
Kernelizing Linear Classifiers

Jason D. M. Rennie
jrennie@csail.mit.edu

December 6, 2003

Abstract

It’s common knowledge that the Support Vector Machine (SVM) can
be kernelized. In other words, the SVM retains its convex objective even if
points are projected into another space. What may be slightly less known
is that other linear classification algorithms, such as logistic regression
and least squares, can also be kernelized. In this paper, we review the
mathematics behind the kernelization of the SVM and other classification
algorithms.

1 The Support Vector Machine

For a matrix of training examples, X =

 xT
1
...

xT
n

, and a vector of their binary

labels, y, the Support Vector Machine1 finds the vector of weights, w, that
minimizes

LSVM = sum((1− (Xw + b) · y)+) + λwT w. (1)

The Representer Theorem (see Appendix B of [1]) guarantees us that we lose
nothing by rewriting the weight vector, w, in terms of weights on the examples,
c. Let w = XT c and K = XXT .

LSVM = sum((1− (Kc + b) · y)+) + λcT Kc. (2)

The dual form is usually used for optimization since it yields a quadratic pro-
gram in standard form. Let Y = diag(y) and α = {α1, . . . , αn}. We can
equivalently maximize2

L′
SVM = sum(α)− 1

4λ
αT Y KY α. (3)

1We follow the derivation of [1] except that we eliminate the 1
l

term.
2λ should not be squared in Equation 2.23 of [1].

1



such that yT α = 0 and 0 ≤ αi ≤ 1 ∀i. A new example, x, is labeled

sign

(∑
i

αiyixT
i x

)
. (4)

Note that nowhere do we need to represent individual examples. We need only
compute dot (kernel) products between examples. This makes it easy to extend
the SVM to non-linear decision boundaries. Let Φ : Rd → H be a function
that maps a data point to a higher-dimensional (possibly infinite) space. If
K(xi,xj) = Φ(xi)T Φ(xj) is easily computable for every pair of examples, there
is no need to explicitly store the higher-dimensional representation of example.
All we need are the kernel products between pars of points. See §4 of [2] for
additional discussion.

2 Regularized Least Squares Classification

Regularized Least Squares Classification3 (RLSC) is similar to the SVM in that
the objective minimizes a loss function plus a penalty term. The main difference
is that the loss of an example is the square difference between the label and the
classifier output. Unlike the SVM, overconfident outputs are penalized. For a
discussion of the intuition behind RLSC, see §3.4 of [1]. Let X be our matrix
of training examples; let y be the vector of labels. RLSC minimizes

LRLSC = (Xw + b1− y)T (Xw + b1− y) + λwT w. (5)

Again, the Representer Theorem guarantees that we lose nothing by making the
substitution w = XT c,

LRLSC = (Kc + b1− y)T (Kc + b1− y) + λcT Kc. (6)

Taking the gradient and solving for zero, we find that we minimize the objective
by solving

(K + λI)c + b1 = y. (7)

As observed by [1], this can be minimized directly using, e.g. Conjugate Gradi-
ents. See §3 of [1] for additional discussion.

3 Regularized Logistic Regression

Like with RLSC, Regularized Logistic Regression (RLR) simply modifies the
loss term. Let X be the set of training examples; let y be the vector of labels;
let Y = diag(y); let g(z) = (1 + e−z)−1. RLR minimizes

LRLR = −sum (log g(Y (Xw + b1))) +
λ

2
wT w (8)

3Again, we follow the derivation of [1], removing the 1
l

term

2



By the Representer Theorem, we lose nothing by making the substitution, w =
XT c. Again, we define K = XXT .

LRLR = −sum (log g(Y (Kc + b1))) +
λ

2
cT Kc. (9)

As with RLSC, we use gradient descent to minimize the objective. This entails
computing the gradient,

∂L

∂c
= −g(−Y (Kc + b1))Y K + λKc, (10)

∂L

∂b
= −g(−Y (Kc + b1))y. (11)

4 Summary

We have shown that other classification algorithms besides the SVM can be ker-
nelized to learn non-linear decision boundaries. However, we have not discussed
the computational feasibility. [1] discusses such issues in §3.7.

References

[1] Ryan Rifkin. Everything Old Is New Again: A Fresh Look at Historical
Approaches in Machine Learning. PhD thesis, Massachusetts Institute of
Technology, 2002.

[2] Christopher J. C. Burges. A tutorial on Support Vector Machines for pattern
recognition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

3


