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1 Introduction

Consider the problem of encoding parameters as described in [2]. Our overall
goal is to encode the labels of documents from training data for a text
classification problem. We encode the labels in two parts: (1) the parameters
of our model, and (2) the labels given the knowledge of the model. We choose
to encode the parameters stochastically. Instead of chosing an exact value,
we choose a distribution and transmit a random value by drawing from
the selected distribution. By the “bits-back” argument, our net expected
encoding length is the KL-divergence between the selected distribution and
a prior distribution. If we use parameterizations of the Gaussian as our
distribution class, the KL-divergence is not only analytic, but simple to
evaluate.

2 The “Bits-back” Argument

Let x be a parameter of our model that we would like to learn. Let X be
the set of values that we may consider using. Let − log p(x) be the encoding
length of value x, where p is a mass function on X . Let q be a second mass
function on X . Instead of sending a single value, consider randomly drawing
a value according to q. our expected encoding length is

Ex∼q[− log p(x)] = −
∑
x∈X

q(x) log p(x). (1)

But, since we don’t care exactly what values are transmitted (as long as
they are drawn from q), we can transmit additional information to the tune
of H(q) bits. This argument was introduced in [1]. Our net encoding length
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is

l(q) = −
∑
x∈X

q(x) log p(x)−H(q) =
∑
x∈X

q(x) log
q(x)
p(x)

. (2)

We naturally arrive at the KL-divergence as a measure of the encoding
length for the parameter.

3 Continuously Valued Parameters

This argument can be extended to continuously valued sets. We will use the
family of Gaussian distributions as an example. Let X = {. . . ,−2δ,−δ, 0, δ, 2δ, . . . },
δ > 0. Let

p(x) =
1

Zpδ
√
γ2

exp
(
− x2

2γ2

)
(3)

be a mass function on X , where γ2 is a parameter, and let − log p(x) be the
encoding length for the value x. Let

q(x) =
1

Zqδ
√
σ2

exp
(
−(x− µ)2

2σ2

)
(4)

be a second mass function on X where σ2 and µ are parameters. As discussed
above, if we randomly draw values from q, our net expected encoding length
is

l(q) =
∑
x∈X

q(x) log
q(x)
p(x)

, (5)

=
∑
x∈X

q(x)
(
−1

2
log

σ2Zq
γ2Zp

+
x2(σ2 − γ2) + 2xµγ2 − µ2γ2

2σ2γ2

)
. (6)

Now, note that as δ → 0+, we observe the following limits: Zq → 1√
2π

,

Zp → 1√
2π

,
∑

x q(x)x→ µ, and
∑

x q(x)x2 → µ2 + σ2. Hence,

lim
δ→0+

l(q) =
1
2

log
γ2

σ2
+
µ2 + σ2 − γ2

2γ2
. (7)

We have arrived at a net encoding length for transmitting values drawn
randomly from a Gaussian distribution. The advantage of this is that we do
not need to worry about selecting a discretization of the real number line.
The variance on the distribution we choose (σ2) acts as a knob for setting
the precision with which we wish to transmit the parameter.
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4 Summary

We have used the “bits-back” argument, introduced by [1], to argue that a
continuously valued parameter can be encoded in a finite number of bits. We
make use of stochastic encoding—randomly choosing the value according to
a distribution. This allows us to avoid the problem of determining a dis-
cretization of the real number line. The encoding length is a KL-divergence
between the chosen distribution and the prior. In the case of the Gaussian
family, the encoding length is analytic and easy to compute.
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