
Logistic Regression

Jason Rennie
jrennie@ai.mit.edu

April 23, 2003

Abstract
This document gives the derivation of logistic regression with and

without regularization.

1 Introduction

We consider binary classification where each example is labeled +1 or −1.
We assume that an example has l features, each of which can take the value
zero or one. We denote an example by ~x and the value of the kth feature as
xk. We define an additional feature, x0 ≡ 1, and call it the “bias” feature.
We say that the probability of an example being drawn from the positive
class is

p(y = +1|~x) = g

(
l∑

k=0

wkxk

)
, (1)

where g(z) = 1
1+e−z . We use wk, k ∈ {0, . . . , l}, to denote the weight for the

kth feature. We call w0 the bias weight.

2 Without Regularization

Logistic regression (LR) learns weights so as to maximize the likelihood of
the data. Let (~x1, . . . , ~xn) be a set of training data; let (y1, . . . , yn) be their
corresponding labels. Let xik be the value of the kth feature of example i.
LR maximizes the (log-) likelihood of the data,

L(~w) =
n∑
i=1

log g(yizi), (2)

where zi =
∑

k wkxik. Note that 1− g(z) = g(−z).

1



2.1 Gradient Descent

First, we show how to learn the weights via gradient descent. The gradient
of the log-likelihood with respect to the kth weight is

∂L

∂ ~w
where

∂L

∂wk
=

n∑
i=1

yixikg(−yizi). (3)

Note that ∂g(z)
∂z = g(z)g(−z)dz. Recall that zi =

∑
k wkxik, k ∈ {0, . . . , l},

and xi0 ≡ 1. Increasing our weight vector in the direction of the gradient
increases L; each round we calculate new weights by adding a fraction of
the gradient,

w
(t+1)
k = w

(t)
k + ε

n∑
i=1

yixikg(−yizi). (4)

ε is the learning rate.
Iteratively updating the weights in this fashion increases likelihood each

round. The likelihood is convex, so we eventually reach the maximum. We
are near the maximum when changes in the weights are small. We choose
to stop when the sum of the absolute values of the weight differences is less
than some small number, e.g. 10−6.

2.2 Newton’s Method

We can also learn the weights without having to select a learning rate. We
do this by solving for the weight vector that gives a zero gradient. Newton’s
method iteratively updates weights as follows:

~w(t+1) = ~w(t) −
[
∂2L

∂ ~w∂ ~w

]−1
∂L

∂ ~w
. (5)

We have already given the gradient. Here we give the Hessian, or the matrix
of second derivatives:

∂2L

∂ ~w∂ ~w
where

∂2L

∂wj∂wk
= −

n∑
i=1

xijxikg(yizi)g(−yizi). (6)

Again, the likelihood is a convex function of the weights, so we are guaran-
teed to find the maximum eventually. In practice, we stop when the sum of
the absolute values of the weight differences is less than some small number.

2



3 With Regularization

The derivation and optimization of regularized LR is very similar to regu-
lar LR. The benefit of adding the regularization term is that we enforce a
tradeoff between matching the training data and generalizing to future data.

For our regularized objective, we change the sign and add the squared
L2 norm.

L = −
n∑
i=1

log g(yizi) +
C

2

l∑
k=1

w2
k. (7)

C balanaces the tradeoff between the two terms. Note that we do not regu-
larize the bias weight. The derivatives are nearly the same as before, the only
differences being a change in sign and the addition of regularization terms.
We only show cases that are different than the case of no regularization.

∂L

∂wk
= −

n∑
i=1

yixikg(−yizi) + Cwk, k 6= 0, (8)

∂2L

∂wk∂wk
=

n∑
i=1

x2
ikg(−yizi) + C, k 6= 0. (9)

As before, we can perform gradient descent using the gradient. We change
the sign since we are looking for a minimum,

w
(t+1)
k = w

(t)
k + ε

n∑
i=1

yixikg(−yizi)− εCw(t)
k , k 6= 0. (10)

The update for the bias weight, w0, is identical to the non-regularized ver-
sion. As can be seen, the regularization term encourages smaller weights. Al-
ternately, we can use Newton’s method as before, using the updated deriva-
tives given above.

3


