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Abstract

We consider problems involving groups of data, where each observation within a group is a
draw from a mixture model, and where it is desirable to share mixture components both within
and between groups. We assume that the number of mixture components is unknown a priori
and is to be inferred from the data. In this setting it is natural to consider sets of Dirichlet pro-
cesses, one for each group, where the well-known clustering property of the Dirichlet process
provides a nonparametric prior for the number of mixture components within each group. Given
our desire to tie the mixture models in the various groups, we consider a hierarchical model,
specifically one in which the base measure for the child Dirichlet processes is itself distributed
according to a Dirichlet process. Such a base measure being discrete, the child Dirichlet pro-
cesses necessarily share atoms. Thus, as desired, the mixture models in the different groups
necessarily share mixture components. We discuss representations of hierarchical Dirichlet
processes in terms of a stick-breaking process, and a generalization of the Chinese restaurant
process that we refer to as the “Chinese restaurant franchise.” We present Markov chain Monte
Carlo algorithms for posterior inference in hierarchical Dirichlet process mixtures.
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1 Introduction

Mixture models provide a flexible tool that links parametric and nonparametric statistics—the mix-
ture components are generally taken from a parametric family, but the number of mixture compo-
nents is allowed to grow without bound as the number of data points grows. This poses a challeng-
ing, perennial problem—how to choose the number of components? One approach to this problem
reposes on a nonparametric prior known as the Dirichlet process. The Dirichlet process prior in-
duces probability on the parameters of a distribution in such a way that particular values of the
parameter tend to recur, with the number of distinct values growing slowly (logarithmically) with
the number of draws. Using these distinct values to index distinct mixture components, this yields
a mixture model with a random number of mixture components. Markov chain Monte Carlo algo-
rithms are available to sample from the posterior distribution associated with the Dirichlet process
prior, yielding a posterior distribution on the number of mixture components and on their parame-
ters (Escobar and West, 1995, MacEachern and Müller, 1998, Neal, 1998).

In this paper we consider an elaboration of the classical mixture model setting in which the data
are subdivided into groups, and in which the overall model consists of a set of mixture models,
one for each group. We want the number of mixture components to be allowed to grow within
each group, and we make use of the Dirichlet process to achieve this. Moreover, as will be clear
from the examples that we consider, it is also desirable to allow mixture components to be shared
between groups. Thus, we want to allow the possibility that data points in different groups come
from the same mixture component. Thus we wish to achieve a “combinatorial” notion of the sharing
of statistical strength between sets of mixture models.

The Dirichlet process is a random measure—a measure on measures (Ferguson, 1973). It is de-
fined by considering partitions of the underlying sample space. Specializing to measures on the real
line, let (Ai)

r
i=1 be a partition of <. The distribution DP(α0, G0) is a Dirichlet process if the proba-

bility that it assigns to such a partition is distributed as Dir(α0G0(A1), α0G0(A2), . . . , α0G0(Ar)),
for any partition. Intuitively, the Dirichlet process yields measures that are variations on the base
measureG0, where the concentration parameter α0 provides control over the variability aroundG0.

This definition does not make clear the discrete, combinatorial nature of the Dirichlet process.
A seminal paper by Sethuraman (1994) laid bare the inherent discreteness of the Dirichlet process,
via a characterization in terms of a so-called “stick-breaking” process. Sethuraman (1994) showed
that a measure sampled from a Dirichlet process can be written explicitly as:

G =
∞
∑

k=1

βkδθk
,

where the θk are independent random variables distributed according to G0, where δθk
is a delta

function at θk, and where the βk are also random (the definition of the βk is provided in Section 3.1).
This shows explicitly that draws from a Dirichlet process are discrete (with probability one).

The stick-breaking representation shows that successive draws from G can yield exactly the
same value with positive probability, even if G0 assigns zero probability to such an event. The fact
that values tend to cluster, however, with the number of distinct values growing relatively slowly
with successive draws, is not immediately apparent from the stick-breaking characterization. (It is
an implicit consequence of the particular way in which the random variables βk are defined). It
is apparent, however, from yet another perspective on the Dirichlet process—the Pólya urn model
of Blackwell and MacQueen (1973). Blackwell and MacQueen (1973) showed that having observed
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n values (φ1, . . . , φn) sampled from a measure G distributed according to a Dirichlet process, the
probability of the (n+ 1)th value is given by:

φn+1 | φ1, . . . , φn, α0, G0 ∼
n
∑

l=1

1

n+ α0
δφl

+
α0

n+ α0
G0 . (1)

Here we explicitly see the clustering—values that have been sampled more frequently in the past
have higher probability of being sampled again.

The clustering phenomenon and the discrete nature of the Dirichlet process make it unsuitable
for general applications in Bayesian nonparametrics, but they are ideally suited for the problem of
placing priors on mixture components in mixture modeling. The idea is simply to associate a mix-
ture component with each cluster. That is, each distinct value of φi defines a mixture component,
with φi as its parameter. A number of authors have studied such “Dirichlet process mixture mod-
els” (Escobar and West, 1995, MacEachern and Müller, 1998). These models provide an alternative
to methods that attempt to select a particular number of mixture components, or methods that place
an explicit parametric prior on the number of components.

Let us now consider the problem of modeling a set of J groups of data, where each group is
modeled as a set of repeated draws from a group-specific mixture model. To allow the number
of mixture components within each group to grow, we associate a draw from a Dirichlet process
with each group. To link the groups, we take a hierarchical Bayesian point of view, and assume
that these draws are a conditionally independent set of draws from the same underlying Dirichlet
process DP(α0, G0), where the base measure G0 is itself a random measure. Conditional on G0,
we have a stick-breaking representation for each of the groups:

Gj =
∞
∑

k=1

βjkδθjk
.

Now suppose that we repeatedly draw parameter values and data points within each group. If G0

is absolutely continuous with respect to Lebesgue measure—i.e., it has no atoms—then although
clusters arise within each group, the atoms associated with the different groups are different and
there is no sharing of clusters between groups.

The way to achieve sharing of mixture components between groups is straightforward: The base
measure G0 should not be an arbitrary random measure, but it should itself be distributed according
to a Dirichlet process. In this case, G0 contains only atoms (with probability one), and these atoms
will be shared by the measures Gj at the next level of the hierarchy. Thus we define a hierarchical
Dirichlet process in which the underlying base measure for a set of draws from a Dirichlet process
is itself distributed according to a Dirichlet process. A hierarchical Dirichlet process mixture model
will allow sharing of mixture components within and between groups of mixture models.

Having given ourselves the ability to share mixture components among a set of mixture models,
we expect to face challenging computational problems in managing this sharing when computing
posterior distributions under the hierarchical Dirichlet process. To organize such computations, and
to provide a general framework for designing procedures for posterior inference that parallel those
available for the Dirichlet process, it is necessary to develop analogs for the hierarchical Dirichlet
process of some of the representations that have proved useful in the Dirichlet process setting. We
provide these analogs in Section 4—in particular, we discuss a stick-breaking representation of
the hierarchical Dirichlet process, an analog of the Pólya urn model that we refer to as the “Chinese
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restaurant franchise,” and a representation of the hierarchical Dirichlet process in terms of an infinite
limit of finite mixture models. With these representations as background, we present Markov chain
Monte Carlo algorithms for posterior inference under hierarchical Dirichlet process mixtures in
Section 5. We discuss related work in Section 6 and present our conclusions in Section 7.

2 Setting

We are interested in problems in which observations are organized into groups, and where the
observations are assumed exchangeable within groups. In particular, letting j ∈ {1, 2, . . . , J} index
the J groups, and letting xj = (xji)

nj

i=1 denote the nj observations in group j, we assume that each
observation xji is a conditionally independent draw from a mixture model, where the parameters of
the mixture model are drawn once per group. We will also assume that x1, . . . ,xJ are exchangeable
at the group level. Let x = (xj)

J
j=1 denote the entire data set.

If each observation is drawn independently from a mixture model, then there is a different mix-
ture component associated with each observation. Let φji denote a parameter specifying the mixture
component associated with the observation xji. We will refer to the variables φji as “factors.” Note
that these variables are not generally distinct—we will develop a different notation for the distinct
values of factors. Let F (φji) denote the distribution of xji given the factor φji. Let Gj denote a
prior distribution for the factors φj = (φji)

nj

i=1 associated with group j. We assume that the factors
are conditionally independent given Gj . Thus we have the following probability model:

φji | Gj ∼ Gj for each j and i,

xji | φj ∼ F (φji) for each j and i. (2)

2.1 Examples

Grouped data of these kind arise in a number of problem domains. Here we describe three examples.
In the field of information retrieval, documents are often modeled under the so-called “bag-of-

words assumption”—the assumption that the words in a document are exchangeable (Salton and
McGill, 1983). Thus, in our nomenclature, the documents are groups. Blei et al. (2003) presented a
model in which the words in a document are drawn from a mixture, where each mixture component
is viewed as a “topic.” A “topic” is a probability distribution on words from some basic vocabu-
lary. Thus, in a document concerned with university funding the words in the document might be
drawn from the topics “education” and “finance.” In another document concerned with university
football the words might be drawn from the topics “education” and “sports.” The mixing propor-
tions for these mixture models are document-specific, but the mixture components are shared across
documents. That is, the topics are characteristic of the corpus as a whole, while each individual
document is associated with a probability distribution on the available topics. In our nomenclature,
the topics are factors, while the distributions on the available topics are the measures Gj .

An analogous problem arises in bioinformatics. Genes are regulated by transcription factors
that bind to the regulatory region of the genes and trigger the transcription of the genes. Each
transcription factor has an associated DNA footprint that appears as a short sequence known as a
“motif” (Davidson, 2001). Each gene has many motifs in its regulatory region, and the same set of
motifs are used by many genes. We can thus view a gene as a “group,” analogous to the documents
in the information retrieval domain, and the motifs are analogous to the words in the document. A
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“factor”—a probability distribution across motifs—can be viewed as a representation of a regulatory
circuit.

Finally, we consider a problem in which the group structure is not known a priori. A hid-
den Markov model is a doubly stochastic Markov chain in which a sequence of “state” variables
(v1, v2, . . . , vT ) are linked via a Markov chain, and each element yt in a sequence of “observations”
(y1, y2, . . . , yT ) is drawn independently of the other observations conditional on vt (Rabiner, 1989).
This model can be treated within our framework by letting the state variables define the groups.
Thus, we link as one group all observations yt+1 with the same value of the current state vt. Condi-
tioned on vt, the observations yt+1 are draws from a mixture model with vt+1 indicating the mixture
component while the mixing proportions are given by the transition probabilities T (vt+1|vt) of the
Markov chain. In other words, the next state vt+1 is the “factor” governing the distribution over the
observation yt+1. We will further describe the hidden Markov model in Section 6.1.

Each of these problems are thus characterized by a set of mixture distributions, one per group
(i.e., one per document, gene, or current state). The mixing proportions associated with these mix-
tures are group-specific. The mixture components, on the other hand, are shared across the groups.
We want to have the same set of topics available to each of the documents, the same set of motifs
available to each of the genes, and the same set of next states available to each of the current states.

Thus the problem is that of linking the mixture components among a set of mixture models.
We want to do this in the setting in which the number of mixture components is unknown, and
where the machinery of Dirichlet processes is used to allow a potentially unbounded set of mixture
components, and to provide a representation of prior and posterior uncertainty over these mixture
components. Thus we have multiple Dirichlet processes, one per group, and we want to link these
processes. In the remainder of the paper we present a hierarchical Bayesian approach to this prob-
lem.

3 Dirichlet Processes

In order to make the paper self-contained, we provide a brief overview of Dirichlet processes in
this section. After a discussion of basic definitions, we present three different perspectives on the
Dirichlet process—one based on the stick-breaking construction, one based on a Pólya urn model,
and one based on a limit of finite mixture models. Each of these perspectives will have an analog in
the hierarchical Dirichlet process to be introduced in Section 4.

Let (Θ,B) be a measurable space, with G0 a probability measure on the space. Let α0 be a
positive real number. A Dirichlet process DP(α0, G0) is defined to be the distribution of a random
probability measure G over (Θ,B) such that, for any finite measurable partition (A1, A2, . . . , Ar)
of Θ, the random vector (G(A1), . . . , G(Ar)) is distributed as a finite-dimensional Dirichlet distri-
bution with parameters (α0G0(A1), . . . , α0G0(Ar)):

(G(A1), . . . , G(Ar)) ∼ Dir(α0G0(A1), . . . , α0G0(Ar)) . (3)

We write G ∼ DP(α0, G0) if G is a random probability measure with distribution given by the
Dirichlet process. The existence of the Dirichlet process was established by Ferguson (1973).
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3.1 The stick-breaking construction

Measures drawn from a Dirichlet process turn out to be discrete with probability one (Ferguson,
1973). This property is made explicit in the stick-breaking construction due to Sethuraman (1994).
The stick-breaking construction is based on sequences of random variables π ′

1, π
′
2, . . . and θ1, θ2, . . ..

These sequences are i.i.d. and have the following distributions:

π′k | α0, G0 ∼ Beta(1, α0) θk | α0, G0 ∼ G0 , (4)

where Beta(a, b) is the Beta distribution with parameters a and b. Now define a random measure G
as

πk = π′k

k−1
∏

l=1

(1− π′l) G =
∞
∑

k=1

πkδθk
, (5)

where δθ is a probability measure concentrated at θ. Sethuraman (1994) showed that G as defined
in this way is a random probability measure distributed according to DP(α0, G0).

It is important to note that the sequence π = (πk)
∞
k=1 constructed by (4) and (5) satisfies

∑

∞

k=1 πk = 1 with probability one. Thus we may interpret π as a random probability measure on
the positive integers. For convenience, we shall write π ∼ Stick(α0) if π is a random probability
measure defined by (4) and (5).

3.2 The Chinese restaurant process

A second perspective on the Dirichlet process is provided by the Pólya urn scheme due to Blackwell
and MacQueen (1973). The Pólya urn scheme shows that not only are draws from the Dirichlet
process discrete, but also that they exhibit a clustering property.

The Pólya urn scheme refers not to G directly, but rather to draws from G. Thus, let φ1, φ2, . . .
be a sequence of i.i.d. random variables distributed according to G. That is, the variables φ1, φ2, . . .
are conditionally independent given G, and hence exchangeable. Let us consider the successive
conditional distributions of φi given φ1, . . . , φi−1, where G has been integrated out. Blackwell and
MacQueen (1973) showed that these conditional distributions have the following simple form:

φi | φ1, . . . , φi−1, α0, G0 ∼
i−1
∑

l=1

1

i− 1 + α0
δφl

+
α0

i− 1 + α0
G0 . (6)

This expression shows that φi has positive probability of being equal to one of the previous draws,
and that there is a positive reinforcement effect—the more often a point is drawn, the more likely
it is to be drawn in the future. We can interpret the conditional distributions in terms of a simple
urn model in which a ball of a distinct color is associated with each atom. The balls are drawn
equiprobably; when a ball is drawn it is placed back in the urn with another ball of the same color.
In addition, with probability proportional to α0 a new atom is created by drawing from G0 and a
ball of a new color is added to the urn.

To make the clustering property explicit, it is helpful to introduce a new set of variables that
represent distinct values of the atoms. Define θ1, . . . , θK to be the distinct values taken on by
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Figure 1: A depiction of a Chinese restaurant after eight customers have been seated. Customers
(φi’s) are seated at tables (circles) which correspond to the unique values θk.

φ1, . . . , φi−1, and let nk be the number of values φi′ that are equal to θk for 1 ≤ i′ < i. We can
re-express (6) as

φi | φ1, . . . , φi−1, α0, G0 ∼
K
∑

k=1

nk
i− 1 + α0

δθk
+

α0

i− 1 + α0
G0 . (7)

Using a somewhat different metaphor, the Pólya urn scheme is also known as the Chinese restau-
rant process (Aldous, 1985). This metaphor has turned out to useful in considering various gener-
alizations of the Dirichlet process (Pitman, 2002), and it will be useful in this paper. The metaphor
is as follows. Consider a Chinese restaurant with an unbounded number of tables. Each φi corre-
sponds to a customer who enters the restaurant, while the distinct values θk correspond to the tables
at which the customers sit. The ith customer sits at the table indexed by θk with probability propor-
tional to nk (in which case we set φi = θk), and sits at a new table with probability proportional to
α0 (set φi ∼ G0). An example of a Chinese restaurant is depicted graphically in Figure 1.

3.3 Dirichlet process mixture models

One of the most important applications of the Dirichlet process is as a nonparametric prior distri-
bution on the components of a mixture model. In particular, suppose that observations xi arise as
follows:

φi | G ∼ G

xi | φi ∼ F (φi) , (8)

where F (φi) denotes the distribution of the observation xi given φi. The factors φi are conditionally
independent givenG, while the observation xi is conditionally independent of the other observations
given the factor φi. When G is distributed according to a Dirichlet process, this model is referred
to as a Dirichlet process mixture model. A graphical model representation of a Dirichlet process
mixture model is shown in Figure 2(a).

SinceG can be represented using a stick-breaking construction (5), the factors φi take on values
θk with probability πk. We may denote this using an indicator variable zi, which takes on positive
integral values and is distributed according to π (interpreting π as a random probability measure on
the positive integers). Hence an equivalent representation of a Dirichlet process mixture is given by
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Figure 2: (a) A representation of a Dirichlet process mixture model as a graphical model. In the
graphical model formalism, each node in the graph is associated with a random variable and joint
probabilities are defined as products of conditional probabilities, where a conditional probability is
associated with a node and its parents. Rectangles (“plates”) denote replication, with the number
of replicates given by the number in the bottom right corner of the rectangle. We also use a square
with rounded corners to denote a variable that is a fixed hyperparameter, while a shaded node is an
observable. (b) An equivalent representation of a Dirichlet process mixture model in terms of the
stick-breaking construction. (c) A finite mixture model (notice the L instead∞).

Figure 2(b), where the conditional distributions are:

π | α0 ∼ Stick(α0) zi | π ∼ π

θk | G0 ∼ G0 xi | zi, (θk)
∞
k=1 ∼ F (θzi

) . (9)

Here G =
∑

∞

k=1 πkδθk
and φi = θzi

.

3.4 The infinite limit of finite mixture models

A Dirichlet process mixture model can be derived as the limit of a sequence of finite mixture mod-
els, where the number of mixture components is taken to infinity (Neal, 1992, Rasmussen, 2000,
Green and Richardson, 2001, Ishwaran and Zarepour, 2002). This limiting process provides a third
perspective on the Dirichlet process.

Suppose we have L mixture components. Let π = (π1, . . . πL) denote the mixing proportions.1

We place a Dirichlet prior on π with symmetric parameters (α0/L, . . . , α0/L). Let θk denote
the parameter vector associated with mixture component k, and let θk have prior distribution G0.
Drawing an observation xi from the mixture model involves picking a specific mixture component
with probability given by the mixing proportions; let zi denote that component. We thus have the

1Previously we used the symbol π to denote the weights associated with the atoms in G. We have deliberately
overloaded the definition of π here; as we shall see later, they are closely related. In fact, in the limit L → ∞ they will
be equivalent up to a random size-based permutation of their entries (Patil and Taillie, 1977).
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following model:

π | α0 ∼ Dir(α0/L, . . . , α0/L) zi | π ∼ π

θk | G0 ∼ G0 xi | zi, (θk)
L
k=1 ∼ F (θzi

) . (10)

The graphical model is shown in Figure 2(c). Let GL =
∑L

k=1 πkδθk
. Ishwaran and Zarepour

(2002) show that for every measurable function f integrable with respect to G0, we have, as L →
∞:

∫

f(φ) dGL(φ)
D
−→

∫

f(φ) dG(φ) . (11)

A consequence of this is that the marginal distribution induced on the observations x1, . . . , xn ap-
proaches that of a Dirichlet process mixture model. This limiting process is unsurprising in hind-
sight, given the striking similarity between Figures 2(b) and 2(c).

4 Hierarchical Dirichlet Processes

We propose a nonparametric Bayesian approach to the modeling of grouped data, where each group
is associated with a mixture model, and where we wish to link these mixture models. By analogy
with Dirichlet process mixture models, we first define the appropriate nonparametric prior, which
we refer to as the hierarchical Dirichlet process. We then show how this prior can be used in the
grouped mixture model setting. We present analogs of the three perspectives presented earlier for
the Dirichlet process—a stick-breaking construction, a Chinese restaurant process representation,
and a representation in terms of a limit of finite mixture models.

A hierarchical Dirichlet process is a distribution over a set of random probability measures over
(Θ,B). The process defines a set of random probability measures (Gj)

J
j=1, one for each group,

and a global random probability measure G0. The global measure G0 is distributed as a Dirichlet
process with concentration parameter γ and base probability measure H:

G0 | γ,H ∼ DP(γ,H) , (12)

and the random measures (Gj)
J
j=1 are conditionally independent given G0, with distributions given

by a Dirichlet process with base probability measure G0:

Gj | α0, G0 ∼ DP(α0, G0) . (13)

The hyperparameters of the hierarchical Dirichlet process consist of the baseline probability
measure H , and the concentration parameters γ and α0. The baseline H provides the prior distri-
bution for the parameters (φj)

J
j=1. The distribution G0 varies around the prior H , with the amount

of variability governed by γ. The actual distribution Gj over the parameters φj in the jth group
deviates from G0, with the amount of variability governed by α0. If we expect the variability in
different groups to be different, we can use a separate concentration parameter αj for each group j.
Finally, following Escobar and West (1995), we put vague gamma priors on γ and α0.

A hierarchical Dirichlet process can be used as the prior distribution over the factors for grouped
data. For each j let (φji)

nj

i=1 be i.i.d. random variables distributed as Gj . These φji are factors each
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Figure 3: (a) A hierarchical Dirichlet process mixture model. (b) A alternative representation of a
hierarchical Dirichlet process mixture model in terms of the stick-breaking construction.

corresponding to one observation xji. The likelihood is given by:

φji | Gj ∼ Gj

xji | φji ∼ F (φji) . (14)

This completes the definition of a hierarchical Dirichlet process mixture model. The corresponding
graphical model is shown in Figure 3(a).

Notice that (φji)
nj

i=1 are exchangeable random variables if we integrate out Gj . Similarly,
(φj)

J
j=1 are exchangeable at the group level. Since each xji is independently distributed accord-

ing to F (φji), our exchangeability assumption for the grouped data (xj)
J
j=1 is not violated by the

hierarchical Dirichlet process mixture model.

4.1 The stick-breaking construction

Given that the global measure G0 is distributed as a Dirichlet process, it can be expressed using a
stick-breaking representation:

G0 =
∞
∑

k=1

βkδθk
, (15)

where θk ∼ H independently and β = (βi)
∞
i=1 ∼ Stick(γ) are mutually independent. Since G0 has

support at the points θ = (θi)
∞
i=1, each Gj necessarily has support at these points as well, and can

thus be written as:

Gj =
∞
∑

k=1

πjkδθk
. (16)
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Let πj = (πjk)
∞
k=1. Note that the weights πj are independent given β (since Gj are independent

given G0). We now describe how the weights πj are related to the global weights β.
Let (A1, . . . , Ar) be a measurable partition of Θ and let Kl = {k : θk ∈ Al} for l = 1, . . . , r.

Note that (K1, . . . ,Kr) is a finite partition of the positive integers. Further, assuming thatH is non-
atomic, the θk’s are distinct with probability one, so any partition of the positive integers corresponds
to some partition of Θ. Thus, for each j we have:

(Gj(A1), . . . , Gj(Ar)) ∼ Dir(α0G0(A1), . . . , α0G0(Ar))

=





∑

k∈K1

πjk, . . . ,
∑

k∈Kr

πjk



 ∼ Dir



α0

∑

k∈K1

βk, . . . , α0

∑

k∈Kr

βk



 , (17)

for every finite partition of the positive integers. Hence each πj is independently distributed accord-
ing to DP(α0,β), where we interpret β and πj as probability measures on the positive integers.

As in the Dirichlet process mixture model, since each factor φji is distributed according to Gj ,
it will take on the value θk with probability πjk. Again let zji be an indicator variable such that
φji = θzji

. Given zji we have xji ∼ F (θzji
). Thus Figure 3(b) gives an equivalent representation

of the hierarchical Dirichlet process mixture, with conditional distributions summarized here:

β | γ ∼ Stick(γ)

πj | α0,β ∼ DP(α0,β) zji | πj ∼ πj

θk | H ∼ H xji | zji, (θk)
∞
k=1 ∼ F (θzji

) . (18)

Given the relations between πj and β, we now derive an explicit construction for the elements
of β and πj . Recall that the stick-breaking construction for Dirichlet processes defines the variables
βk in (15) as follows:

β′k ∼ Beta(1, γ) βk = β′
k

k−1
∏

l=1

(1− β′
l) . (19)

Using (17), we will show that the following stick-breaking construction produces a random proba-
bility measure πj ∼ DP(α0,β):

π′jk ∼ Beta

(

α0βk, α0

(

1−
k
∑

l=1

βl

))

πjk = π′jk

k−1
∏

l=1

(1− π′jl) . (20)

To derive (20), first notice that for a partition ({1, . . . , k − 1}, {k}, {k + 1, k + 2, . . .}), (17) gives:
(

k−1
∑

l=1

πjl, πjk,
∞
∑

l=k+1

πjl

)

∼ Dir

(

α0

k−1
∑

l=1

βl, α0βk, α0

∞
∑

l=k+1

βl

)

. (21)

Removing the first element, and using standard properties of the finite Dirichlet distribution, we
have:

1

1−
∑k−1

l=1 πjl

(

πjk,
∞
∑

l=k+1

πjl

)

∼ Dir

(

α0βk, α0

∞
∑

l=k+1

βl

)

. (22)
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Finally, define π′jk =
πjk

1−
∑k−1

l=1
πjl

and observe that 1 −
∑k

l=1 βl =
∑

∞

l=k+1 βl to obtain (20).

Together with (19), (15) and (16), this completes the description of the stick-breaking construction
for hierarchical Dirichlet processes.

4.2 The Chinese restaurant franchise

In this section we describe an analog of the Chinese restaurant process for hierarchical Dirichlet
processes that we refer to as the “Chinese restaurant franchise.” In the Chinese restaurant franchise,
the metaphor of the Chinese restaurant process is extended to allow multiple restaurants which share
a set of dishes.

Recall that the factors φji are random variables with distributionGj . In the following discussion,
we will let θ1, . . . , θK denote K i.i.d. random variables distributed according to H , and, for each j,
we let ψj1, . . . , ψjTj

denote Tj i.i.d. variables distributed according to G0.
Each φji is associated with one ψjt, while each ψjt is associated with one θk. Let tji be the

index of the ψjt associated with φji, and let kjt be the index of θk associated with ψjt. Let njt
be the number of φji’s associated with ψjt, while mjk is the number of ψjt’s associated with θk.
Define mk =

∑

jmjk as the number of ψjt’s associated with θk over all j. Notice that while the
values taken on by the ψjt’s need not be distinct (indeed, they are distributed according to a discrete
random probability measure G0 ∼ DP(γ,H)), we are denoting them as distinct random variables.

First consider the conditional distribution for φji given φj1, . . . , φj i−1 and G0, where Gj is
integrated out. From (7), we have:

φji | φj1, . . . , φj i−1, α0, G0 ∼

Tj
∑

t=1

njt
i− 1 + α0

δψjt
+

α0

i− 1 + α0
G0 , (23)

This is a mixture, and a draw from this mixture can be obtained by drawing from the terms on the
right-hand side with probabilities given by the corresponding mixing proportions. If a term in the
first summation is chosen, then we set φji = ψjt and let tji = t for the chosen t. If the second term
is chosen, then we increment Tj by one, draw ψjTj

∼ G0 and set φji = ψjTj
and tji = Tj . The

various pieces of information involved are depicted as a “Chinese restaurant” in Figure 4(a).
Now we proceed to integrate out G0. Notice that G0 appears only in its role as the distribution

of the variables ψjt. Since G0 is distributed according to a Dirichlet process, we can integrate it out
by using (7) again and writing the conditional distribution of ψjt directly:

ψjt | ψ11, ψ12, . . . , ψ21, . . . , ψj t−1, γ,H ∼
K
∑

k=1

mk
∑

kmk + γ
δθk

+
γ

∑

kmk + γ
H . (24)

If we draw ψjt via choosing a term in the summation on the right-hand side of this equation, we set
ψjt = θk and let kjt = k for the chosen k. If the second term is chosen, we increment K by one,
draw θK ∼ H and set ψjt = θK , kjt = K.

This completes the description of the conditional distributions of the φji variables. To use these
equations to obtain samples of φji, we proceed as follows. For each j and i, first sample φji using
(23). If a new sample from G0 is needed, we use (24) to obtain a new sample ψjt and set φji = ψjt.
This procedure is summarized in Algorithm 1.

Note that in the hierarchical Dirichlet process the values of the factors are shared between the
groups, as well as within the groups. This is a key property of hierarchical Dirichlet processes.
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Figure 4: (a) A depiction of a hierarchical Dirichlet process as a Chinese restaurant. Each rectangle
is a restaurant (group) with a number of tables. Each table is associated with a parameter ψjt which
is distributed according to G0, and each φji sits at the table to which it has been assigned in (23).
(b) Integrating out G0, each ψjt is assigned some dish (mixture component) θk.

We call this generalized urn model the Chinese restaurant franchise (see Figure 4(b)). The
metaphor is as follows. We have a franchise with J restaurants, with a shared menu across the
restaurants. At each table of each restaurant one dish is ordered from the menu by the first customer
who sits there, and it is shared among all customers who sit at that table. Multiple tables at multiple
restaurants can serve the same dish. The restaurants correspond to groups, the customers correspond
to the φji variables, the tables to the ψjt variables, and the dishes to the θk variables.

A customer entering the j th restaurant sits at one of the occupied tables with a certain probability,
and sits at a new table with the remaining probability. This is the Chinese restaurant process and
corresponds to (23). If the customer sits at an occupied table, she eats the dish that has already been
ordered. If she sits at a new table, she gets to pick the dish for the table. The dish is picked according
to its popularity among the whole franchise, while a new dish can also be tried. This corresponds to
(24).

4.3 The infinite limit of finite mixture models

As in the case of a Dirichlet process mixture model, the hierarchical Dirichlet process mixture model
can be derived as the infinite limit of finite mixtures. In this section, we present two apparently
different finite models that both yield the hierarchical Dirichlet process mixture in the infinite limit,
each emphasizing a different aspect of the model. We also show how a third finite model fails to
yield the hierarchical Dirichlet process; the reasons for this failure will provide additional insight.

Consider the first finite model, shown in Figure 5(a). Here the number of mixture components L
is a positive integer, and the mixing proportions β and πj are vectors of length L. The conditional
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Algorithm 1: Obtaining samples from a sample of a hierarchical Dirichlet process.

• Initialize.
Set K = 0, Tj = 0 for each j.

• Generate samples φji.
For each j and i, with probability:

njt
∑

t njt+α0
for t = 1, 2, . . . , Tj :

Assign item i to “table” t.
Set tji ← t, φji ← ψjt, njt ← njt + 1.
α0

∑

t njt+α0
:

Generate a new “table” and sample from G0.
Set Tj ← Tj + 1, njTj

← 0. With probability:
mk

∑

k mk+a for k = 1, 2, . . . ,K:
Assign “table” Tj to mixture component k.
Set kjTj

← k, ψjTj
← θk, mk ← mk + 1.

a
∑

k mk+a :
Generate a new mixture component and sample from H .
Set K ← K + 1, mK ← 0, θK ∼ H .
Assign “table” Tj to mixture component K.
Set kjTj

← K, ψjTj
← θK , mK ← mK + 1.

Assign item i to “table” Tj .
Set tji ← Tj , φji ← ψjTj

, njTj
← njTj

+ 1.

distributions are given by

β | γ ∼ Dir(γ/L, . . . , γ/L)

πj | α0,β ∼ Dir(α0β) zji | πj ∼ πj

θk | H ∼ H xji | zji, (θk)
L
k=1 ∼ F (θzji

) . (25)

Let us consider the random probability measures GL
0 =

∑L
k=1 βkδθk

and GLj =
∑L

k=1 πjkδθk
. As

in Section 3.4, for every measurable function f integrable with respect to H we have
∫

f(φ) dGL0 (φ)
D
−→

∫

f(φ) dG0(φ) , (26)

as L → ∞. Further, using standard properties of the Dirichlet distribution, we see that (17) still
holds for the finite case for partitions of {1, . . . , L}; hence we have:

GLj ∼ DP(α0, G
L
0 ) . (27)

It is now clear that as L → ∞ the marginal distribution this finite model induces on x approaches
the hierarchical Dirichlet process mixture model.

By way of comparison, it is interesting to consider what happens if we set β = (1/L, . . . , 1/L)
symmetrically instead, and take the limit L → ∞ (shown in Figure 5(b)). Let k be a mixture
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Figure 5: Finite models. (a) A finite hierarchical multiple mixture model whose infinite limit yields
the hierarchical Dirichlet process mixture model. (b) The finite model with symmetric β weights.
The various mixture models are independent of each other given α0,β and H so cannot capture
dependencies between the groups. (c) Another finite model that yields the hierarchical Dirichlet
process in the infinite limit.

component used in group j; i.e., suppose that zji = k for some i. Consider the probability that
mixture component k is used in another group j ′ 6= j; i.e., suppose that zj′i′ = k for some i′. Since
πj′ is independent of πj , and β is symmetric, this probability is:

p(∃ i′ : zj′i′ = k | α0β) ≤
∑

i′

p(zj′i′ = k | α0β) =
nj
L
→ 0 as L→∞ . (28)

Since group j can use at most nj mixture components (there are only nj observations), as L→∞
the groups will have zero probability of sharing a mixture component. This lack of overlap among
the mixture components in different groups is the behavior that we consider undesirable and wish
to avoid.

The lack of overlap arises when we assume that each mixture component has the same prior
probability of being used in each group (i.e., β is symmetric). Thus one possible direct way to
deal with the problem would be to assume asymmetric weights for β. In order that the parameter
set does not grow as L → ∞, we need to place a prior on β and integrate over these values. The
hierarchical Dirichlet process is in essence an elegant way of imposing this prior.

A third finite model solves the lack-of-overlap problem via a different method. Instead of intro-
ducing dependencies between the groups by placing a prior on β (as in the first finite model), each
group can instead choose a subset of T mixture components from a model-wide set of L mixture
components. In particular consider the model given in Figure 5(c), where:

β | γ ∼ Dir(γ/L, . . . , γ/L) kjt | β ∼ β

πj | α0 ∼ Dir(α0/T, . . . , α0/T ) tji | πj ∼ πj

θk | H ∼ H xji | tji, (kjt)
T
t=1, (θk)

L
k=1 ∼ F (θkjtji

) . (29)
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As T → ∞ and L → ∞, the limit of this model is the Chinese restaurant franchise process; hence
the infinite limit of this model is also the hierarchical Dirichlet process mixture model.

5 Inference for the hierarchical Dirichlet process mixture model

In this section we describe two Markov chain Monte Carlo sampling schemes for the hierarchical
Dirichlet process mixture model. The first one is based on the Chinese restaurant franchise, while
the second one is an auxiliary variable method based upon the infinite limit of the finite model in
Figure 5(a).

We first recall the various variables and quantities of interest. The variables xji are the observed
data. Each xji comes from a distributionF (φji) where the parameter is the factor φji. LetF (θ) have
density f(·|θ). Let the factor φji be associated with the table tji in the restaurant representation,
and let φji = ψjtji

. The random variable ψjt is an instance of mixture component kjt; i.e., we
have ψjt = θkjt

. The prior over the parameters θk is H , with density h(·). Let zji = kjtji
denote

the mixture component associated with the observation xji. Finally the global weights are β =
(βk)

∞
k=1, and the group weights are πj = (πjk)

∞
k=1. The global distribution of the factors is G0 =

∑

∞

k=1 βkδθk
, while the group-specific distributions are Gj =

∑

∞

k=1 πjkδθk
.

For each group j, define the occupancy numbers nj as the number of observations, njt the
number of φji’s associated with ψjt, and njk the number of φji’s indirectly associated with θk
through ψjt. Also let mjk be the number of ψjt’s associated with θk, and let mk =

∑

jmjk.
Finally let K be the number of θk’s, and Tj the number of ψjt’s in group j. By permuting the
indices, we may always assume that each tji takes on values in {1, . . . , Tj}, and each kjt takes
values in {1, . . . ,K}.

Let xj = (xj1, . . . , xjnj
), x = (x1, . . . ,xJ), t = (tji : all j, i), k = (kjt : all j, t), z = (zji :

all j, i) θ = (θ1, . . . , θK) and m = (mjk : all j, k). When a superscript is attached to a set of
variables or an occupancy number, e.g., θ−k, k−jt, n−ijt , this means that the variable corresponding
to the superscripted index is removed from the set or from the calculation of the occupancy number.
In the examples, θ−k = θ\θk, k−jt = k\kjt and n−ijt is the number of observations in group j
whose factor is associated with ψjt, except item xji.

5.1 Posterior sampling in the Chinese restaurant franchise

The Chinese restaurant franchise presented in Section 4.2 can be used to produce samples from the
prior distribution over the φji, as well as intermediary information related to the tables and mixture
components. This scheme can be adapted to yield a Gibbs sampling scheme for posterior sampling
given observations x.

Rather than dealing with the φji’s and ψjt’s directly, we shall sample their index variables tji
and kjt as well as the distinct values θk. The φji’s and ψjt’s can be reconstructed from these index
variables and the θk. This representation makes the Markov chain Monte Carlo sampling scheme
more efficient (cf. Neal, 2000). Notice that the tji and the kjt inherit the exchangeability properties
of the φji and the ψjt—the conditional distributions in (23) and (24) can be easily adapted to be
expressed in terms of tji and kjt.

The state space consists of values of t,k and θ. Notice that the number of kjt and θk variables
represented explicitly by the algorithm is not fixed. We can think of the actual state space as con-
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sisting of a countably infinite number of θk and kjt. Only finitely many are actually associated to
data and represented explicitly.

Sampling t. To compute the conditional distribution of tji given the remainder of the variables,
we make use of exchangeability and treat tji as the last variable being sampled in the last group in
(23) and (24). We can then easily compute the conditional prior distribution for tji. Combined with
the likelihood of generating xji, we obtain the conditional posterior for tji.

Using (23), the prior probability that tji takes on a particular previously seen value t is propor-
tional to n−ijt , whereas the probability that it takes on a new value (say tnew = Tj+1) is proportional
to α0. The likelihood of the data given tji = t for some previously seen t is simply f(xji|θkjt

).
To determine the likelihood if tji takes on value tnew, the simplest approach would be to generate a
sample for kjtnew from its conditional prior (24) (Neal, 2000). If this value of kjtnew is itself a new
value, say knew = K + 1, we may generate a sample for θknew as well:

kjtnew | k ∼
K
∑

k=1

mk
∑

kmk + γ
δk +

γ
∑

kmk + γ
δknew θknew ∼ H , (30)

The likelihood for xji given tji = tnew is now simply f(xji|θkjtnew ). Combining all this information,
the conditional distribution of tji is then

p(tji = t|t−ji,k,θ,x) ∝

{

α0f(xji|θkjt
) if t = tnew,

n−ijt f(xji|θkjt
) if t previously used.

(31)

If the sampled value of tji is tnew, we insert the temporary values of kjtnew , θkjtnew into the data
structure; otherwise these temporary variables are discarded. The values of njt,mk, Tj and K are
also updated as needed. In our implementation, rather than sampling kjtnew , we actually consider all
possible values for kjtnew and sum it out. This gives better convergence.

If as a result of updating tji some table t becomes unoccupied, i.e., njt = 0, then the probability
that this table will be occupied again in the future will be zero, since this is always proportional to
njt. As a result, we may delete the corresponding kjt from the data structure. If as a result of delet-
ing kjt some mixture component k becomes unallocated, we may delete this mixture component as
well.

Sampling k. Sampling the kjt variables is similar to sampling the tji variables. First we gener-
ate a new mixture parameter θknew ∼ H . Since changing kjt actually changes the component mem-
bership of all data items in table t, the likelihood of setting kjt = k is given by

∏

i:tji=t
f(xji|θk),

so that the conditional probability of kjt is

p(kjt = k|t,k−jt,θ,x) ∝

{

γ
∏

i:tji=t
f(xji|θk) if k = knew,

m−t
k

∏

i:tji=t
f(xji|θk) if k is previously used.

(32)

Sampling θ. Conditioned on the indicator variables k and t, the parameters θk for each mixture
component are mutually independent. The posterior distribution is dependent only on the data items
associated with component k, and is given by:

p(θk|t,k,θ
−k,x) ∝ h(θk)

∏

ji:kjtji
=k

f(xji|θk) (33)

where h(θ) is the density of the baseline distribution H at θ. If H is conjugate to F (·) we have the
option of integrating out θ.
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5.2 Posterior sampling with auxiliary variables

In this section we will develop a sampling scheme for the hierarchical Dirichlet process mixture
model based on auxiliary variables. We first develop the sampling scheme for the finite model given
in (25) and Figure 5(a). Taking the infinite limit, the model approaches a hierarchical Dirichlet
process mixture model, and the sampling scheme we developed approaches a sampling scheme for
the hierarchical Dirichlet process mixture as well. For a similar treatment of the Dirichlet process
mixture model, see Neal (1992) and Rasmussen (2000).

Suppose we have L mixture components. In order that our sampling scheme stays computa-
tionally feasible when we take L → ∞, we need a representation of the posterior which does not
grow with L. Suppose that out of the L components only K are currently used to model the obser-
vations. It is unnecessary to explicitly represent each of the unused components separately, so we
will instead pool them together and use a single unrepresented component. Whenever the unrepre-
sented component gets chosen to model an observation, we will increment K and instantiate a new
component from this pool.

The variables of interest in the finite model are z, π, β and θ. We will integrate out π, and Gibbs
sample z, θ and β. By permuting the indices we may assume that the represented components are
1, . . . ,K. Hence each zji ≤ K, and we explicitly represent βk and θk for 1 ≤ k ≤ K. Define
βu =

∑L
k=K+1 βk to be the mixing proportion corresponding to the unrepresented component u. In

this section we shall take β = (β1, . . . , βK , βu). Let γr = γ/L and γu = γ(L −K)/L so that we
have β ∼ Dir(γr, . . . , γr, γu). We also only need to keep track of the counts njk for 1 ≤ k ≤ K,
and set nju = 0.

Integrating out π. Since π is Dirichlet distributed and the Dirichlet distribution is conjugate to
the multinomial, we may analytically integrate out π, giving the following conditional probability
of z given β:

p(z|β) =
J
∏

j=1

Γ(α0)

Γ(α0 + nj)

K
∏

k=1

Γ(α0βk + njk)

Γ(α0βk)
. (34)

Sampling z. From (34), the prior probability for zji = k given z−ji and β is simplyα0βk+n
−ji
jk

for each k = 1, . . . ,K, u. Combined with the likelihood of xji we get the conditional probability
for zji:

p(zji = k|z−ji,β,θ,x) ∝ (α0βk + n−jijk )f(xji|θk) for k = 1, . . . ,K, u. (35)

where θu is sampled from its prior H . If as a result of sampling zji a represented component is left
with no observations associated with it, we may remove it from the represented list of components.
If on the other hand the new value for zji is u, we need to instantiate a new component for it. To do
so, we increment K by 1, set zji ← K, θK ← θu, and we draw b ∼ Beta(1, γ) and set βK ← bβu,
βu ← (1− b)βu.

The updates to βK and βu can be understood as follows. We instantiate a new component by
obtaining a sample, with index variable ku, from the pool of unrepresented components. That is,
we choose component ku = k with probability βk/

∑

βk = βk/βu for each k = K + 1, . . . , L.
Notice, however, that (βK+1/βu, . . . , βL/βu) ∼ Dir(γr, . . . , γr). It is now an exercise in standard
properties of the Dirichlet distribution to show that βku

/βu ∼ Beta(1 + γr, γu − γr). As L → ∞
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s(n,m) m = 0 m = 1 m = 2 m = 3 m = 4

n = 0 1 0 0 0 0
n = 1 0 1 0 0 0
n = 2 0 1 1 0 0
n = 3 0 2 3 1 0
n = 4 0 6 11 6 1

Table 1: Table of the unsigned Stirling numbers of the first kind.

this is Beta(1, γ). Hence this new component has weight bβu where b ∼ Beta(1, γ), while the
weights of the unrepresented components sum to (1− b)βu.

Sampling β. We use an auxiliary variable method for sampling β. Notice that in the likelihood
term (34) for β, the variables βk appear as arguments of Gamma functions. However the ratios of
Gamma functions are polynomials in α0βk, and can be expanded as follows:

Γ(njk + α0βk)

Γ(α0βk)
=

njk
∏

mjk=1

(mjk − 1 + α0βk) =

njk
∑

mjk=0

s(njk,mjk)(α0βk)
mjk , (36)

where s(njk,mjk) is the coefficient of (α0βk)
mjk . In fact, the s(njk,mjk) terms are unsigned

Stirling numbers of the first kind. Table 1 presents some values of s(n,m). We have by definition
that s(0, 0) = 1, s(n, 0) = 0, s(n, n) = 1 and s(n,m) = 0 for m > n. Other entries of the table
can be computed as s(n + 1,m) = s(n,m − 1) + ns(n,m). We introduce m = (mjk : all j, k)
as auxiliary variables to the model. Plugging (36) into (34) and including the prior for β, the
distribution over z, m and β is:

q(z,m,β) =
Γ(γ)

Γ(γr)KΓ(γu)





J
∏

j=1

Γ(α0)

Γ(α0 + nj)



βγu−1
u

K
∏

k=1

βγr−1
k

J
∏

j=1

(α0βk)
mjks(njk,mjk) .

(37)

It can be verified that
∑

m
q(z,m|β) = p(z|β). Finally, to obtain β given z, we simply iterate

sampling between m and β using the conditional distributions derived from (37). In the limit
L→∞ the conditional distributions are simply:

q(mjk = m|z,m−jk,β) ∝ s(njk,m)(α0βk)
m (38)

q(β|z,m) ∝ βγ−1
u

K
∏

k=1

β
∑

j mjk−1

k . (39)

The conditional distributions ofmjk are easily computed since they can only take on values between
zero and njk, and s(n,m) are easily computed and can optionally be stored at little cost. Given m

the conditional distribution of β is simply a Dirichlet distribution with weights (
∑

jmj1, . . . ,
∑

jmjK , γ).
Sampling θ in this scheme is the same as for the Chinese restaurant franchise scheme. Each θk

is updated using its posterior given z and x:

p(θk|z,β,θ
−k,x) ∝ h(θk)

∏

ji:zji=k

f(xji|θk) for k = 1, . . . ,K. (40)
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5.2.1 Conjugacy between β and m

The derivation of the auxiliary variable sampling scheme reveals an interesting conjugacy between
the weights β and the auxiliary variables m. First notice that the posterior for π given z and β is

p((πj1, . . . , πjK , πju)
J
j=1|z,β) ∝

J
∏

j=1

πα0βu−1
ju

K
∏

k=1

π
α0βk+njk−1
jk , (41)

where πju =
∑

∞

k=K+1 πjk is the total weight for the unrepresented components. This describes
the basic conjugacy between πj and njk’s in the case of the ordinary Dirichlet process, and is a
direct result of the conjugacy between Dirichlet and multinomial distributions (Ishwaran and Zare-
pour, 2002). This conjugacy has been used to improve the sampling scheme for stick-breaking
generalizations of the Dirichlet process (Ishwaran and James, 2001).

On the other hand, the conditional distribution (39) suggests that the β weights are conjugate
in some manner to the auxiliary variables mjk. This raises the question of the meaning of the mjk

variables. The conditional distribution (38) of mjk gives us a hint.
Consider again the Chinese restaurant franchise, in particular the probability that we obtain m

tables corresponding to component k in mixture j, given that we know the component to which
each data item in mixture j is assigned (i.e., we know z), and we know β (i.e., we are given the
sample G0). Notice that the number of tables in fact plays no role in the likelihood since we already
know which component each data item comes from. Furthermore, the probability that i is assigned
to some table t such that kjt = k is

p(tji = t|kjt = k,mji,β, α0) ∝ n
−i
jt , (42)

while the probability that i is assigned a new table under component k is

p(tji = tnew|kjtnew = k,mji,β, α0) ∝ α0βk . (43)

This shows that the distribution over the assignment of observations to tables is in fact equal to
the distribution over the assignment of observations to components in an ordinary Dirichlet process
with concentration parameter α0βk, given that njk samples are observed from the Dirichlet process.
Antoniak (1974) has shown that this induces a distribution over the number of components:

p(# components = m|njk samples, α0βk) = s(njk,m)(α0βk)
m Γ(α0βk)

Γ(α0βk + njk)
, (44)

which is exactly (38). Hence mjk is the number of tables assigned to component k in mixture j.
This comes as no surprise, since the tables correspond to samples fromG0 so the number of samples
equal to some distinct value (the number of tables under the corresponding component) should be
conjugate to the weights β.

5.3 Posterior sampling for concentration parameters

We can update the concentration parameters γ and α0 of the hierarchical Dirichlet process using
straightforward extensions of analogous techniques for Dirichlet processes. Consider the Chinese
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restaurant franchise representation. The concentration parameter α0 governs the distribution over
the number of ψjt’s in each mixture independently. As noted in Section 5.2.1 this is given by:

p(T1, . . . , TJ |α0, n1, . . . , nJ) =
J
∏

j=1

s(nj , Tj)α
Tj

0

Γ(α0)

Γ(α0 + nj)
. (45)

Further, α0 does not govern other aspects of the joint distribution, hence given Tj the observations
are independent of α0. Therefore (45) gives the likelihood term for α0. Together with the prior for
α0 and the current sample for Tj we can now derive updates for α0. In the case of a single mixture
model (J = 1), Escobar and West (1995) proposed a gamma prior and derived an auxiliary variable
update for α0, while Rasmussen (2000) observed that (45) is log-concave in α0 and proposed using
adaptive rejection sampling (Gilks and Wild, 1992) instead. Both can be adapted to the case J > 1.

The adaptive rejection sampler of Rasmussen (2000) can be directly applied to the case J >
1 since the conditional distribution of α0 is still log-concave. The auxiliary variable method of
Escobar and West (1995) requires a slight modification for the case J > 1. Assume that the prior
for α0 is a gamma distribution with parameters a and b. For each j we can write

Γ(α0)

Γ(α0 + nj)
=

∫ 1

0
wα0

j (1− wj)
nj−1

(

1 +
nj
α0

)

dwj . (46)

In particular, we define auxiliary variables w = (wj)
J
j=1 and s = (sj)

J
j=1 where each wj is a

variable taking on values in [0, 1], and each sj is a binary {0, 1} variable, define the following
distribution:

q(α0,w, s) ∝ α
a−1+

∑J
j=1

Tj

0 eα0b
J
∏

j=1

wα0

j (1− wj)
nj−1

(

nj
α0

)sj

. (47)

Now marginalizing q to α0 gives the desired conditional distribution for α0. Hence q defines an
auxiliary variable sampling scheme for α0. Given w and s we have:

q(α0|w, s) ∝ α
a−1+

∑J
j=1

Tj−sj

0 eα0(b−
∑J

j=1
logwj) , (48)

which is gamma distributed with parameters a+
∑J

j=1 Tj − sj and b−
∑J

j=1 logwj . Given α0, the
wj and sj are conditionally independent, with distributions:

q(wj |α0) ∝ w
α0

j (1− wj)
nj−1 (49)

q(sj |α0) ∝

(

nj
α0

)sj

, (50)

which are beta and binomial distributions respectively. This completes the auxiliary variable sam-
pling scheme for α0. We prefer the auxiliary variable sampling scheme as it is easier to implement
and typically mixes quickly (within 20 iterations).

Given the total number T =
∑

j Tj of ψjt’s, the concentration parameter γ governs the distri-
bution over the number of components K:

p(K|γ, T ) = s(T,K)γK
Γ(γ)

Γ(γ + T )
. (51)

Again the observations are independent of γ given T and K, hence we may apply the techniques of
Escobar and West (1995) or Rasmussen (2000) directly to sampling γ.
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5.4 Comparison of sampling schemes

We have described two different sampling schemes for hierarchical Dirichlet process mixture mod-
els. In the next section we present an example that indicates that neither of the two sampling
schemes dominates the other. Here we provide some intuition regarding the dynamics involved in
the sampling schemes.

In the Chinese restaurant franchise sampling scheme, we instantiate all the tables involved in
the model, we assign data items to tables, and assign tables to mixture components. The assignment
of data items to mixture components is indirect. This offers the possibility of speeding up conver-
gence because changing the component assignment of one table offers the possibility of changing
the component memberships of multiple data items. This is akin to split-and-merge techniques in
Dirichlet process mixture modeling (Jain and Neal, 2000). The difference is that this is a Gibbs
sampling procedure while split-and-merge techniques are based on Metropolis-Hastings updates.

Unfortunately, unlike split-and-merge methods, we do not have a ready way of assigning data
items to tables within the same component. This is because the assignments of data items to tables
is a consequence of the prior clustering effect of a Dirichlet process with njk samples. As a result,
we expect that—with high-dimensional, large data sets, where tables will typically have large num-
bers of data items and components are well-separated—the probability that we have a successful
reassignment of a table to another previously seen component is very small. However this intuition
is still to be verified experimentally.

In the auxiliary variable sampling scheme, we have a direct assignment of data items to com-
ponents, and tables are only indirectly represented via the number of tables assigned to each com-
ponent in each mixture. As a result data items can only switch components one at a time. This
is potentially slower than the Chinese restaurant franchise method. However, the sampling of the
number of tables per component is very efficient, since it involves an auxiliary variable, and we have
a simple form for the conditional distributions.

It is of interest to note that combinations of the two schemes may yield an even more efficient
sampling scheme. We start from the auxiliary variable scheme. Given β, instead of sampling the
number of tables under each component directly using (38), we may generate an assignment of data
items to tables under each component using the Pólya urn scheme (this is a one shot procedure given
by (6), and is not a Markov chain). This follows from the conjugacy arguments in Section 5.2.1.
A consequence is that we now have the number of tables in that component, which can be used to
update β. In addition, we also have the assignment of data items to tables, and tables to components,
so we may consider changing the component assignment of each table as in the Chinese restaurant
franchise scheme.

5.5 Bars problem

We examined the convergence properties of both the Chinese restaurant franchise and the auxiliary
variable sampling methods on a small problem previously studied in Blei et al. (2004). The data
set consists of 40 groups, each of which contains 100 observations. The observations in each group
are generated from a mixture of between two and four components (from a total of 10 possible
components). Each observation can take on one of 25 values, and each component distribution can
be visualized as bars in a 5 × 5 image. Figure 6(a) shows the empirical distribution over ten of the
groups, while Figure 6(b) shows the ten component distributions (in fact these were inferred from
the data).
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(a) (b)

Figure 6: Distributions over observations can be visualized using a 5 × 5 image, with each pixel
corresponding to each possible value of the observation. Black means a probability of at least 0.2,
while white is probability of 0. (a) Ten examples of the empirical distribution in each group. (b)
The component distributions for the ten components at the end of Markov chain sampling (using
auxiliary variables).

We constructed a hierarchical Dirichlet process mixture model using a multinomial distribution
for F (·), and a conjugate Dirichlet prior for H (with symmetric weights of 1/5). The hyperparam-
eters γ and α0 are set equal to one. We ran both the Chinese restaurant franchise and the auxiliary
variable Markov chain sampling methods on the same generated data set. We find that the Markov
chains converge rapidly for this simple problem. After an initial burn-in period (200 iterations), we
collected information for 5000 iterations. In particular, we kept track of the number of represented
components K, and the total number of tables across the data set m =

∑

jkmjk.
In Figures 7(a) and 7(b) we plot the autocorrelation function for K and m respectively. For

the number of components the Chinese restaurant franchise method seems to produce uncorrelated
samples faster than the auxiliary variable method. This conforms with the intuition presented in
Section 5.4. Because we are sampling the component memberships of each individual table in the
Chinese restaurant franchise, the component memberships of large numbers of observations can
change all at once. This is reflected in the low autocorrelation of the number of components. On
the other hand, in the auxiliary variable method, component memberships of observations can only
be changed one at a time hence this method produces higher autocorrelation. However as discussed
in 5, in higher dimensions and with more observations we expect the component memberships of
tables to be very rigid and so we expect the auxiliary variable method to perform comparably to the
Chinese restaurant franchise method.

For the number of tables, the auxiliary variable method produces uncorrelated samples faster.
This is again expected because given β we are able to sample directly the number of tables mjk

assigned to each component in each mixture.

6 Related models

6.1 The infinite hidden Markov model

In work that served as an inspiration for the ideas developed here, Beal et al. (2002) discussed an
architecture known as the infinite hidden Markov model, in which the number of hidden states of a
hidden Markov model is allowed to be countably infinite via the formalism of the Dirichlet process.
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Figure 7: The autocorrelation for (a) the number of components and (b) the number of tables.

Indeed, Beal et al. (2002) defined a notion of “hierarchical Dirichlet process” for this architecture,
but their “hierarchical Dirichlet process” is not hierarchical in the Bayesian sense—involving a
distribution on the parameters of a Dirichlet process—but is instead a description of a coupled set
of urn models. In this section we briefly review this construction, and relate it to our formulation.

Beal et al. (2002) described a two-level procedure for determining the transition probabilities of
a Markov chain with an unbounded number of states. At the first level, the probability of transition-
ing from a state u to a state v is proportional to the number of times the same transition is observed
at other time steps, while with probability proportional to α0 an “oracle” process is invoked. At
this second level, the probability of transitioning to state v is proportional to the number of times
state v has been chosen by the oracle (regardless of the previous state), while the probability of
transitioning to a novel state is proportional to γ. The intended role of the oracle is to tie together
the transition models so that they have destination states in common, in much the same way that
the baseline distribution G0 ties together the group-specific mixture components in the hierarchical
Dirichlet process.

To see how this two-level urn model can be justified, let us formulate the infinite hidden Markov
model within the hierarchical Dirichlet process framework of the current paper. We do so by assign-
ing observations to groups, where the groups are indexed by the value of the previous state variable.
We thus treat the next-state and emission distributions as defining group-specific mixtures. This
leads to the hierarchical Dirichlet process representation shown in Figure 8. The parameters in this
representation have the following distributions:

β | γ ∼ Stick(γ) πk | α0,β ∼ DP(α0,β) θk | H ∼ H , (52)

for each k = 1, 2, . . ., while for each time step t = 1, . . . , T the state and observation distributions
are:2

vt | vt−1, (πk)
∞
k=1 ∼ πvt−1

yt | vt, (θk)
∞
k=1 ∼ F (θvt) , (53)

2We assume for simplicity that there is a distinguished initial state v0.
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Figure 8: A hierarchical Bayesian model for the infinite hidden Markov model.

As discussed in Section 5, this stick-breaking representation leads to a Markov chain Monte Carlo
sampling scheme involving auxiliary variables. On the other hand, one can also consider the Chinese
restaurant franchise representation of this model. It turns out that this representation is equivalent
to the coupled urn model of Beal et al. (2002). Unfortunately, the Chinese restaurant franchise
representation is awkward for setting up an inference algorithm in this setting, involving substantial
bookkeeping, and indeed Beal et al. (2002) did not present a Markov chain Monte Carlo inference
algorithm for the infinite hidden Markov model, proposing instead a heuristic approximation to
Gibbs sampling. The auxiliary variable approach that we presented in Section 5 turns out to lead to
a more straightforward algorithm in this case, and it is this algorithm that we propose for inference
in the infinite hidden Markov model.

6.2 Analysis of densities

Tomlinson and Escobar (2003) presented the analysis of densities (AnDe) model, a hierarchical
Bayesian approach to modeling collections of densities. Formally their model is a more general
model than the hierarchical Dirichlet process presented here, in that the model involves a collec-
tion of Dirichlet processes Gj in which the base density G0 is drawn from a mixture of Dirichlet
processes, not a single underlying Dirichlet process. Measures drawn from a mixture of Dirichlet
processes are not discrete, which is clearly appropriate if the goal is to model densities. Our goal
is different—we are explicitly interested in clustering. The discreteness of draws from the Dirich-
let process is thus an essential feature of our approach. Moreover, while inference in the AnDe
model is a relatively straightforward application of general Markov chain Monte Carlo methods for
Dirichlet process mixture models, the clustering in the hierarchical Dirichlet process creates com-
plications. Indeed, the thrust of our paper has been to address those complications head-on, via
the stick-breaking representation, the Chinese restaurant franchise representation, and the resulting
Markov chain Monte Carlo algorithms described in Section 5.

7 Discussion

We have described a nonparametric approach to the modeling of groups of data, where each group
is characterized by a mixture model, and where it is desirable to allow mixture components to be
shared between groups. We have proposed a hierarchical Bayesian solution to this problem, in
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which a set of Dirichlet processes are coupled via their base measure, which is itself distributed
according to a Dirichlet process.

We have described three different representations that capture aspects of the hierarchical Dirich-
let process. In particular, we described a stick-breaking representation that describes the random
measures explicitly, a representation of marginals in terms of an urn model that we referred to as
the “Chinese restaurant franchise,” and a representation of the process in terms of the infinite limit
of finite mixture models.

These representations led to the formulation of two Markov chain Monte Carlo sampling schemes
for posterior inference under hierarchical Dirichlet process mixtures. The first scheme is based di-
rectly on the Chinese restaurant franchise representation, while the second scheme is an auxiliary
variable method that represents the stick-breaking weights β explicitly. In a simple experiment, we
saw that neither scheme dominates the other—both schemes have their strengths and weaknesses.

Is it of interest to consider additional levels of the hierarchy? Practical applications of hidden
Markov models often consider sets of sequences, and treat these sequences as exchangeable at
the level of sequences. Thus, in applications to speech recognition, a hidden Markov model for a
given word in the vocabulary is generally trained via replicates of that word being spoken. If we
wish to allow unbounded sets of states in such a setting, we are naturally led to a model in which
multiple hidden Markov chains must be coupled. This is accommodated naturally in our formalism
by considering an additional level of the Bayesian hierarchy, and allowing a master Dirichlet process
to couple the chains.
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