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PROFILE LIKELIHOOD AND CONDITIONALLY
PARAMETRIC MODELS

By TuoMmas A. SEVERINI AND WING HuNg WONG

Northwestern University and University of Chicago

In this paper, we outline a general approach to estimating the paramet-
ric component of a semiparametric model. For the case of a scalar paramet-
ric component, the method is based on the idea of first estimating a
one-dimensional subproblem of the original problem that is least favorable
in the sense of Stein. The likelihood function for the scalar parameter along
this estimated subproblem may be viewed as a generalization of the profile
likelihood for that parameter. The scalar parameter is then estimated by
maximizing this ‘“generalized profile likelihood.” This method of estima-
tion is applied to a particular class of semiparametric models, where it is
shown that the resulting estimator is asymptotically efficient.

1. Introduction. Semiparametric models are models containing both
parametric and nonparametric components, the nonparametric component
playing the role of a nuisance parameter. More precisely, a semiparametric
model is parameterized by a parameter of interest taking values in finite-
dimensional Euclidean space and a nuisance parameter taking values in an
infinite-dimensional space. The goal is then to estimate the parameter of
interest in the presence of the infinite-dimensional nuisance parameter; see
Bickel, Klaasen, Ritov and Wellner (1991) for a general discussion of estima-
tion in semiparametric models. In this paper, we outline a general approach to
estimating the parametric component of a semiparametric model; this general
method is then applied to a particular class of semiparametric models, where it
is shown that the resulting estimates are asymptotically efficient.

Stein (1956) proposed a method for obtaining a lower bound to the asymp-
totic variance of an estimator of the parametric component of a semiparamet-
ric model which generalizes the bound provided by the inverse of the marginal
Fisher information in parametric models. This result is based on the observa-
tion that a nonparametric problem is at least “‘as difficult” as any one-
dimensional subproblem. That is, the Fisher information for estimating the
parameter of interest in a semiparametric problem is no greater than the
Fisher information for estimating that parameter in any one-dimensional
subproblem. Hence, by looking at the ‘“least favorable”” subproblem, we may
obtain a bound on the asymptotic variance of an estimator of the parameter of
interest in the original, semiparametric problem. This approach has been
further developed by Levit (1974), Koshevnik and Levit (1976), Lindsay (1980),
Pfanzagl (1982) and Begun, Hall, Huang and Wellner (1983).
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For the case of a scalar parameter of interest, the method of estimation
proposed here is based on the idea of first estimating a one dimensional
subproblem of the original problem which is least favorable in the sense of
Stein (1956) and then proceeding to estimate the scalar parameter as if it was
known to lie on this curve. The method may be viewed as generalization of
maximum likelihood to the semiparametric setting and the proposed estimator
reduces to the maximum likelihood estimator in the case of a finite-dimen-
sional nuisance parameter.

The main condition required for this method of estimation is the existence
of an estimator of a ‘“‘curve’ in the nuisance parameter space which corre-
sponds to a least favorable subproblem. In this paper we present a general
method for obtaining such an estimator for the following class of models.
Suppose Y and X are random variables such that the conditional distribution
of Y given X = x depends on parameters 6 and 7, each of which takes values
in finite-dimensional Euclidean space, where the value of 1 depends on the
value of x, so that n = n,.. Furthermore, suppose that 7, is a smooth function
of x, n, = Mx). Given a random sample from the distribution of (Y, X), our
goal is to estimate the parameter of interest 6 in the presence of the infinite-
dimensional nuisance parameter A. Since conditional on a particular value of x
the model is parameterized by a finite-dimensional parameter, we have called
such a semiparametric model a conditionally parametric model. In this paper
it is shown that the method of estimation described above leads to an asymp-
totically efficient estimator of the parameter of interest when applied to a
conditionally parametric model.

Estimation of a finite dimensional parameter in the presence of an
infinite-dimensional nuisance parameter has been considered by a number of
authors. Levit (1974, 1975) considered estimation of a functional defined on an
infinite-dimensional family of distribution functions. In some cases, the pa-
rameter of interest 6 can be estimated as well asymptotically when A is
unknown as when A is known; this situation was studied by Bickel (1982) and
his results were extended to the general case by Schick (1986). Another
approach to estimation in semiparametric models is given by van der Vaart
(1986); see Bickel, Klaasen, Ritov and Wellner (1991) for further references.

The outline of the paper is as follows. Section 2 reviews the marginal Fisher
information bound for the asymptotic variance of a regular estimator in
parametric problems. In Section 3, the generalization of this bound and the
marginal Fisher information to semiparametric models is discussed. The ideas
behind the proposed method of estimation are presented in Section 4. In
Section 5 conditionally parametric models and their properties are discussed.
The large sample properties of the proposed estimator when applied to a
conditionally parametric model are presented in Section 6. In Section 7 a
general method of obtaining the required estimator of a curve corresponding to
a least favorable subproblem is given. In Section 8 an alternative method of
estimating such a curve is given for a particular type of conditionally paramet-
ric model. Section 9 contains several examples. Technical proofs are given in
Section 10.
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2. Fisher’s bound for asymptotic variances. Let Y,,...,Y, denote
independent observations from a common density p(-,¢), where ¢ is a
p-dimensional parameter; we will use I(¢) to denote log p(Y;; ¢). If a sequence
of estimators {T,} satisfies

‘/;(Tn - 4)) 9 N(O’V)’

then V is called the asymptotic variance of T),. Following Fisher and Pitman,
the asymptotic variance will be used in this paper for the comparison of
estimators. It is well known that, under some regularity conditions, the
asymptotic variance of the maximum likelihood estimator (MLE) of ¢ is I L
where I, denotes the Fisher information matrix for ¢.

According to Bahadur (1964) and H4jek (1970) any regular estimator (see
their papers for detailed regularity conditions) will have asymptotic variance at
least as large as that of the MLE. Furthermore, if 8 = g(¢) is a smooth scalar
function of ¢, then the asymptotic variance of any regular estimator of 6 will
be at least as large as that of 6 = g(¢), where ¢ denotes the MLE of ¢.
That is,

igt = (Vg)I,"(Vg)

provides a lower bound to the asymptotic variance of regular estimators of 0,
where (Vg) denotes the gradient of g evaluated at ¢. We will refer to i, as the
marginal Fisher information for 6, although the terms effective Fisher infor-
mation and efficient Fisher information are sometimes also used.

For simplicity of discussion, assume now that ¢ is three-dimensional and
that ¢ may be parameterized so that ¢ = (6, A, A,), where 6 € © is the
real-valued parameter of interest and A = (A, A,) € A is a two-dimensional
nuisance parameter in the problem of estimating 6. Let Uy, U, , U,, denote the
partial score functions given by

al al

=—, U =-—, j=12.
U9 39, Aj T J

Under standard regularity conditions, the partial scores are mean-zero random
variables with finite variance. The Fisher information matrix I, is the 3 X 3

matrix with elements
E al al
*\ ¢, 99, )’

that is, I, is the matrix whose associated quadratic form determines the inner
product in the L, space spanned by the partial scores. The marginal Fisher
information for 6,i,, admits a useful geometric interpretation in this L,
space: i, is the squared length of the residual of U, after projection onto
span{U, , U, }.

Let y — ¢(y) = (6(y), A(y), A5(y)) denote a smooth mapping from a real
interval (a, b) to the parameter space ® X A. Then {¢(y): a < y < b} describes
a smooth curve in ® X A. Let ¢, = (6, A1, Ayo) denote the true parameter
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point; the subscript 0 will always be used to denote evaluation at the true
state. Assume that the curve may be parameterized so that 6(y) = vy, that is,
the curve is 8 — (6, A,) with A, = A,. For each curve A, there is an associated
total score function

d (6,1

do (6,20) 0=0,)

The Fisher information for estimating 6 along the subproblem defined by this
curve is given by

6l6/\ 310/\ d)\
—0_9‘( 0> 0)‘*‘6_/\‘( 0 o)gg‘e

0=0¢

2
) = Ey(U, + U)?,
0=0,

E (6,1
ol 79 (6,2)
where

UAl +

d
U= (EE)\IG . 35’\20 0=00)U)‘2 € span{U, , U, }.

The minimum Fisher information for 6 over all possible one-dimensional
subproblems is given by

inf{ E,(U, + U)z:Uespan U.,U0.}; =Ey(U, + U* 2,
1 2

0o

where U* = U, v} + U, v and —U* is the projection of U, onto span{U, , U, }.
It follows from the previous characterization of i, that i, = Eo(U, + U*)%

This provides another useful interpretation of i,, as the minimum Fisher
information over all possible smooth one-dimensional subproblems. Note that
the Fisher information of 6 associated with a curve A, depends on the curve
only through the tangent vector at the true point,

dA
de"?

Any curve with X, =v* = (v, v}) satisfies

4 pr—
Noy = .
0=6,

d 2
lg = Eo(%l(e:)‘o) 0=00)

and hence, the Fisher information for ¢ in this subproblem is minimal among
all possible one-dimensional subproblems. We will call such a curve A, a least
favorable curve and we will call the tangent vector v* the least favorable
direction. From the characterization of U* as a projection, it follows immedi-
ately that a necessary and sufficient condition for v* to be the least favorable
direction is that

al al al
EO %(GO’)‘O) + 5(00, /\0)1)”‘)(5(00,)\0)1}) = O fOI‘ all vV E E}tz.

3. Extension to the semiparametric case. We now consider the exten-
sion of the above results to the case in which the nuisance parameter is
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infinite-dimensional. Hence, we will now assume that ¢ = (6, A), where 0 € ©
is the real-valued parameter of interest and A € A, where A is an open subset
of a normed linear space A,, which may be infinite-dimensional. Stein (1956)
generalized the concept of the marginal Fisher information for a scalar param-
eter of interest in the presence of a finite-dimensional nuisance parameter to
the case of an infinite-dimensional nuisance parameter by taking the concept
of a least favorable curve as the basis for the generalization. A curve 6 — A,

with Ay = A, is said to be a least favorable curve if
d 2 d 2
E,| —1(0,A <E,|=—I(6,A
O(de ( 9) 0=90) 0(d0 ( 10) 0=00)
for any other smooth curve § — A, in A with A;5 = A,.
The interpretations concerning the geometry of the partial scores and the
least favorable direction remain the same as in the finite-dimensional case.

The Fisher information along a particular subproblem parameterized by (6, A,)
is given by

al al 2
Bo{ 35(80,30) + 37 (00, A)(®)]

where v € A represents the tangent vector to the curve 6 — A, at 6, and
dl /9 represents the Fréchet derivative of [ with respect to A. A vector v* € A
is the least favorable direction if

al al N al al 2
E, %(90’)‘0) + 3/\‘(00:’\0)(0 )| = vuelf/;Eo %(00’)\0) + 3):(00:/\0)(”) .
Clearly, as in the finite-dimensional case,

al al al
- 5(00, Ag)(v*) = projection of 53(00, Ag) onto {5\—(00, Ag)(v):v E A}

and v* is the least favorable direction if and only if

al al al
Eo(%(oo,)‘o) + a_)“(aoﬂ\o)(v*))(a(oo:/\o)(v)) =0 forallv e A.

Furthermore, any curve 6 — A, with Ay = A, and X, = v* will be called a
least favorable curve. Therefore, we define the marginal Fisher information for
0 in a semiparametric model by

o al al L)
Ly = Eo(gg(go:)‘o) + 5(90’)‘0)(” )) .

It is clear that this definition reduces to the usual definition of marginal Fisher
information in the case of a finite-dimensional nuisance parameter. Further-
,more, i, ' plays the same role in providing a lower bound to the asymptotic
variance of a regular estimator of 6 in a semiparametric model as the inverse
of the marginal Fisher information for 6 plays in a parametric model. See
Levit (1974), Lindsay (1980), Begun, Hall, Huang and Wellner (1983), Wong
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(1986) and Bickel, Klaasen, Ritov and Wellner (1991) for further discussion of
this bound and technical details.

In the parametric case, it is well known that under fairly general conditions,
there exist many estimators with asymptotic variance equal to i, !, so that i,*
is a valid criterion for efficiency. In the semiparametric case, i, ' remains a
lower bound to the asymptotic variance of a regular estimator. However, there
are few results on the construction of estimators which achieve this lower
bound. Wong and Severini (1991) show that under strong regularity condi-
tions, the maximum likelihood estimator of # is one such estimator; Bickel,
Klaasen, Ritov and Wellner (1991) describe the construction of efficient esti-
mators in several specific examples and give further references. In this paper,
we present an approach to estimating the parametric component of a semi-
parametric model that can be applied generally. Furthermore, it is shown that
for the rich class of conditionally parametric models, the proposed estimator
has variance equal to i,! and hence, for these models, the estimator is
asymptotically efficient.

4. Least-favorable curves and generalized profile likelihood. Sup-
pose that we are able to identify a curve A, in A satisfying Ag, = 8o. Then we
may use the log-likelihood

L,(6,)) = X log p(¥;;6,4,)

for the estimation of 6. The MLE 6 based on L,(0, A,) will have asymptotic

variance
2 -1
b
=00) ]

which we have seen, is less than or equal to i, '. Of course in practice such a
curve A, is not available. However, suppose we are able to obtain an estimate
A, (based on Y,,...,Y,) of a curve ), satisfying A, = A,; we may then obtain
an estimate of 6 by maximizing L (0 )to) To carry out this approach we need
to determine which curve A, to estimate and also which estimator A, to use.
Clearly, we want to make these choices so that the resulting estimator is
asymptotically efficient, if possible. To gain some insight into these choices
consider the situation in which A is finite-dimensional.

For fixed 6, let A, denote a A € A that maximizes L (6, A). Then L (6, A,)
is called the profile log-likelihood for 0 Maximizing L 6, Ao) leads to an
estimator § with asymptotic variance ip - in fact, 6 is exactly the MLE of 6.
To understand how we may generalize thls procedure, consider the following.

Let A, denote the value of A € A that minimizes K(6, A) for fixed 6, where
K(6, A) is given by

d
Eo(gél(o:)‘o) ,

K(0,1) = — [1og p(y;0,A)p(¥;60, Ag) dy.
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Let A, denote the value of A € A that maximizes L,(6, ). Then, under
standard regularity conditions, A, is a consistent estimator of A, [Huber
(1967)]. Furthermore, if A,, is another curve in A satisfying A;, = Ao, then by
the definition of A,,

f(h(ﬂ) — h(6))p(¥;80,20) dy = 0 forall 6,

where h(8) = log p(y; 6, A,) and h(6) = log p(y; 6, A,y). Hence, expanding h
and &, in terms of 6 around 6, and using the fact that Eh'(6,) = E,#'(60,) =
0 we obtain that

JH(80)P(3300,Ao) dy = [Hi(80) p(¥3 00, Ao) .,

that is,

2
—Eowlog p(YI; 0, /\10) o0,

d2
_EOWlOg p(Y1;6, ) o0, =

Since, A,, is arbitrary, this implies that A, is a least favorable curve. The same
argument holds when A is an infinite-dimensional parameter provided that
h(#) and h(6) are twice-differentiable functions of 6 and that E,A'(6,) =
E,n'(8,) = 0; once attention is restricted to a curve A, the problem is essen-
tially finite-dimensional. Furthermore, the results of Bahadur (1971) on the
consistency of the MLE suggest that /\0 is still a consistent estimator of A,.

Note that maximizing L (6, A,) yields the MLE, an estimator with the same
asymptotic distribution as the estimator obtalned by maximizing L,(6, A),
where A, is the curve previously described. However, why should we choose A,
to be the estimator of a least favorable curve, which by definition, maximizes
the asymptotic variance of the resulting estimator. Of course, we know that
using another curve will not result in an estimator with smaller variance, since
i; ! is a lower bound to the asymptotic variance of a regular estimator. The
following argument gives insight into why this is so and is useful in under-
standing the proofs of the later sections.

If A, is a curve in A and /\‘9 is an estimator of Ay, then we would like the
estimator 6 obtained by maximizing L (6, /\0) to have the same asymptotic
distribution as the estimator obtained by maximizing L,(6, A,); in that case
Vn (6 — 6) will be asymptotically normally distributed with mean 0 and vari-
ance depending on the curve A,. For this to occur L (6, A,) and L,(6, A,) must
have the same local behavior, as functions of 6, near § = 6,. In partlcular we
need that

—
U
~
3
—
>
>
ES
~

L Oa|

Vo d0 oy, Vn A0 oo,
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Now,
1 dL,(6,4,) 1 dL,(6,A,)
n do o=0, Vn de 0=0,
. L 4 (L 0,1)(Ay — A
sl
(1)
L d oL, 0, Ao — A
=7 46 (6, 0)9=00( 0~ 4o)
1 oL, o
O] (o= X).
Under regularity conditions,
0)
0=0,

is the sum of n mean-zero random variables, so the second term of (1) will be
of order o,(1) [provided that (X, — X,) — 0. However, in general,

oL,
do oA (6 ")

is a sum of n random variables with nonzero means. Hence, the first term in
(1) is, in general, not of order 0,(1). In this case,

1 dL,(6,4,) 1 dL,(6,A,)
Vi d0 |4, Vn  dO

where B, is a bias term that is of greater order than 0,(1). However, when A,
is a least favorable curve, then for any tangent vector v

d dl
NLE

3%l 0%l
=E ( (80, A0) (V) + = an (90’)‘0)(”’”*))

=69

+ B, + op(l),

0="0,

a6 oA

- —Eo(s—;(()o,/\o) + %(00’Ao)(”*))(%(a"’“)(v)) B

by the properties of the least favorable direction described in Section 3.

Hence, when ), is a least favorable curve, the first term in (1) will also be of
order 0,(1) and under additional regularity conditions, the estimators obtained
by max1m1z1ng L,(, /\0) and L,(6, AB) will have the same asymptotic distribu-
tion. That is, if 6 "denotes the maximizer of L 6, 1,), then

Vn (8 - 8,) =4 N(0,i;).
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This illustrates the importance of obtaining an estimator of a least favorable
curve; if A, is not a least favorable curve, the estimator § will be asymptoti-
cally biased. When A, is a least favorable curve this bias term disappears due
to the orthogonality of the score functions, as discussed in Section 3.

When A, is the MLE of A (for fixed 6), it is well known that maximizing
L,(9, /\0) the profile log-likelihood for 6, leads to an asymptotically efficient
estimator of 6. However, it is clear from the above argument that this property
of the profile likelihood is shared by other functions. Hence, if A, is any least
favorable curve and A, is a consistent estimator of A, for each 0, then
L,(e, A o) Will be called a generalized profile likelihood for 0 An estimator of 6
may then be obtained by maximizing L (6, A ¢); under some regularity condi-
tions, this estimator is asymptotically eﬂ'ic1ent

These observations form the basis of our approach to the estimation of the
parameter of interest in a semiparametric model. Suppose that A is a
infinite-dimensional nuisance parameter and let A, denote a least favorable
curve. If A, is an estimator of A,, then an estimator of @ can be obtained by
maximizing the generalized profile log-likelihood L (6, A o). We expect that,
under some regularity conditions, the resulting estlmator is asymptotically
efficient. Note that in many semiparametric problems the use of a generalized
profile likelihood is absolutely necessary since the profile likelihood requires
maximization over an infinite-dimensional space and hence, may not exist or
may lead to an inconsistent estimator of 6.

In the remaining sections of the paper, we apply the approach described
above to a particular class of semiparametric models. For these models, it is
shown that an estimator of a least favorable curve may be obtained and the
estimator of 6 obtained by maximizing the generalized profile likelihood is
asymptotically efficient.

5. Conditionally parametric models. Let {p(-;0,7): 6 € ®, n € H}
denote a family of density functions indexed by parameters 6, n. Assume that
O is a compact subset of R, H is a compact subset of R and that p(y; 6, n) is
a measurable function of y for each 6, 7. Suppose we observe random vari-
ables Y, X, X € [0, 1], such that the conditional distribution of Y given X =«
has density p(y;0,n,), where 7, depends on the value of x. Assume that
1, = Mx) for some smooth function A: [0, 1] — H, taking values in a set A,

= {h € €?[0,1]: h(x) € int(H) forall x € [0, 1]}.

Suppose we observe independent replicates of (X,Y), (X,,Y}),...,(X,,Y,);
our goal is to estimate 6 in the presence of the nuisance parameter A. It is
worth noting that the results below can be extended to the case in which
0,n, X are each multidimensional.

We now introduce some notation and terminology that will be used in the
remainder of the paper.
" Let

I(y;0,m) =log p(y;6,m)
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and
1;(6,A) =1(Y;;0,m;),  m;=A(x)).

We can easily obtain partial derivatives of ! with respect to A: For any
functions v,,...,v, on [0, 1],

r+sl r+s

(o, M (vgy...,04) = W(Yj;ﬁ,nj)vl(Xj) (X)),

307 IA®
Let L,(8,A) = £1,(6, A) so that
r+sL r+sjy .
® (6, A co0) = L (g,
e (0,0 (v, ,8,) = Lo (0,0) (0, 0,)

r+s

= Z aerans (Y/;e’n;)vl(XJ) T US(XJ)

Let (6, A,) denote the true parameter values; we assume that 6, € int(0).
Let E, denote expectation under (8, A,).

We require that the family of density functions {p(-;60,71): 6 € ©, n € H}
satisfies the following identifiability (I) and smoothness (S) conditions.

Conprrions 1. (a) For fixed but arbitrary 6, n;, where 8, € ® and 7, € H,
let

p(8,m) = [log p(y;6,m)p(y;61,m)dy, 6€@,n€cH.

If 6 # 6,, then
p(8,m) <p(6;,m;).

(b) Let i,(0,m) denote the marginal Fisher information for 6 in the para-
metric model, that is,

g ol 2
£i(0,m) = By o 35 (¥30,m))
-1

al 2 al .
- E, ( (Y;0,m) -~ (Yﬂn)) (%(Y;O,n))

Then assume that 7,(8,n) > 0 forall § € ®, n € H.

ConpITIONS S. Assume that forall r,s = 0,...,4, r + s < 4, the derivative
ar+sl 0
367 9m° (¥50,m)

exists for almost all y and that

r+s

——(Y;0,7)

2
0e® neH agra y }

EO{ sup sup
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Note that under Conditions S it is permissible to interchange differentiation
and integration when differentiating

[ log p(;6,m)p(¥;6,m) dy.

For models of this form we may derive explicit expressions for v* and i,.

LemMA 1. For the model described above, the least favorable direction v* is
given by

_Ey((9%1/96 9n)(Y'; 0, Ao( X))|X = x)
Eo((9*L/0m*)(Y3 00, Ao X)) X = x)
The marginal Fisher information for 0 is given by.

lg =1i4(89,4) = Eo{{o(eo’ 7‘0(4X))}'
PROOF. v* must satisfy
al al . al
E0{|:55(Y;60’)‘0(X)) + :{;{(Y;GO’/\O(X))U (X)}%(Y’OO’)‘O(X))U(X)}
=0

for all continuous functions v [Begun, ‘Hall, Huang and Wellner (1983)].
Hence, a sufficient condition for v* to be the least favorable direction is that

al al
Eo{%(Yﬁo’ ’\O(X))%‘(on’ ’\O(X))’X - x}v(x)

v¥(x) =

= —EO{[%(Y;HO,/\O(X))] X=x}v*(x)v(x)

for all continuous functions v and all x € [0, 1]. The result follows. Note that
Conditions S and the fact that A, € C?0, 1] imply that v* € C?0, 1].
The expression for i, is then obtained by calculating

al al ’
EO{[ﬁ(Y;Bo,/\o(X)) + %—(Y;GO,AO(X))U*(X)] } d

We can now define a least favorable curve for a conditionally parametric
model. Call a function A,: ® — A a least favorable curve if:

(@) Ag, = Ay
(b) For each x € [0,1]
2

d
Xo(x) = 25ho(x) and X(x) = 2o he(¥)

exist and || X,ll and || X|l are finite, where

lkll= sup |h(x)].
x€[0,1]
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(c) For each x € [0, 1],
Xo(x) E)"o(x)|0=eo =v*(x).

The results given below can also be applied to the following generalization
of the conditionally parametric model described above. Suppose Y consists of
two components Y = (Y}, Y,) such that the conditional density of Y, given X
and Y, is of the form p(-|y,;6,n,) and the conditional density of Y, given X
does not depend on 8 or 1. Then the log-likelihood for a single observation can
be written

log p(Y1]Y5;0,mx) + log py, x(Y,|X) + log px(X)

and since only the first term in this expression depends on the parameters, we
can take

I(y;0,7m) =log p(y1|ys;0,m.)-

The results regarding the estimation of 6 apply directly to this case as well;
note, however, that certain expressions, like the ones given in Lemma 1, must
be modified.

We now consider the large sample properties of the estimator of 6 described
in the previous section as applied to a conditionally parametric model.

6. Large sample properties of the estimator. We will use the follow-
ing method to estimate the parameter of interest 6. Let Ay denote a least
favorable curve in A and let A, denote an estimator of A,. Let 6 denote the
value of 6 € ® that maximizes the log-likelihood along the estimated curve,
given by L (6, /\9) In this section, it will be shown that  is an asymptotically
efficient estimator of 6. )

For this method to be successful, the estimator A, must satisfy the following
conditions; methods for constructing an estimator satisfying these conditions
will be considered in Sections 7 and 8.

ConprTioNns NP (Nuisance parameter). (a) For each x €[0,1] and each
00, A,,(x) converges in probability to some constant as n — ; denote that
constant by A,(x). Assume that for each § € ®, A, € A and that for all

,§=0,1,2,r+s <2

r+s 5 ar+s
W/\o(x) and ———% Ag(x)
exist. Let
Ao = A d X, <5
= an .
0 ®lo=0, d0 90=00

Then suppose

[% = 5ol = 0,(n )
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and

5"0 - ;‘lo = Op(n_ﬁ)’
where a« + B > 1/2 and a > 1/4. . ; 3
Furthermore, suppose that supgcellly — Agll, supycellXy — Xyll and
sup, < llXy — Xjll are all of order o0,(1) as n — .
For some 6 > 0, assume that

J . J .
Teho T 3ot ’ =0,(n7?)
and
J . J .
‘ :9;)(0 — :9;/\'0 = op(n_a).

(b) The curve A, is a least favorable curve as defined in the previous section.

We now establish the consistency of 6; the proof of the proposition is in
Section 10.

PRropPOSITION 1. For each n define 6 = én to be any element of O satisfying

Then, under the above regularity conditions,
6 =, 0, asn — .

The following proposition establishes that 6 is asymptotically normally
distributed with asymptotic variance equal to the marginal Fisher information
for 6.

PRrOPOSITION 2. Under the above regularity conditions,

Vn (8 - 8,) =4 N(0,i5").

Proor. Using a Taylor’s series expansion,

0 dL,(0,4,)
a de 0=6
dL,(0,4,) d?L. . .
BT o0, T a2z (B 20)], (0 = o),

where 6* lies between 6 and 6, and hence, by Proposition 1, §* =, 0.
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Therefore,

(1/Vn)dL,(0,1,)/d6|,_q,

Vn (6= %) —(1/n)(d?L,/d8?)(0, X)|,_s
The result now follows provided that
1 dL,(6,A, 1 dL,(6,\,)
(2) ﬁ—fw ) o ST, T o)
and
1d%L,, . 1 d?L,
(3) sup ;%2—(9,)‘0) - ;W(O’)t") =0,(1)

hold. To verify (2) and (3) we will use the following lemmas; the proofs are
given in Section 10.

LEMMA 2. Under the above regularity conditions:

(Ao = A9) = 0,(1).

d JL,
(i) NPT 7(6’, Ag) oes

(Xo = Xo) = 0,(1).

0

.. 1L, 0
(i) ‘/’77( s Ag) oo
LemMmA 3. Under the above regularity conditions:

() L,(6,A,) — L(8,1,) = ri6), where
2

d 1
TagaTn (0)| = 0,(1).
(i) L,(6,A,) = L,(6,1,) + AL, /A0, Ag)(A, — A,) + r®N(0), where

d
n~12—r®(g =0,(1).
d@r ( )’0=00 Op( )

sup|n
0

Using these lemmas we can now verify (2) and (3) above. Consider (2):

1 d o d (dL
= 1030 = 10,0) = = 2o S2 @) (3 - 1) + 12(0)).

Therefore,
1 d N1 1 d
T %Ln(g’ Ag) soy ﬁ%Ln(e, Ag) oo
L d 3L, —=(9, /\) (Ao = Ao)
~Vn d ax "oz, °
e SO0 h) (= 1) + ) = 0,

by Lemma 2 and Lemma 3(ii).
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Equation (3) follows immediately from Lemma 3(i), completing the proof of
Proposition 2. O

The generalized profile log-likelihood function L (6, 5\9) may also be used to
obtain an estimate of i,, the asymptotic variance of 6. Hence, for inference
based on first-order asymptotic theory, the generalized profile likelihood func-
tion may be treated as a standard likelihood function for 6.

ProrosiTION 3. Let
R 1d?L,

T T Tde? (6, A0)

0=6
Then, under the regularity conditions,

Ly —ply asn o .
Proor. The proof follows from (3) and the fact that § — » 0o O

7. Estimation of a least favorable curve. In order to carry out the
estimation procedure outlined in the previous sections, an estimator of a least
favorable curve must be available. Hence, in this section we present a general
method for estimating a least favorable curve. A

We have seen that if A is a one-dimensional parameter and A, represents
the MLE of A for fixed 6, then A, is an estimator of a least favorable curve.
Hence, for the semiparametric model under consideration, one approach to
estimating A,(x) is to use maximum likelihood. However, instead of maximiz-
ing the likelihood itself we maximize an empirical version of

E,flog p(Y;6,7)|X = x}
given by

x— X,
Zlogp(Yj;ﬂ,n)K( ; ! )
where K(-) is a kernel on the real line [Staniswalis (1989)]. Carrying out this
procedure for each x yields an estimator A,. In Lemma 4 it is shown that if A,
has the required convergence properties, then A, is an estimator of a least
favorable curve.

LemMA 4. Suppose that for each x € [0,1] and 6 € O, A,(x) is obtained by
the following procedure:

x—X; .
with respect to n,

n

maximize ZZ(YJ-;B,n)K(

where K(-) satisfies the following properties
K(u) =0 forlul>1, sup|K(u)| < o,
u

[K(uydu=1, [uK(u)du=0, [uK(u)du <o
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and h, is a sequence of constants satisfying

h,—0 and nh,—>® asn — w.

Then, if /A\,, satisfies Condition NP(a), then Condition NP(b) is satisfied as
well, that is, X,, is an estimator of a least favorable curve.

Proor. Let A,(x) denote the limit in probability of A, as n — o, which
exists by condition NP(a). We now show that A, is a least favorable curve.
From Staniswalis (1989) it follows that

Ao(x) -, Ag(x) asn oo
for each x so that A, = A,. The estimator Ag(x) satisfies

al N - X

n

for each x and 6 so that

Lo 2 (v, Ay K[ X
% :9—’;( jr Y 0(x)) . o0,
821 A X — Xj
%l . x =X\,
+ L 52 (%500, Ao(0) ) K| == | Ro()
=0 foreach x.
Therefore,
o) = £(9%1/90 91)(Y;3 00, Ao(x)) K ((x = X;) /h,,)
. - _

£(9%/91%)(Y;3 00, Ao()) K ((x = X;)/h,)

Note that XO = A, implies that HXO — Al = op(l). Using this fact together with
Conditions S, it follows that

£(9%1/960 91)(Y;3 00, Ao(x)) K ((x = X;) /h,,)
LK((x = X;)/h,)

_ L(9%1/36 9m)(Y;, 00, Ao(%)) K ((x — X;)/h,)
TK((x - X,)/h,)

+ op(l)
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and
(9% /0n)(Y;3 00, Ao(%) ) K ((x = X;) /)
ZK((x - Xj)/hn)
3 2(521/3172)(1{]., 0o, ’\o(x))K((x - Xj)/hn)
= ZK((x — Xj)/hn) +0,(1).
Hence,

E,{(8%1/30 9m)(Y'; 69, Ao(x))|X = x)
Eo{(5°L/0m%)(Y; 00, Ao(%))|X = x)

for each x [e.g., Nadaraya (1964)] so that, by Lemma 1, ;\’O(x) = p*(x) for each
x proving the lemma. O

)‘IO(x) “p =

In order to use the approach of Lemma 4 in estimating a least favorable
curve, the convergence requirements of Conditions NP(a) must be verified.
However it is clear that if an estimator ﬁn((), 1, x) of

h(0,7m,x) = Ey{log p(Y;0,7m)|X = x}

is available such that fzn((), 7, x) and its derivatives converge to k(6, n, x) and
its derivatives at a suitable rate, then the estimator of A,(x) given by maximiz-
ing h,(0,n,x) with respect to n will satisfy Conditions NP(a). This idea is
considered in Lemma 5 using a nonparametric regression estimate of 4(6, n, x);
the proof is given in Section 10.

LEmMMA 5. For each 6 € O, x € [0, 1], let h(8, 7, x) = E{log p(Y;0, nIX =
x}. Assume that
k al

sup |—5 —hY(0,1,x)| <
0.m, x| 00% 9x!

for j =2,8,4, £=0,1,2, 1=0,1, j+k+1<4 here hYX0, 7, x) =
'h(0,m,x)/dn’. Let A,(x) denote a solution to

oh(0,m,x)/9m =0

with respect to m for each fixed 0 and x. Assume that Ay(x) is unique and that
for any & > 0 there exists a 8 > 0 such that

sup sup |1 (6, 24(x),x)| < 8
o x
implies that

sup sup |X,,(x) - A,,(x)l <e.
0 x
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Let
i 37 ok
(J, k) - - .
TO,Jn (Y) - an ank logp(Y707 77)

and let f{7>*)(y|x) denote the conditional density of T\/;*(Y) given X = x. Let
f(x) denote the marginal density of x. Assume the following conditions are
satisfied:

(a) Ef{sup, supan,,(f;’]k)(Y)I} <®, j=0,...,8,k=0,...,5.

(b) For some even integer q > 10, sup,sup, E{|T{:P(Y)} <o, j=
0,....,8,k=0,...,4

(c) sup, sup, sup, lf{sP(ylx)l <w, j=0,...,8;k=0,...,4,r=0,...,4.

() sup,lf(x)| <o, r=0,...,4. .

(e) 0 <inf, f(x) < sup, f(x) < .

Let
Llog p(Y;;0,n)K((x = X;)/h,)
ZK((x—Xj)/hn) ’

ho(8,m,%) =
Lghere K(-) satisfies
[K(u)du=1, [uK(u)du=0, [u®K(u)du <,
sup | K(u)| < =, r=20,...,4

and h, is a sequence of constants satisfying h, = O(n~?%),
1 1 (¢+3)(¢-2)

—<a< .

8  “ 44q+6)(qg+2)

Let ﬁg(x) denote an estimator of A (x) obtained by solving
ok ,(6,m,x)/dm =0

with respect to m for each fixed 0 and x. .
Then, under the regularity conditions in effect, A,(x) satisfies Conditions
NP taking Ay(x) = A (x) for each 0 and x.

Although the approach of Lemma 5 may be used to obtain an estimator of a
least favorable curve, this method may be computationally intensive since each
evaluation of L (6, A o) Tequires a separate maximization of % (6, n, x) for each
x =X;, j =1,...,n. However, for a particular type of model a simpler method
of obtaining an estimator of a least favorable curve is available.

8. Conditionally exponential families. Suppose that for each fixed 0
there exists a real-valued function ,(-) such that the distribution of ,(Y)
does not depend on 6 and the density of the conditional distribution of
w = ¢,(Y) given X = x forms an exponential family; without loss of generality
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we may take the density to be of the form
exp{wT' (1) — A(n) + Sy(w)}

for some functions T, A, S;, where n = 1, and T"(n) and A"(n) exist for each
n € H. Then the conditional distribution of Y given X = x is of the form

(4) p(¥;6,m) = exp{iy(y)T(n) — A(n) + S(y;0)}

for some function S not depending on 7. The following lemma gives an
expression for the least favorable direction in this setting.

LEMMA 6. Suppose p(y;0,7m) is of the form (4) above. Assume that for
almost all y

a
Yo(y) = Eo“‘lfo(y)
exists for 6 = 0. Then the least favorable direction v* is given by

A(10)T"(mo)
T' (o)

where Yy = ¢y at 0 = 6, and ny = Ay(x).

1

v(x) = —A'(m0)|  Eo{yo(Y)|X = x)T"(mo),

Proor. Using (4) we have that

9%l

52 (0,m) = p(Y)T"(n) — A(m)
n

and
92l

20 9m (6,m) = ¢p(Y)T'(n).

The result now follows from Lemma 1 using the fact that

A(n)

E VIX=x}=—77F,
9,77{‘/’9( )l } TI(T’)

which follows from the properties of an exponential family. O

Lemma 7 gives a method for determining a least favorable curve in this
setting.

. LEMMA 7. Suppose the conditional density of Y given X = x is of the form
(4) above. Let ¢: R — R denote a one-to-one differentiable function satisfying

n= (p(Ee,n{lpﬂ(Y)}) for eaCh 0’ n.
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Then
Ag(x) = ‘P(Eo{‘/fo(Y)lX = x})

is a least favorable curve.

Proor. By definition of ¢,
Ao(%) = ¢(Eo{tro(Y)IX = x}),
where (Y) = ¢, (Y). Furthermore,
Xo(2)]o=0, = ‘P'(Eo{‘llo(Y)|X = x})Eo{l//f)(YNX =x}.

By the properties of an exponential family,

C 4
and
A())T” -1
¢’(¢_1(n)) = —(;7_3—(-17(771 _Au(n) T’(n),

It follows that
No(x) = @' (071 (Ao(2))) Eofuo(Y)|X = x} = v*(x).

The remaining requirements of a least favorable curve follow immediately
from Conditions S. O

Since the nonparametric regression estimate Ty,(Y)K((x — X;)/h,)/
LK((x — X;)/h,) is an estimate of Ey(y,(Y)lx = x) Lemma 7 suggests that
nonparametric regression may be used to estimate a least favorable curve. In
order to carry out this approach, it is convenient to use the following result on
nonparametric regression; the proof is given in Section 10.

LEmMMA 8. Let T,(Y) denote a scalar function of a random variable Y
depending on a scalar parameter 0 and let fy;(ylx), j =0,1,2 denote the
conditional density of

9/
) = ——
TO(Y) = 2 To(Y)
given X = x. Let f(x) denote the marginal density of X.
Assume the following conditions hold:

(@) Efsup,|T(V)} <, j=0,1,2,3.

(b) For some even integer q > 2, sup, E{|IT(Y)I?) <, j = 0,1,2.
(c) sup, sup, lf{ (Il <, j=0,1,2r=0,...,4.

(d) sup,lfP(x)| <o, r=0,...,4.

(e) 0 < inf, f(x) < sup, f(x) <.
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Let m(x) = E{Ty(Y)|X = x} and

oy = EBE((x = X,)/h,)
S ((FES AV WA

where Y,,..., denotes a sequence of independent random variables each
distributed according to the distribution of Y, K(-) satisfies

JE(u)du=1, JuK(u)du =0, JuK(u) du < =,
sup | K@ (u)| < =, r=0,...,4

and h, is a sequence of constants satisfying h,, > 0 as n — .
Then, for any vy > 0,

otk o ok o7
ax* 907 " ax* 367 ¢

sup
0
= 0,(n~9/Ca+Dp @ D/@ DY 1 p2) asn > o
forj=0,1,2and k=0,1.

Lemma 9 shows that nonparametric regression can be used to obtain an
estimate of a least favorable curve.

LeEMMA 9. Suppose the conditions of Lemma 7 are satisfied and the condi-
tions of Lemma 8 are satisfied with Ty(Y) = ¢,(Y) and q > 10. Let

me(x) = Eo(‘/’o(Y)IX = x)
and let M denote a compact subset of the real line such that
my(x) € int(M) forallx,6.
Assume that

sup |e(m)| <o forj=0,...,8,
meM

where ¢(+) is the function defined in Lemma 7. Let

Luo(Y) K((x = X;)/hn)
TK((x - X)/h,) )’

Xa(x) =@

where K(+) satisfies the conditions of Lemma 8 and
h,=0(n"") withl/8<a<(q-2)/(4(q+4)).

Then A o is an estimator of a least favorable curve satisfying Conditions NP.
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Proor. Let
iy = ZBODE((= = X)/h,)
LK((x = X;)/h.,)
By Lemma 8,
3/ 3/
s1;p Wﬁzg = g7 ™| = (n7%),  j=0,1,2
and

a & 3 9/
— My — ——m
ox 367 °  ax 907 °

sup

=o,(n"V*R;Y),  j=0,1.
0 .

Note that n~1/*h ;! = o(n~°) for some ¢ > 0.
By Lemma 6, A, = ¢(m,) is a least favorable curve. Since

suplf\e(x) - ’\e(x)l = suplqo(ﬁza(x)) - qo(mo(x))|
x X
< sup |¢'(m)|||hy — m,|
meM
it follows that
sup ”;‘0 - )‘o” = Op(n_1/4)‘
)

Using the same approach it can be shown that the remaining conditions of
Conditions NP are satisfied. O

9. Examples.

ExampLE 1. Suppose that the conditional distribution of Y given X = x is
a two-parameter exponential family with parameters 6, n, n = A(x).
(a) Let

p(y;6,m) = (2mn) exp{—(y — 0)°/(2n)}, —w<y<w.

Assume that © is a compact subset of R and that H is a compact subset of
(0, ). Take ¢,(Y) = (Y — 6)? and ¢(¢) = . Then

mo(x) = Eo($o(Y)|X = x) = 2(x) + (8 — 6,)",
so we may take M to be any compact subset of (0, ) containing n + 462 for
allmeH, 6e0.

It is easy to verify that the conditions of Lemma 8 are satisfied with
arbitrarily large q so we may estimate § by maximizing

1 (Y-8

A 1 A
Ln(o,,\,,) = -3 Y Xo(Xj) - EZlog Ao(X),
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where
£(Y; - 6)°K((x = X;)/h.)
TK((x - X;)/h,) ’

K(-) satisfies the conditions of Lemma 8 and &, = O(n~1/%),

It is easy to show that conditions S are satisfied so that by Proposition 2 the
resulting estimator is asymptotically efficient.

Note that similar results could be obtained for the model in which 6 is a
regression parameter, that is, for some random variable Z j» Y; has mean 6Z g
and variance A(X)) given X;.

(b) Let

;\a(x) =

1
n°T(n)

where ® and H are compact subsets of (0, ).
In this example Lemma 9 cannot be applied; instead we will use the
approach of Lemma 4. Let A,(x) denote the value of » that maximizes

Zl(yj;em)K(x;Xj)

n

_ ¥
p(y;0,7m) = y° leXP{——}, y>0,

]

x—X;
=Y [-6logn —logT'(6) + (6 — 1)log ¥; — n—IYj]K( - ’),
where K(-) satisfies the conditions of Lemma 8 and h, = O(n~'/%). Then
EYK((x - X,)/h,)

TK((x - X;)/h,)

and Conditions NP follow from Lemmas 4 and 8. Conditions S are easily
satisfied so that the estimator obtained by maximizing

L,(0,4,) = —8 X log A,(X;) — n log(8)

+(6- 1) Tlog(;) - L (A,(X;)) Y,

Ag(x) =671

is asymptotically efficient.

ExaMpLE 2. Suppose that X,Y,Z are random variables such that the
conditional distribution of Y given X = x and Z = z is an exponential family
distribution with parameter 6z + n, n = A(x).

(a) Let

- p(y,2;0,m) = (271')_1/2exp{—(y -0z — n)2/2}fz(z), —o <y < oo,

where f,() represents the marginal density of Z. Assume that ® and H are
compact subsets of R; assume that the distribution of Z has support on [0, 1].
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Take ¢(Y,Z) =Y — 0Z and ¢(¢) = ¢. Let

L(Y; - 6Z,)K((x - X;)/h )

where K(-) satisfies the conditions of Lemma 8 and A, = O(n~'/%). It is easy
to show that the remaining conditions of Lemma 8 are satisfied with arbitrar-

ily large g so that A, satisfies Conditions NP.
Conditions S are satisfied so that the estimator obtained by maximizing

/A\o(x) =

A A 2
L,(6,3,)=—% (Yj -6z, - AB(XJ-))

is asymptotically efficient. For this example we can derive an explicit expres-
sion of 6,

£(z, - B(21%,))(¥; - B(¥IX)))

6 = 5 ,
¥(z, - E(21X;)
where
. TZE((x-X;)/h,)
B(Zl) = LK((x - X,)/h,)
and
5 _ LYK((x - X,)/h,)
E(Ylx) = TR((x —X,)/h,) "
(b) Let

p(y,2;0,7m) = exp{ —(6z + n)}exp{ —y exp{ — (62 + n)}} f2(2),
y>0,0<z<l.
Assume that ® and H are compact subsets of R. Take (Y, Z) = Yexp{—60Z}
and ¢(¢) = log ¢. Then
my(x) = exp{/\o(x)}E(exp{((i0 -0)Z})|x = x)

so we may take M to be a sufficiently large compact subset of (0, »). It follows
that

sup|e(m)| <, j=1,2,3.

m

Let
LY, exp{—0Z,}K ((x — X;)/h )
LK ((x = X;)/h,) ’
where K(-) satisfies the conditions of Lemma 8 and &, = O(n~'/%). 1t is easy

to show that the remaining conditions of Lemma 8 are satisfied with arbitrar-
ily large ¢ so that A, satisfies Conditions NP.

Xo(x) = log
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Conditions S are satisfied so that by Proposition 2 the estimator obtained by

maximizing
L(0,4,) = —6XZ; - TA,(X;) - LY, exp{ (62, + Ro(X))))

is asympotically efficient.

(c) Suppose that

p(y,2;0,7m) = exp{(6z + n)y}exp{ —exp{6z + n}}/y!Fyz,
y=0,1,...,0<z<1

Assume that ® and H are compact subsets of R.

In this example Lemma 9 cannot be applied; instead we will use the
approach of Lemma 4. Let A,(x) denote the value of 7 that maximizes

R e R VEALRE i 5)

n

where K(-) satisfies the conditions of Lemma 8 and h, = O(n~'/®). Then
LYK ((x — X;)/h.,)
T exp{6Z, K ((x - X;)/h,))}

Ag(x) = log

By Lemma 8,
LYK ((x - X;)/h,)
LK((x = X;)/h,)
uniformly in x and
Texp{0Z;)K ((x — X;)/h,)
ZK((x —Xj)/hn)

uniformly in 6 and x. Since E,(exp(6Z}|X = x) is bounded away from 0 for
6 € 0, it can be shown that

LY,K((x - X;)/h,)  Eo(YIX=2x)
Texp(0Z,}K ((x — X;)/h,)  Eo(exp{6Z}|X = x)

= Ey(Y|X =x) +o,(n""*)

= E(exp{6Z}|X = x) + 0,(n"'/*)

+op(n‘1/4)

uniformly in x and 6. It now follows that
135 = 26l = 0,(n=27%).

The remaining conditions of Conditions NP may be verified in a similar
manner.

Conditions S are satisfied so that by Proposition 2 the estimator obtained by
maximizing

L(0,3,) = 0L Y,Z + LYA,(X;) - & exp{0Z, + (X))} |
is asymptotically efficient.
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10. Technical proofs.

Proor or ProprosiTION 1. Note that, under the regularity conditions in
effect, L,(6, A,) is continuous in 6 and a measurable function of Y;,...,Y,;
X,,..., X, for each 6; it follows that 6 is measurable.

Let

y(8) = Eo{l(Y;0,1(X)}.
By Conditions I, y(6) satisfies the following condition:
forall 6 € O, 0+ 0,, v(0) < v(8).
By the weak law of large numbers,
n~'L,(6,1,) =, y(6) foreach6 < 0.

Furthermore, for 6,, 6, € 0,

n =YL, (601,44,) = Ly(62,A9,)]

<n”? Z Ilj(ol’ /\01) - lj(oz’ Aoz)l

<n! E{sup
6,m

al, al,
25 (6> 161 = 6] + sup 6—77-(0,77) A6, = Ao,

|6, — 65| + sup
0,m

al; ,
=26, m)|sup | Xy|[ 6, — 65|
n 0

ao( ;M)

<n 1Y) {sup
6,m
=A,l6, — 6,l.
Since, by Conditions S, A, is bounded in probability, it follows that
{n7'L,(6,1,): 6 € 6}
is tight and hence,
nL.(6,1,) =4 v(8) inC(0®).

For each 6,
1 A 1 ,\ .
;‘Ln(e,)«,,) ~L,(0,4)] < ~ ¥ |25(0,R0(X;)) - 16, 26(X;))|
1 al ,.
< — ) sup sup 5 (8,m)|sup A5 = A6l
n 6 =n |97 6
Therefore,
1 A ,
s1;p ;an(e, Ag) — L(9, /\,,)| —,0 asn—> o
and hence,

1 A
;Ln((),/\,,) - y(6)|—>,0 asn—>

sup
0
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Furthermore, since

sup %Ln(f), Xo) =, Sl;pv(ﬁ) = v(6,)
it follows that

¥(8) >, ¥(8,) asn .

For a given 6 € 0, there exists an ¢ > 0 and an open neighborhood N, of 6
such that

ellgfve|7(01) = v(0p)| > &.
Therefore, .
Py(6 € N;) < Py(|7(8) — v(85)| >€) > 0 asn > .

Let N, denote an open neighborhood of 6, and consider the compact set
0y = @\ N,. Let {N,: 6 € O, 6 # 6,} denote the open cover of ©, constructed
by the preceding procedure. By compactness of ®, there exists a finite
subcover {N,,, ..., N, }. Then

k
Py(6 & Ny) = Py(0 € @) < L Py(6 €N, ) >0 asn .
1

Therefore,

6 —,0, asn —> . O

<1).

Proor or LEMMA 2. Consider (i). Let

d
—h
ax

Ay = {h e C?[0,1]: Al < 1,

A, may be viewed as a metric space with metric
p(hy, ko) =[hy = hyll.
By Conditions NP,
Po(ns(}l0 —Xo) € AO) -1 asn—> o,

Hence, assume that, for sufficiently large 7, n®(i, — Ag) € A, since the proba-
bility that this does not occur can be made arbitrarily small.
Let
2 32 l
(7300, A0(x)) + W(% 00, Ao(x))v* (x).

By %) = 355,
Note that, by the definition of v*(x),
E{B(Y,X)|X=x}=0
for each x and hence, E{B(Y, X)} = 0.
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For any v € A,
oL A B(Y, X
a8 (20|, () = LB(Y), X;)().
We will view the function v — B(y, x)u(x) as an element of the space of
continuous functions on A, together with the sup norm, which will be denoted
by C(Ao).
For any v,, v, € Ay,
| B(y,x)vi(x) — B(y, x)vy(x)| =|B(y, x)(vy — v5)(x)]
‘ < 2| B(y,x)|llvy — v,ll
and by conditions S,
Eo(|B(Y, X)[*) <.
Let H(-, A,) denote the metric entropy of the set A, with respect to the
metric p. Then
H(e,Ay) <Age™?

for some constant A,.
Jain and Marcus (1975) have shown that if 7 is a metric space with metric
d and Z is a random element taking values in C(9") satisfying E(Z) = 0 and

|Z(s) - Z(t)| < Vd(s, 1),
where V is a random variable with E(V?) < «, then the distribution of
nTVEHZy 4 e 4Z,),
where Z,,...,Z, are independent replicates of Z, converges weakly to an
appropriately defined Gaussian measure provided that

le(E,g—)d8<°°.
0

Hence, it follows from Jain and Marcus (1975) that
1 d 4L,

o do an ()

satisfies the central limit theorem as an element of C(A,) and hence,
1 d 9JL,

T da ax (02

which implies that

6=0,

(n°(R0 = 2)) = 0,(D),

0="0,

1 d oL,

ﬁﬁﬁ(aw\o) (Ao = Xo) = 0,(1)

0=0,

proving (i).
The proof of (ii) follows along similar lines and hence, is omitted. O
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Proor orF LEMMa 3. By Taylor’s theorem,

U330, 86(x)) = U330, Ao(%)) + 1 (3, %;0),

where
al N A
r(3%0) = [T {(yhe(x) + t(Aa(x) = Aa(2)) de(Ra(x) = Ao(2)

= Q5 (v, x)(Xe(x) - )‘o(x))-

Hence, to prove (i) it suffices to show that

-1 Z —Qé”(y,,x )| =0,1), j=0,1,2

5
(5 s sl Lo

0 x

For j =0,

|Q§P(y, x)| < sup sup
0 neH

al
—(y,O n)‘ for all x.
an

Hence, (5) for j = 0 follows from Conditions S; cases j = 1,2 can be estab-
lished in a similar manner, proving ().
We now consider (ii). By Taylor’s theorem,

U(y:6, Ao(2)) = 1(y36, A9(x)) + 3 (%0 Ao(x))(Ag(x) = Ag(x))

+r(y,x;90),
where

%l

1 d N A 2
r(3%30) = 5[5 (730, 24(x) +o(Re(2) = A0(2))) dt(Ae(x) = Ao(3)

1 n 2
32, ) (Ro(x) = 2o(2))

Hence, to prove (ii) it suffices to show that

sup |n IZ Qéz’(y“x)

207 =0,(1) for;=0,1.
X

0

This can be shown to follow from Conditions S using the same approach as in
the proof of (i). O

Proor or LEMMA 5. Using the same approach as in the proof of Lemma 8
below it can be shown that, under the conditions of the lemma, there exist
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constants a, > 1/4, a; > 0, ay > ay, such that for all £ = 0,1, j =0,1,2:

L
(1) osup ax—kg-(ﬁ(h’n(o,n,x) —h’(O,n,x)) =0,(n""),
M, X
ok ol
(ii) osup ax—kw(h”n(e,n,x) —h”(B,n,x)) =op(n_"‘k),
s My X
a* 9,
(lll) osup M—kb‘g_,(h';;(a,ﬂ,x) _h,”(e’n’x)) :Op(n_ak)’
s M X
a* 9/
i (> _ @ - .
(iv) ;g?x P aef(h" (6,m,%) — h®(6,7m,x))| = 0,(1);

here AYX0,n, x) = 3'h (0,7, x) /7’
To show that conditions NP are satisfied, it is enough to show that:

1. S‘;P”Xe - )t(,” =0,(n"%),
2. s1;.p| X, = Xy || =0,(n""),
3. sup [ ¥, — Xy | = 0,(n™),
0
d kN —
4. s1;p a()\e —)\0) =0,(n"™),
A
5. Sl;p E(/\’o - Xo) =0,(n"");

note that the differentiability of A,(x) with respect to 6 and x follows
immediately from the implicit function theorem [e.g., Saaty and Bram (1964)]
and Conditions S.

Under the regularity conditions in effect, for any ¢ > 0 there exists a § > 0
such that

P{ sup sup|ﬁ0(x) - )t(x)‘ > s}
0 x

< P{ sup suplh’(@, Ay(x), x)‘ > 8}
0 x

= P{ sup sup ﬁ’n(e,ﬁe(x),x) - h’(B,Xe(x),x)| > 6}
0 x

< P{ sup sup sup |4,(0,71,x) — h’(e,n,x)’ > 6}
n

0 x

-0 asn — o,
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Hence, sup,lli, — A,ll = 0,(1).
By Conditions I,
infinf — A"(8, A4(x),x) > 0
0 x
and by Conditions S, for every & > 0 there exists an ¢ > 0 such that

sup sup sup |'(6,m9,x) — K'(6,m;,%)] < 8.

6 x my,mgilni—mal<e
Hence, there exists an £ > 0 such that

(6) ilgf inf inf |h'(68,m,x)| > 0.

x| n—Agx)|<e
Since A,(x) must satisfy
ﬁ’n(O,)Ato(x),x) =0
for all 6, x and A,(x) must satisfy
K(0,A4(x),x) =0
for all 0, x it follows that
0=R,(0,A,(x),x) — k(8,A5(x), x)
=7, (0,A(x),x) — K(0,A(x),x) + K (0,A,(x), x) — K(0, Ay(x), x)
= R, (0,A0(x), x) = K (0,4(x), ) + d,(8,x)(Rp(x) — A4(x))
for each 0, x where
d,(0,x) = [H'(6,5A,(x) + (1 - 5)Ay(), x) ds.
0
Note that (6) and the fact that sup,llA, — Al = 0,(1) imply that

lim inf inf inf|#,(6, R,(x), x)| > 0 and
x 0

(7)
liminf inf inf|d,(6,x)| >0 asn — .
x 0
Since
ﬁ’n(G,}\to(x),x) =0
for all 0, x,

,\ d . ad .
ﬁ’;(e,/\o(x),x)ﬁ)to(x) + ﬁﬁ’n(a,)\o(x),x) =0

.so that by (7) and the preceding conditions (i) and (ii)

d .
sup sup [—Aq(x)| = 0,(1).
< o 100
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Similarly,

ok 97,
(8) s1:p sup|——5 —7 Ao(%)| = = 0,(1), k=0,1,;=0,1,2.
Let

ra(8,x) = K, (8, X5(x),x) — K(0,4,(x),x).
By (8), together with conditions (i)-(iv),

k&
=0,(n""), k=0,1,=0,1,2

9 up sup|— —r,(0, x
(9)  sup sup| g2 (0,)

and
LAY

d,(0,x)|=0,(1), k=0,1,j=0,1,2.

(10) sup sup 92* 707

Now, for each x and 6
(8, %) + d (8, %) (Ap(x) — A4(x)) =0
so that by (7)-(10).
Sl;P [ = 20]l = 0,(n720).
Differentiating with respect to 8 yields

3
59 (0, %) + 2od (9, x)(Ag(x) = Ag(x))

+d,(9, x) o(x) o(x)

so that
Xy = Xyl = 0,(n=).

It can be shown, using the same approach, that (3)-(5) are satisfied as well; the
lemma follows. O

Proor oF LEMMA 8. Consider the case j = 0. Let

1 x—X;
8o(x) = ;TZTG(T])K( 3 ), 8o(x) = my(x) f(x),

n

f(5) = - LK ( — % )

n,

fe(y,x) = feo(ylx)f(x),

a"
(2),  &"(2) = 5~

(r) 9
éo (z) - 92"



1800 T. A. SEVERINI AND W. H. WONG
where f,(y) denotes the marginal density of T,(Y) and f,(-|y) denotes the
conditional density of X given T,(Y) = y. Note that m(x) = g4(x)/f(x) and

My(x) = g}(x)/f(x).
First consider E{g{"(2)} — g{"(2).

X — 2

Ble () = 0 [[ok (52 fun ) dy

= [9o(») [RTEO(w) folz = houly) dudy,

where u = (z — x)/h,,. By repeated application of integration by parts,

JEO(u) folz = houly) du = b, [K(w) fi2(z = h,uly) du.
Hence,

|E{85"(2)} — 85"(2)]
=\fyfg(y)fK(u)(fe(’)(z — huly) = fi7(2ly)) dudy‘

| o) [ R Q£ el gt + 372 ) W) ]

(where z* lies between z and z — h,u)
< [Iylfo(y) dy [ 30K (w) du sup| £ P (z|y) 1%
2,y

= 0O(h2)

uniformly in z and 6.
Now consider §7(2) = §§"(2) — E(8§"(2)}.

n

00 = eV |2 - sfnenore (52

Note that if W,,..., W, are independent, identically distributed random vari-
ables with EW; = 0 and E{W{} < « for some q = 2,4, ..., then for £ > 0.

P{‘%ZWJ- >z—:} < E(Wi)e,

= ni/2g4

for some constant c, depending only on q. Hence, for each 6 € 0, z € [0,1]
and £ > 0,

P{|g§"(2)| > ¢} < (k)"
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for some constant ¢ not depending on 6 or z. This follows from the fact that

z—-X ! q q
Ty(Y) K| — < sup |[K"(2) | sup B{| Ty(Y) '} < =
n z 6
Let 6,,6, be elements of ©. Since E{sup,|T,(Y,)|} < », there exist i.i.d.
random variables M, M{",..., not depending on 6, or 6, such that

E{!M}DI} < o and
(r) (r) (r) | 01 | @,
sup|g (2) — &(2)| < sup| K (z)|ﬂ—ZM

Similarly, for any 2z, z, € [0, 1], there exist iid. random variables
M®, M, ..., not depending on z,, z,, such that E{IM®|} <  and

suplgé”’(Zz) - &"(z)| < sup|K"“’( ”W_ Y M®.

Hence, there exist i.i.d. random variables M, M,,..., such that E{|M jl} < o
and

1
sup s [2(z) ~ 2z < (5 T Ja(hi0 0 )

[0, —051<8 |z, —25/<8
1
2(—2Mj)h;<'+2>5
n

for sufficiently large n.
Let 6,, be a sequence converging to 0 and let ®, and Z, be §,-nets in ® and
[0, 1], respectively. Then

P{ sup |0(2)| > g} < P{ max max |g{(2)| > 8/2}
0,z 0€® z€Z,

+P( s s |20(z0) — E0(20)] > e/2)
[0, —051<8 |21 —25l<8

-2
015n C25n

= nq/zeqh‘,’l"“) + h(':-+2)6

for some constants c;, c,. Hence, taking

g, = n~ @/ QIO Yy~ +@+H/@+2)

for some y > 0 and §, = O(n~9/5(e,h7*1)~@~D/3p -1/3) it is easily shown
that -

P{ sup |g57(2)| > sn} =o0(l) asn — .

0,z
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It follows that
sup sup|8§7(2) — g(2)| = 0,(h% + n~@/CI+ Oy} - +@+H/ @+
6 z

Using the same approach it can be shown that
sup| f(r)(z) — f(r)(z)l = Op(hi + n—(q/(2q+4))n7h;(r+(q+4)/(q+2)))
¥4

and since f(-)is bounded away from 0 the result for j = 0 follows; the proofs
for j = 1,2 follow along similar lines. O
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