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1 Introduction

Consider the problem of encoding parameters as described in [2]. Our overall
goal is to encode the labels of documents from training data for a text
classification problem. We encode the labels in two parts: (1) the parameters
of our model, and (2) the labels given the knowledge of the model. We choose
to encode the parameters stochastically. Instead of chosing an exact value,
we choose a distribution and transmit a random value by drawing from
the selected distribution. By the “bits-back” argument, our net expected
encoding length is the KL-divergence between the selected distribution and
a prior distribution. If we use parameterizations of the Gaussian as our
distribution class, the KL-divergence is not only analytic, but simple to
evaluate.

2 The “Bits-back” Argument

Let = be a parameter of our model that we would like to learn. Let X be
the set of values that we may consider using. Let — log p(z) be the encoding
length of value x, where p is a mass function on X. Let ¢ be a second mass
function on X'. Instead of sending a single value, consider randomly drawing
a value according to g. our expected encoding length is

Epg[—logp(x)] = = q(x) log p(w). (1)
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But, since we don’t care exactly what values are transmitted (as long as
they are drawn from ¢), we can transmit additional information to the tune
of H(q) bits. This argument was introduced in [1]. Our net encoding length



is

Ug) =~ 3 ale)logp(e) — H(g) = 3 a(a) log ff—:j @
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We naturally arrive at the KL-divergence as a measure of the encoding
length for the parameter.

3 Continuously Valued Parameters

This argument can be extended to continuously valued sets. We will use the
family of Gaussian distributions as an example. Let X = {..., =24, —4,0,6,24,... },
0 > 0. Let

P = e (-%) 3)

be a mass function on X, where 72 is a parameter, and let — log p(z) be the
encoding length for the value x. Let
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be a second mass function on X where o and 1 are parameters. As discussed

above, if we randomly draw values from ¢, our net expected encoding length
is

l(q) = alx)log %, (5)
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Now, note that as 6 — 0T, we observe the following limits: Zg — \/%,
Zy — \/%, > q(@)r — p, and Y, g(x)z? — p? 4 o2, Hence,
2 .2
lim 1(q) = 71 12 wro =v (7)
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We have arrived at a net encoding length for transmitting values drawn
randomly from a Gaussian distribution. The advantage of this is that we do
not need to worry about selecting a discretization of the real number line.
The variance on the distribution we choose (02) acts as a knob for setting
the precision with which we wish to transmit the parameter.
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4 Summary

We have used the “bits-back” argument, introduced by [1], to argue that a
continuously valued parameter can be encoded in a finite number of bits. We
make use of stochastic encoding—randomly choosing the value according to
a distribution. This allows us to avoid the problem of determining a dis-
cretization of the real number line. The encoding length is a KL-divergence
between the chosen distribution and the prior. In the case of the Gaussian
family, the encoding length is analytic and easy to compute.
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