Stochastic Encoding and the “Bits-Back” Argument

Jason Rennie
jrennie@ai.mit.edu

May 16, 2003

Abstract

The Minimum Description Length framework is powerful but is
often overlooked. I believe that one reason for this is that methods for
attaining efficient encodings are subtle. In this paper, I discuss one of
those techniques, stochastic encoding. When there are multiple nearly
equally valuable choices of a parameter, it is more valuable to choose
stochastically—according to a probability distribution— rather than
selecting the single best choice. Why? Because information can be
transmitted in which parameter is chosen. This is exactly the “bits-
back” argument given by Hinton and Zemel in [1].

In the Minimum Description Length (MDL) framework, the objective is
to encode the data plus the model with the fewest number of bits possible.
An important advantage to this framework is that the regularizer is simple
and innate. Any complexity of the model must be encoded alongside the
data. Hence, it is of the utmost importance that the model be encoded
efficiently. In particular, the model must be encoded at the proper level of
precision. Some parameters of the model may be encoded with a low degree
of precision to achieve the desired benefit, while other parameters will need
a high degree of precision. Designing a code to handle this in a dynamic
fashion is not easy. So, we do something similar to what we do with encoding
data.

When encoding data, we don’t try to construct a code that actually
encodes the data. That would force us to deal with the discreteness of real
codes and the need to adapt the code to different distributions. Instead, we
simply encode based on the uncertainty. If our model says that a label is
highly likely, it takes us little encoding; if our model goofs and declares a
label unlikely, we pay by using many bits to encode that label. We use the
encoded model to determine a conditional probability for each label given

its example, p(y|x). Assuming the label is encoded efficiently according to
that probability, we use a code length of

—log p(ylz) (1)

bits. Thus, we can encode the data (the labels) efficiently without having
to worry about constructing a code.

We apply the same reasoning to the encoding of model parameters. Con-
sider transmitting model parameters using as few bits as possible. We cannot
transmit with infinite precision since doing so would require infinite band-
width. One option is to limit our choices to a discrete set. However, this
poses difficulties since we must establish at what level of precision we wish
to transmit each parameter. Another option is to transmit a random pa-
rameter chosen according to a distribution. The entropy of the distribution
determines the effective precision of our encoding. It may seem that this
requires as much bandwidth as transmitting parameters with infinite preci-
sion. But, we don’t choose a single value to transmit; we are satisfied with
randomly selecting from a distribution. Assume that we have established
an encoding for w which is optimal according to p(w). Let g(w) be the
distribution from which we choose a parameter to send. Then, the expected
length of transmitting w is

l(q) = Eypng|—logp(w)] = — /q(w) log p(w)dw. (2)

But, we are not done. Since we do not send a single value but rather
according to a distribution ¢, we could encode information in the values
that we select. The average amount information we transmit is the entropy
of g. So, the net (average) encoding length we need is

1(q) = Ew~ql—logp(w)] — H(q). (3)
Or, in a more recognizable form, this is the KL-divergence,

q(w)
)= [atw)log 4. @
That is, the average net bits we consume is the difference between the num-
ber of bits needed to send ¢ via its optimal encoding and the number of bits
needed to send ¢ via p’s optimal encoding. We get H(q) “bits back” since
we could utilize those bits for transmitting other information. This is the
argument found in [1]. The clear benefit here is that we no longer need to

concern ourselves with establishing discrete values for the parameters. If we
use a parametric family for ¢, we can directly optimize those parameters.

That which remains is to choose a suitable prior for p, a suitable para-
metric family for ¢ and to evaluate the KL-divergence integral. We would
also like to know whether there are certain choices that lead us to a convex
optimization.

References

[1] Geoffrey E. Hinton and Richard S. Zemel. Autoencoders, minimum de-
scription length, and helmholtz free energy. In Advances in Neural In-
formation Processing Systems 6, 1994.

