 607

allowing erasures in the decoder, i.e., the alphabet is now
. The decoding rule is the following. At step

, the message node takes the real sum of all incoming
messages, except the message along edge , plus
times the received message, where is an appropriately
chosen weight. The message along edge is now
chosen as the sign of this sum. At check node, the message
along edge is equal to the product of all incoming
messages except the incoming message along edge .
Thus, in this example, the message maps are specified by

and

We easily obtain

These equations explicitly represent the equation

where

and

The quantities , , and can now be expressed as

It remains to specify the sequence of weights , (at
there are no incoming messages at the variable nodes

and, hence, no weight is used). Note that, at any given step,
different choices of the weight will result in different den-
sities and that there is no clear (linear) ordering
among those alternatives. To find a good sequence of weights we
could proceed in the following way. Assume that we would like
to minimize at the th decoding iteration, whereis
some positive number, e.g., . We can then find the op-
timum weights by means of dynamic program-
ming. For the -regular code, the optimum weight sequence
found by dynamic programming is , and ,

. The advantage of such an approach is that it is widely
applicable regardless of how many alternative maps there are
at any step and regardless of how many levels of quantization
we have. The major drawback is that this scheme is computa-
tionally intensive and that it quickly becomes infeasible if the
size of the message alphabet becomes large. It is often almost
equally effective, and much less labor-intensive, to find sensible
heuristics. In the sequel, we will assume that the weight,

, maximizes

(7)

which is the capacity of a memoryless symmetric channel with
binary input and ternary output with a crossover probability of

and an erasure probability of . For the -regular
code this leads to the same sequence of weights, but no claim is
made regarding the optimality of this decision scheme in gen-
eral. Table I summarizes the largest achievable parametersfor
the various code parameters. We see that all entries are signifi-
cantly larger than their corresponding entries for Gallager A and
B. Particularly impressive is the performance for the -reg-
ular code. We will later see that with belief propagation, the code
has a threshold for the BSC of roughly 8.4%. Hence, the simple
decoder with erasures performs almost as well as a belief-prop-
agation decoder.

Example 6 [Quantized Continuous Channels with Erasures
in the Decoder]: Encouraged by the large increase in the
threshold for the BSC when allowing erasures in the decoder,
we apply the same kind of decoder to continuous output
channels.

Assume first that we pick a symmetric thresholdaround
zero, and quantize the continuous output of the channel into
negative values, erasures, and positive values, depending on
whether the continuous outputfulfills , ,
or , respectively.

We can now apply exactly the same algorithm as in the pre-
vious example. Clearly, the resulting thresholdwill depend
on the choice of the threshold value, and we can try to find
the optimum such threshold value. We can make even better use

608 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

of the received values if we adapt the quantization at every step
of the decoding algorithm. More precisely, rather than picking
the threshold value once and for all, we can pick a suitable
threshold value at every step of the decoding algorithm. At
every step we pick that threshold and that weight which
maximize (7). For the BIAWGN channel and the -regular
code, the threshold is , which corresponds to a raw
bit-error probability of roughly 8.9%. Hence, by providing soft
information at the input to the decoder, even when the messages
are only ternary, the threshold raw bit-error probability can be
raised by almost 2% compared to a decoder which is fed hard
decisions.

Example 7 [Quantized Gaussian Channel, 3-Bit Messages,
-Regular Codes]:From the previous example it is evident

that a very coarse quantization of the input and a very small mes-
sage alphabet can already result in very good performance. We
now present a very simple time-invariant decoder whose perfor-
mance on the -regular code over the Gaussian channel is
close to the performance of belief propagation.

Let the message alphabet and the received alphabet be equal
to

In this example, we look at practical situation: a quantized ver-
sion of the Gaussian channel. If the output of the channel at time

is then the corresponding log-likelihood ratio
is given by . Let the threshold set be given by

and quantize the log-likelihood value according to these thresh-
olds, e.g., if , then the associated
received value is .

The check message map is specified as

where thesign is given by

and where is thereliability specified by the following deci-
sion tree. Let be the number of received messages out of all

messages under consideration with reliability (absolute
value) , . For simplicity, we represent the de-
cision as a sequence of tests. Thus, in the list below, we perform
the tests in order, stopping as soon asis determined.

1) If or then .

2) If then .

3) If and then .

4) If or then .

5) .

We define the variable message map by first mapping the re-
ceived messages and the incoming messages into suitable inte-
gers so that the decision rule can be based on the sum of all these
values. Let

be defined by

and let

be defined by

The variable message map is determined by
and by the threshold set

For example, if , , and then

so that the outgoing message is (since).
It is evident that the computational requirements to imple-

ment this decoder are very small. This decoder on the -reg-
ular code has a threshold11 value of , corresponding
to a raw error rate of about 11.9%. Later we will see that with be-
lief propagation the code has a threshold of roughly ,
equivalent to a raw error rate of about 13.0%. Hence, the per-
formance of this simple decoder is very close to that of belief
propagation.

Actually, as specified, this decoder has an error floor of about
0.06%. The error floor is easily removed by replacing

with the corresponding

after sufficiently many iterations.

From the previous examples the general method should now
be clear. For a given discrete memoryless channel and a decoder
with discrete message alphabet it is always possible, although
cumbersome, to write down the recursion describing the evolu-
tion of the fraction of incorrect messages which are passed. If
the channel is parameterized by a single real value, then we can
find the supremum of all such values for which the fraction of in-
correct messages passed at theth decoding iteration converges
to zero as tends to infinity. This threshold value is, of course,
a function of the code parameters. We will see in Section IV
that this quantity, which we derived under the assumption that
the graph did not contain small cycles describes the average be-
havior over all inputs. Quite surprisingly, it also describes the
behavior for almost all randomly chosen graphs and almost all
inputs up to an arbitrarily small deviation, once the code length
is sufficiently large.

It should also be clear from the previous examples that there
is an enormously rich family of message-passing algorithms,
whose surface we have only scratched, and that by choosing dif-
ferent elements of this family we can trade off complexity with
performance. From a practical point of view, it is interesting to
note that very simple decoders (like the ones used in Examples
5 and 6) can already yield extremely good performance.

11We have not demonstrated monotonicity of this decoder, but monotonicity
is apparent.

RICHARDSON AND URBANKE: THE CAPACITY OF LOW-DENSITY PARITY-CHECK CODES 609

B. Continuous Message Alphabets: Belief Propagation

Assume now that the message alphabet is continuous and that
the channel output is discrete or continuous. From our previous
experience with binary or ternary message-passing algorithms,
it seems a formidable task to determine the threshold in the con-
tinuous case. But for the most important case, namely, the case
of a belief-propagation decoder, there is an efficient way of de-
scribing and evaluating density evolution, which we will now
present.

To begin, we will assume that our alphabets are the reals
and that probability density functions of interest are absolutely
continuous with respect to Lebesgue measure. This assumption
is not required, and we will consider discrete (input) proba-
bility densities later, but it simplifies the mathematical state-
ments. Throughout, we shall refer to probability density func-
tions simply as densities.

Roughly speaking, in belief propagation the messages sent
on an edge represent posterior densities on the bit associated
with the incident variable node. A (conditional) probability den-
sity on a bit is a pair of nonnegative reals satisfying

. Such a pair can be represented by the corre-
sponding log-likelihood ratio and, to be specific, we
shall assume that the messages use this representation. Each
node acts under the assumption that each density communicated
to it in a given round is a conditional distribution on the bit, and
that each message is conditionally independent of all others, i.e.,
the random variables on which the different messages are based
are independent. After receiving its messages, a node transmits
to each neighboring node the conditional distribution of the bit
conditioned onall information not coming from that particular
neighboring node. More precisely, consider the message emitted
by a variable node along the edge in the th de-
coding round. Assuming that there are no cycles of length
or less, this message is , where is thea posteriori
probability that the value of the associated variable node is
given the observed values of all nodes in the directed neighbor-
hood . An equivalent statement is true for the messages sent
out from check nodes.

If are likelihood ratios of conditional distribu-
tions of a given bit value conditioned on independent random
variables, then the likelihood ratio of the bit value conditioned
on all of the random variables is . Therefore, since we
are using log likelihoods for messages, we have

Given densities on the real quantities , it
follows that the density of is simply the
convolution (over the reals) of those densities. In other words,
we have

where denotes convolution. Letting denote the Fourier
transform (over the reals in this case) we have

In our computations, we shall have and
all densities will be quantized; we can therefore efficiently ob-

tain using the fast Fourier transform
(FFT).

Let us now consider a check node. We are interested in the
outgoing message along edge , where is some
variable node incident to . Label all other edges (excluding)
incident to with the set , and let the incoming message

along edge be given by . We can think of

each such message as representing a random variable on
that takes on the value with probability . Furthermore,
all of these random variables are assumed independent.
The outgoing message along edgeis then , where
is the probability that the product of these random variables has
value .

To calculate it is more convenient to switch to the fol-
lowing alternative representation: assume that the random vari-
ables take values in , instead of , with the correspon-
dence , , , and . The value
is now the probability that the sum of the inde-
pendent -valued random variables is equal to zero.

Note that the probability vector is given by the cyclic
convolution of the probability vectors . An ef-
ficient way of performing these convolutions is by means of a
Fourier transform. In general, if represents a function over
GF , then its Fourier transform is defined over

and is given by

and

When is a probability mass function, we have, of course,
. Thus, we have

(and also).
If is a log-likelihood , then it follows that

Conversely, if , then . Thus, the
appropriate definition for the check message map is

Let us consider the evolution of the densities of the messages
at the check nodes according to the above scheme. It turns out
that, for this purpose, the check node update is more conve-
niently expressed using yet another representation of the mes-
sages. A probability density can be represented as a
log-likelihood , as used above, and it can also be repre-
sented using the following ordered pair:

GF

where we define

610 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

(Ideally, is defined probabilistically, taking either value
or with equal probability.) Note that the above essentially

decomposes into its sign and its (log) magnitude. The
advantage of this representation arises from the fact that, under
this representation, the check node message map in the given
space GF is simply addition.

Given a density of log-likelihoods we can find the
equivalent density over GF by making the
appropriate change of measure. Let denote a log-likeli-
hood with density , then we wish to derive the density of

, where we have used the fact that

If , then, letting , we find the sur-
prising symmetrical relation . Similarly, if

then letting

we have . Let , be
defined by and let , be
defined by . By differentiating we obtain (for

)

and

Similarly, given we have

for and, for

Note that the space GF is the direct product of two
fields and that we are interested in computing the densities of
the sum of putatively independent random variables over this
space given their individual densities. It follows, and this is the
point of the representation, that the density of this sum is the
convolution of the densities of the summands. This convolution
can be efficiently computed using (generalized) Fourier trans-
forms. Here, the Fourier transform is the Laplace transform in
the second coordinate (in practice, we use the Fourier transform
over the reals) and the discrete Fourier transform over GFin
the first coordinate.

More specifically, let denote the Laplace transforms
of , respectively. The Fourier transform of the density
is given by

and

Let denote the density of where GF
corresponds to a log-likelihood messagedistributed

according to . We then have

and

Thus, may be obtained by performing the inverse Fourier
transform. The density can now be
obtained from by a change of variables.

Let us summarize how we perform density evolution for be-
lief propagation for -regular graphs. Let denote the
common density associated with the messages from variable
nodes to check nodes in theth round, and let denote the
density of the received values. First we find the density
corresponding to . This is done using the change of measure
described above. We then determine the density according
to

(8)

where denotes the Laplace transform of . Finally,
we obtain by performing the appropriate change of mea-
sure.

Thus, completing the iteration, we have

(9)

The above described algorithm enables one to effectively com-
pute from via judicious use of the FFT.

Although we have assumed that the density is abso-
lutely continuous with respect to Lebesgue measure, the anal-
ysis above easily extends to more general densities. In partic-
ular, we may consider discrete densities. In some cases, we may
have for some , in which case special con-
sideration must be taken for this probability mass. This can be
done in a straightforward manner, as we indicated earlier, and
will not be described further.

The above algorithm can also be used to study quantization
effects. If the messages are quantized versions of the messages
that would be obtained using belief propagation, then the perfor-
mance can be evaluated as above by simply, for given messages,
computing the density of return messages assuming belief prop-
agation, and then quantizing the densities in accordance with the
quantization of the messages.

Essentially, all our finite-alphabet examples can be in-
terpreted as quantized versions of belief propagation. The
eight-level message passing algorithm of Example 7, in partic-
ular, was designed by hand to approximate belief propagation
near the threshold value for that decoder. The quantization
levels were chosen visually from plots of the message den-
sities arising from belief propagation and partially quantized
belief propagation (we introduce quantization in stages). The
rules given to describe the algorithm are consistent with the
effect of the quantization but are written in a form which
emphasizes their simplicity. We have not attempted to properly
optimize the quantization levels, and we restricted ourselves
to time-invariant quantization. Clearly, the algorithm is not
the optimal eight-level algorithm but it is surely close and its

RICHARDSON AND URBANKE: THE CAPACITY OF LOW-DENSITY PARITY-CHECK CODES 611

construction indicates general principles that can guide the
design of low-complexity decoders.

1) Monotonicity—Threshold Effects:Assume we are given
a class of channels fulfilling the required symmetry condition
and that this class is parameterized by. This parameter may
be real-valued, as is the case for all our examples (the crossover
probability for the BSC, the standard deviationfor the BI-
AWGNC, the parameter for the BILC), or may take values
in a larger domain. For a fixed parameterwe can use the
above algorithm to determine if, for a given , the ex-
pected fraction of incorrect messages tends to zero with an in-
creasing number of iterations under density evolution.

For all our examples, the parameterreflects a natural or-
dering of the channels—the capacity decreases with increasing
parameter . It is, therefore, natural to ask whether in such cases
the convergence for a parameterautomatically implies the
convergence for every parameter such that . More
generally, we might want to define a partial ordering of channels
with respect to a given code and a belief-propagation decoder.

Let a channel be represented by its transition probability
. We say that a channel is physically degradedwith

respect to if for some auxil-
iary channel , see [12].

Theorem 1 [Monotonicity for Physically Degraded Chan-
nels]: Let and be two given memoryless channels that
fulfill the required channel symmetry conditions. Assume that

is physically degraded with respect to . For a given
code and a belief-propagation decoder, letbe the expected
fraction of incorrect messages passed at theth decoding
iteration assuming tree-like neighborhoods and transmission
over channel , and let denote the equivalent quantity for
transmission over channel . Then .

Proof: Let be a given edge and assume that
is tree-like. Let be the result of passing a randomly

chosen codeword through channel, and let be the result
of passing through an additional auxiliary channel which
is chosen so that the concatenation ofand results in the
channel . Consider the following three maximum-likelihood
(ML) estimators of the bit value associated togiven all ob-
servations in . The first estimator has input , the second
one has input , and the third one has input . Since
the transmitted bit associated with variable nodehas uniform
a priori probability, an ML estimator is equal to a maximum
a posterioriestimator, which is known to yield the minimum
probability of error of all estimators based on the same observa-
tion. The first two of the above three estimators clearly yield the
same probability of error since the additional input is con-
ditionally independent of the transmitted bit given. Further-
more, we can think of the third estimator as an estimator which
has input but ignores in his decision. Clearly, such
an estimator cannot have smaller probability of error than the
optimal (ML) estimator given input .

The claim now follows by observing that, for a belief-prop-
agation decoder, the sign of the message sent along edgein
the th decoding iteration is equal to the estimate of an ML es-
timator based on the observations in [15]. Our above state-
ments then translate into the fact that a belief-propagation de-

coder operating on the output of the channelhas a smaller
probability of error than a belief-propagation decoder operating
on the output of the channel , i.e., .

If a class of channels is parameterized by a real-valued pa-
rameter , we will say that the class of channels ismonotone
with respect to a particular decoderif the convergence for a pa-
rameter implies the converge for every parametersuch that

.

Example 8 [BSC: Monotonicity by Self-Concatenation]:As-
sume we are given two BSCs with parametersand , respec-
tively. It is then easy to see that their concatenation (in any
order) is again a BSC and that the parameter of the concate-
nated channel is

(10)

Moreover, for any and any there exists a posi-
tive such that (10) is fulfilled. By Theorem 1, this proves the
monotonicity of the class of BSCs with respect to a belief-prop-
agation decoder.

Equivalent statements are true for the class of BECs, the class
of BIAWGNCs channels, and the class of Cauchy channels with

Example 9 [Monotonicity of the BILC]:As discussed in Sec-
tion II, for the class of BILCs we have

Although the concatenation of a BILC with a Laplace channel
(LC) is not a BILC, one can check that the concatenation of a
BILC with parameter with an additive memoryless channel
with

where denotes the Dirac delta function, results in a BILC with
parameter . Hence, by Theorem 1, the class of BILC is mono-
tone with respect to a belief-propagation decoder.

2) Thresholds for Belief Propagation—Examples:For
each of the examples below we computed the corresponding
threshold value. Note that, in order to carry out the computa-
tions, the involved quantities have to be discretized. In order to
avoid some of the resulting numerical precision problems, we
made sure that the discretization was symmetric with respect
to the input parity. As a consequence, the computations cor-
respond to actual implementable message-passing algorithms
(quantized, possibly probabilistic, approximations of belief
propagation). Since the values reported are those for which the
probability of error converged to zero (within machine preci-
sion,) it follows that the reported thresholds are guaranteed to
be lower bounds. In all cases, the values presented are believed
(after extensive numerical checking) to be accurate (rounded
down) up to the number of digits given.

612 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

TABLE II
THRESHOLDVALUE � FOR THEBIAWGNC UNDER BELIEF PROPAGATION

FOR VARIOUS CODE PARAMETERS. ALSO LISTED IS THE MAXIMUM

ALLOWED VALUE � ACCORDING TO(4)

TABLE III
THRESHOLDVALUE � FOR THEBILC UNDER BELIEF PROPAGATION FOR

VARIOUS CODE PARAMETERS. ALSO LISTED IS THEMAXIMUM ALLOWED

VALUE � ACCORDING TOEQUATION (5)

Example 10 [BSC Under Belief Propagation]:We start by
applying the above algorithm to the BSC with crossover proba-
bility . The initial density is given by

The resulting threshold values are given in Table I.

Example 11 [BIAWGN Channel Under Belief Propaga-
tion]: We next apply the above algorithm to the BIAWGN
channel with standard deviation. In this case we have

The resulting threshold values are given in Table II.

Example 12 [BILC Under Belief Propagation]:As a final
example, we apply the above algorithm to the BILC with pa-
rameter . In this case we have

where

The resulting threshold values are given in Table III.

As we have seen in the previous example, the monotonicity
theorem is a powerful tool. Nevertheless, in some situations it
would be desirable to have alternative sufficient conditions for
convergence of the density evolution according to a belief-prop-
agation decoder. These conditions should depend only on the
shape of the input density, regardless of whether this density

corresponds to the output of an actual channel or not. One situ-
ation where such a criterion would be of great value is the sit-
uation of a channel mismatch. Assume, for example, that it is
known that the channel belongs to a certain class parameterized
by but the exact value of is unknown. Assume further that
the class is monotone and that the threshold is. In such a
situation, it is natural to inquire if a belief-propagation decoder
is “universal” in the sense that it may assume a parameter
and that it will decode correctly with high probability as long
as the actual parameteris strictly less than . Unfortunately,
this question cannot be answered by means of the monotonicity
theorem since the input to the decoder will, in general, not cor-
respond to the output of an actual channel.

IV. CONCENTRATION AND CONVERGENCE TO THE

CYCLE-FREE CASE

In this section, we will show that the average behavior of
individual instances (of the code and the noise) concentrates
around its expected behavior when the length of the code grows
and we will show that this average behavior converges to the
behavior of the cycle-free case.

The concentration result which we derive applies regardless
of whether the average fraction of incorrect messages passed at
the th iteration converges to zero as or not. Hence, as-
suming that the codeword lengthis large enough, for almost
all codes in the ensemble transmission will be reli-
able if and only if the parameter of the channel is below the cal-
culated threshold value. More precisely, if the parameter of the
channel is below the calculated threshold value, then, given any
arbitrarily small target error probability, it can be achieved using

iterations of the decoder (for some fixeddepending on the
target error probability) with probability approaching one expo-
nentially in by choosing a code at random from . If
the parameter of the channel is above the calculated threshold
value, then there is an such that, for any fixed number
of iterations , the decoder will yield an error rate larger than
with probability approaching one exponentially inwhen using
a code chosen at random from . (Note that if we could
prove that loops in the graph degrade average performance, and
we conjecture that this is actually the case, then we could allow
the number of iterations to be arbitrary.)

In order to simplify some of the subsequent notation, we will
assume that the number of iterations that the decoder performs
is fixed and we will denote this number by. All subsequent
quantities are then the quantities at iterationand, hence, we
often omit the index .

Assume that we are in theth iteration and recall that the mes-
sage passed from variable nodeto check node is a function
of the chosen graph and the input to the decoder. Letbe the
number of incorrect messages among all variable-to-check
messages sent out in theth iteration and let be the ex-
pected value of where the expectation is over all graphs and
all decoder inputs. For a given edgewhose directed neighbor-
hood of depth is tree-like, let be the expected number of in-
correct messages (including half the number of erasures) passed
along this edge at theth iteration, averaged over all inputs. We
have seen in the previous section howcan be determined in

RICHARDSON AND URBANKE: THE CAPACITY OF LOW-DENSITY PARITY-CHECK CODES 613

most cases of interest. Note that in the case of continuous mes-
sage alphabets, is given as

where describes the density of the messages at theth it-
eration. Although we will not make use of this fact in the se-
quel, we note that the same concentration result applies to the
more general case of a random variablethat corresponds to
messages in the range of for any . The pre-
vious case is then just the special case . More impor-
tantly, since and are increasing functions with range

, uniform convergence to within follows from conver-
gence at finitely many points determined by . For ex-
ample, if is continuous in , then we may take the points
where for . If

is within of at these points, then is within
of for all . If is discontinuous, then, in gen-

eral, we must consider left and right limits at eachand we
obtain uniform convergence of these limits. These uniform con-
vergence results show that the cumulative message distributions
computed for tree-like neighborhoods uniformly approximates
the actual message distributions to withinwith a probability
that decays exponentially in.

The equivalent of the following main theorem for the binary
erasure channel and binary messages was proved in [1].

Theorem 2: Over the probability space of all graphs
and channel realizations let be the number of

incorrect messages among all variable-to-check node
messages passed at iteration. Let be the expected number
of incorrect messages passed along an edge with a tree-like
directed neighborhood of depth at leastat the th iteration.
Then, there exist positive constants and

such that

[Concentration Around Expected Value] For any we
have

(11)

[Convergence to Cycle-Free Case] For any and
we have

(12)

[Concentration Around Cycle-Free Case] For any
and we have

(13)

Proof: As noted before, Theorem 2 is an extension of [1,
Theorem 1] to nonbinary channel output alphabets and nonbi-
nary messages. As we will see, we can use essentially the same
arguments as were given in [1]. Since the proof in [1] is rather
brief, we give an explicit account of the necessary steps.

First note that (13) follows immediately from (11) and (12).
We start by proving (12). Let , , be the expected

number of incorrect messages passed along edge, where the

average is over all graphs and all decoder inputs. Then, by lin-
earity of expectation and by symmetry

Furthermore

is tree-like is tree-like

is not tree-like is not tree-like

where denotes the directed neighborhood of depthof
edge . It is shown in Appendix A that

is not tree-like

for some positive constant. Furthermore, we have

is tree-like

by definition and

is not tree-like

trivially, hence

and . It follows that if then

It remains to prove (11). Recall thatdenotes the number of
incorrect variable-to-check node messages among allvari-
able-to-check node messages passed in theth iteration for a
particular , where is a graph in the ensemble

, is a particular input to the decoder, andis the
probability space. Let , , be a
sequence of equivalence relations onordered by refinement,
i.e., implies .
These equivalence classes are defined by partial equalities. In
particular, suppose we expose the edges of the graph one at
a time, i.e., at step we expose the particular check node
socket which is connected to theth variable node socket,
and, similarly, in the following steps we expose thereceived
values one at a time. Then we have if
and only if the information revealed in the firststeps for both
pairs is the same.

Now, define by

By construction is a Doob’s Martingale
Process[16, p. 90], where and . As noted
in Appendix B, one can give bounds on

if we can prove that

(14)

for some suitable constants which may depend on , , and
, but preferably not on .

We first prove (14) for , i.e., for the steps where
we expose the edges. Recall that means that theth
variable node socket is connected to theth check node socket.
Let be the set of graphs in the ensemble such
that the first edges are equal to the edges in, i.e.,

614 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

Fig. 4. Left: a graphG in the ensembleC (3; 6). Middle: a graphH from the ensembleG (G; 7) (note that the labels of the sockets are not shown—these
labels should be inferred from the order of the connections in the middle figure); the first seven edges thatH has in common withG are drawn in bold. Right: the
associated graph� (H). The two dashed lines correspond to the two edges whose end points are switched.

Let be the subset of consisting of those graphs
for which . Thus, .

We have

Pr (15)

We claim that if and are such that

and

then

(16)

To prove this claim define a map as
follows. Let be the permutation defining the edge assignment
for a given graph and let . Define a
permutation by except that and
. Let denote the resulting graph, then . By

definition, . The construction is shown in Fig. 4.
Clearly, is a bijection and, since every (edge-labeled) graph
in the ensemble has uniform probability, such a bijection pre-
serves probabilities. We claim that

(17)

for all decoder inputs . To see this, note that for any edge
the message along this edge is only a function of the directed
neighborhood . Therefore, a message is only affected by

an exchange of the endpoints of two edges if one (or both) of
the two edges is (are) in the directed neighborhood. As
stated in the beginning of this section, a neighborhood contains
at most distinct edges and, by the symmetry property
expressed in (2), an edge can be in at most neighbor-
hoods. It follows that at most neighborhoods can be
affected by the exchange of the endpoints of two edges, which
proves claim (17).

Since is a bijection and preserves probability, it follows
that

By (17), any pair and has difference
bounded by and, since for any random variable

, claim (16) follows. Finally, note that, by def-
inition, is equal to
for some where denotes the set of unoccu-
pied sockets on the check node side after revealingedges of

, i.e., . Hence

where we have used the representation of given in
(15). This proves (14) for with .

It remains to show that the inequality is also fulfilled for the
last steps. The idea of the proof is very similar and we will be

RICHARDSON AND URBANKE: THE CAPACITY OF LOW-DENSITY PARITY-CHECK CODES 615

brief. When we reveal a received value at a particular message
node then messages whose directed neighborhood include the
node can be affected. By the node symmetry property (1) this
is equal to the number of nodes in the neighborhoodand by
our above estimate this number is upper-bounded by .
This proves (14) for with

.
Theorem 2 now follows by applying Azuma’s inequality

to the given martingale. The parameter can be chosen
as . We remark that this is by no means the best
possible constant.

As discussed before, it follows from this concentration the-
orem that (for sufficiently large) almost all codes can transmit
reliably up to the threshold value, but that they have an error
probability bounded away from zero above the threshold value.
The required size of , according to the proofs, could be ab-
surdly large. The proofs, however, are very pessimistic. We as-
sume, for example, that any loop effectively introduces an error
into every message it affects. With similar pessimism we assume
that replacing one received value with another independent one
can produce an error in every message the replacement affects.
In summary, the analysis rests on the idea that loops and local
changes are perturbations that are irrelevant asymptotically. In
practice, however, large loops may have only a small effect and
local changes tend to disappear under correct decoding. The ef-
fects are therefore much milder than predicted and there-
quired to observe near threshold performance is significantly
smaller than any bound that can be obtained from the results.

Fig. 5 depicts some simulation results for the BSC. Fig. 6
depicts corresponding simulation results for the BIAWGN
channel. The curves indicate bit-error probabilities observed
as a function of the channel parameter. Results are indicated
for and for several different decoding algo-
rithms. Also shown is the predicted threshold value for each
algorithm. We observe the convergence to a sharp threshold
effect at the predicted value asincreases.

We remark that the bit-error probabilities are the result of run-
ning the decoder for 100 iterations. (For shorter lengths this is
far more than necessary.) In some cases, in particular for Gal-
lager’s decoding algorithm A, it is possible to slightly lower the
measured bit-error rate by exploiting the observation that when
the decoding fails the number of errors is typically larger than
the uncoded error rate (this is not true for belief propagation).
Since decoding failure is virtually always detected, one can de-
code to the received values and reap a small gain in this case.

V. EXTENSIONS

In this section, we outline some extensions that are slated to
be subjects of further work.12

First, consider irregular graphs. As proposed in [1], better
LDPC codes can be constructed if we allow varying degrees,
i.e., if we allow variable nodes to participate in different num-
bers of checks and check equations to involve different num-
bers of variables. One can check that, as long as the degrees in

12Some of the proposed work has been carried out subsequent to the prepa-
ration of this paper, see, e.g., [10].

Fig. 5. Bit-error probability versus parameter� for the (3; 6)-regular
ensemble transmitting over the BSC channel for three decoding algorithms.
The leftmost curves correspond to Gallager’s decoding algorithm A, the
middle curves correspond to decoding with erasures and the rightmost curves
correspond to a belief-propagation decoder. The solid curves correspond to a
codeword length of 1000, whereas the dashed and the dotted-dashed curves
correspond to codeword lengths of 10 000 and 100 000, respectively. The
arrows indicate the threshold values� = 0:04, 0:07, and0:084, respectively.
Observe how the lines move closer to these threshold values for increasing
codeword lengths.

Fig. 6. Bit-error probability versus parameter� for the (3; 6)-regular code
used over the BIAWGN channel. The left curves correspond to the message
passing algorithm with eight messages described in Example 7, whereas the
right curves correspond to belief propagation. The solid curves correspond
to a codeword length of 1000, whereas the dashed and the dotted–dashed
curves correspond to codeword lengths of 10 000 and 100 000, respectively.
The arrows indicate the corresponding threshold values� = 0:847 and
� = 0:88. Observe how the lines move closer to this threshold value for
increasing codeword lengths.

the graph are bounded, the concentration theorem applies essen-
tially unchanged to such an ensemble of codes, requiring only
adjustments of the constants. Letand be polynomials repre-
senting the variable node and check node degree distributions,
respectively. More precisely

and

where and denote the fraction of edges incident to variable
and check nodes with degree, respectively. The calculation of

616 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

the message densities under the tree-like assumption requires
only minor modifications to accommodate irregular degree se-
quences. In fact, the only changes required are the following:
(8) becomes

and (9) becomes

Hence, for given degree sequences and a given memoryless
channel, we can calculate the resulting threshold of a be-
lief-propagation decoder in an efficient manner. In [1], the
authors propose a particular degree sequence for a rate one-half
code. The degree distributions are given by the following:13

where

Although this particular degree distribution was optimized for
erasure channels, we can use our extended algorithm to calcu-
late the resulting threshold for other channels. For example, we
get for the BSC and (corre-
sponds to) for the BIAWGNC. Some very good
degree distributions for various channels and message-passing
algorithms are described in [10].

Next, let us consider LDPC codes over larger fields, or rings,
under belief-propagation decoding. Again it is easy to check that
the concentration results apply to both regular and, with proper
conditions as mentioned above, irregular graphs.

Another area into which the methods used in this paper ex-
tend is that of turbo codes. Although this is not immediately
apparent, the notion of a neighborhood of a variable and the no-
tion of a tree-like such neighborhood, which played important
roles in proving concentration results for LDPC codes, can be
suitably extended to the setting of turbo codes. This is the key
observation in proving equivalent concentration results for turbo
codes. The determination of the average performance (under
tree-like assumptions) may not be directly computationally fea-
sible, but simulations should nevertheless be sufficient to deter-
mine the densities of the messages passed between constituent
decoders. This opens the possibility of calculating threshold
values for turbo codes under turbo decoding. For a more de-
tailed account of this extension, see [17] and [18]. As we saw
in this paper, LDPC codes admit a large family of decoding al-
gorithms, allowing a tradeoff between performance and com-
plexity. To date there are only a few decoding algorithms known
for turbo codes, such as the standard turbo decoding using the
Bahl–Cocker–Jelinek–Raviv (BCJR) algorithm, or the simpler
version employing the SOVA algorithm [19]. It is an interesting

13Note that the left degrees are of the form2 + 1 (the exponents of the
polynomials are one less than the corresponding degrees).

and important open question to find a larger class of decoding
algorithms for turbo codes that allow one to trade off perfor-
mance with complexity in a larger range.

We conclude this section by presenting our view of the overall
structure of LDPC codes and belief-propagation decoders. Let
us first consider the structure of the code and the meaning of the
graph. In general,

• the variables take values in some ring and

• check nodes represent weighted sum constraints. More
precisely, each check node represents a constraint of
the form

where the weights are elements of the ring.

Under belief propagation we have the following general de-
scription of the meaning of the messages.

• A message is a (representation of a) conditional distribu-
tion of the variable associated with the variable node.

• All messages arriving at a node at a particular stage (in-
cluding the received value in the case of a variable node)
are assumed to be conditional distributions of the asso-
ciated variable, each independent of the others, i.e., each
conditioned on independent random variables.

• At the variable nodes the outgoing messages are point-
wise products of the densities from incoming messages.

• The outgoing messages from the check nodes represent
the distribution of the (additive group) inverse of some
weighted sum of variables. The variables participating in
the sum are assumed to have the distributions indicated
by the associated incoming message, and each is assumed
independent of the others. Thus, the outgoing message
represents the convolution of the participating incoming
messages (suitably adjusted for any multiplicative factor).
Typically, the additive group possesses a Fourier trans-
form so that efficient computation of the convolution can
be done in the Fourier domain.

Thus, at the message nodes, the distributions should be inter-
preted in the Fourier domain, and then the outgoing messages
are just pointwise products. For example, in the case of GF,
the additive group operative at the check nodes is GF. Thus,
the appropriate Fourier transform is just the multidimensional
version of the one used for binary parity-check codes. This ob-
servation leads to a new efficient implementation of the decoder
for this case.

We now address the problem ofcomputing average asymp-
totic performance.Here, we interpret the messages themselves
as random variables for which we desire the density.

• In each case, i.e., at both sets of nodes, we move to a
log domain so that pointwise products become pointwise
sums.

• Once in the log domain, the density of an outgoing mes-
sage is the convolution of the density of incoming mes-
sages. Typically, the log domain can be suitably repre-

RICHARDSON AND URBANKE: THE CAPACITY OF LOW-DENSITY PARITY-CHECK CODES 617

sented so that a Fourier transform exists over the space on
which the densities are defined. The update of the density
can then be computed efficiently in this Fourier domain.
This applies both at the variable nodes and at the check
nodes, but the spaces may be different in both cases.

In the case of GF , for example, the Fourier transform
of the densities can be viewed as a real function over ,
taking values in the interval . Thus, the appropriate log
domain is a multidimensional version of the one appearing in
the binary case. Unfortunately, the dimensionality of the space
renders computation of the densities infeasible except for quite
small (e.g.,).

Other examples of interest are codes over or codes
over . The latter example introduces the possibility
of designing LDPC codes directly for QAM-type signaling
schemes. Again, it is the existence of the Fourier transform
over these spaces that renders the necessary computation at the
check nodes efficient.

APPENDIX A
PROBABILITY OF TREE-LIKE NEIGHBORHOOD

In this section we will give a short proof that

is not tree-like

for some constant , where is a given edge in a
randomly chosen element of and is a fixed depth.

Note that there are, in total,

variable nodes and

check nodes in assuming it is tree-like. Recall that de-
notes the number of check nodes in the full graph. Fixand
let . Assuming that is tree-like, we ask this: what is
the probability that is tree-like? We obtain a bound by
revealing the outgoing edges of the variable node leaves of the
tree given by one at a time and bounding the probability that
this revelation creates a loop. Assume thatadditional edges
have been revealed at this stage without creating a loop; then the
probability that the next revealed edge does not create a loop is

. Assuming that is sufficiently large we have

Thus, the probability that is tree-like, given is tree-
like, is lower-bounded by .

Assume now that is tree-like. As above, we reveal the
outgoing edges of the check node leaves of one at a time.
Assuming that variable nodes have been revealed without cre-
ating a loop, then the probability that the next revealed edge does

not create a loop is . Assuming that is sufficiently
large, we now have

Thus, the probability that is tree-like given is
tree-like is lower-bounded by .

It now follows that the probability that is tree-like is
lower-bounded by

Hence, for sufficiently large

is not tree-like

APPENDIX B
AZUMA’S INEQUALITY

Let be a sum of independent random variables. We
can then use the Chernoff bound to give an exponential bound
on the probability that will deviate from its mean by more
than a fraction .

Sometimes it is possible to give strong bounds even when the
random variables are not independent. In one particularly useful
case the random variables form a martingale.

Theorem 3 [Azuma’s Inequality]:Let be a mar-
tingale sequence such that for each

where the constant may depend on. Then, for all and
any

For proofs and applications of Azuma’s inequality see, for ex-
ample, [16], [20].

ACKNOWLEDGMENT

The authors would like to thank Richard Blahut, Amin
Shokrollahi, Emre Telatar, and Igal Sason for their comments
on an earlier draft of this paper. They would also like to thank
the reviewers for their many helpful suggestions.

REFERENCES

[1] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman.
Analysis of low density codes and improved designs using irregular
graphs. [Online]. Available: http://www.icsi.berkeley.edu/~luby/

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding,” inProc. Int. Communications
Cconf. (ICC’93) Geneva, Switzerland, May 1993, pp. 1064–1070.

[3] D. J. C. MacKay, “Good error correcting codes based on very sparse
matrices,”IEEE Trans. Inform. Theory, vol. 45, pp. 399–431, Mar. 1999.

[4] M. Sipser and D. Spielman, “Expander codes,”IEEE Trans. Inform.
Theory, vol. 42, pp. 1710–1722, Nov. 1996.

618 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 2, FEBRUARY 2001

[5] R. G. Gallager,Low-Density Parity-Check Codes. Cambridge, MA:
MIT Press, 1963.

[6] V. Zyablov and M. Pinsker, “Estimation of the error-correction com-
plexity of Gallager low-density codes,”Probl. Pered. Inform., vol. 11,
pp. 23–26, Jan. 1975.

[7] R. M. Tanner, “A recursive approach to low complexity codes,”IEEE
Trans. Inform. Theory, vol. IT-27, pp. 533–547, Sept. 1981.

[8] G. A. Margulis, “Explicit construction of graphs without short cycles
and low density codes,”Combinatorica, vol. 2, no. 1, pp. 71–78, 1982.

[9] D. MacKay, S. Wilson, and M. Davey, “Comparison of constructions
of irregular Gallager codes,”IEEE Trans. Commun., vol. 47, pp.
1449–1454, Oct. 1999.

[10] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-ap-
proaching irregular low-density parity-check codes,”IEEE Trans. In-
form. Theory, vol. 47, pp. 619–637, Feb. 2001.

[11] M. C. Davey and D. J. C. MacKay, “Low density parity check codes over
GF(q),” IEEE Commun. Lett., vol. 2, pp. 165–167, June 1998.

[12] T. M. Cover and J. A. Thomas,Elements of Information Theory. New
York: Wiley, 1991.

[13] L. Bazzi, T. Richardson, and R. Urbanke, “Exact thresholds for the bi-
nary symmetric channel and Gallager’s decoding algorithm A,”IEEE
Trans. Inform. Theory, to be published.

[14] M. Mitzenmacher, “A note on low density parity check codes for era-
sures and errors,”, SRC Technical Note 1998-017, December 1998.

[15] J. Pearl,Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Francisco, CA: Morgan Kaufmann, 1988.

[16] R. Motwani and P. Raghavan,Randomized Algorithms. Cambridge,
U.K.: Cambridge Univ. Press, 1995.

[17] E. Gelblum, R. Calderbank, and J. Boutros, “Understanding serially con-
catenated codes from a support tree approach,” inProc. Int. Symp. Turbo
Codes and Related Topics, Brest, France, Sept. 1997, pp. 271–274.

[18] T. Richardson and R. Urbanke, “Thresholds of turbo codes,” paper, to
be published.

[19] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision out-
puts and its applications,” inProc. GLOBECOM ’95, Dallas, TX, Nov.
1995, pp. 1680–1686.

[20] N. Alon, J. Spencer, and P. Erdös,The Probabilistic Method. New
York: Wiley, 1992.

