Relating the Trace and Frobenius Matrix Norms

Jason D. M. Rennie jrennie@gmail.com

August 31, 2005

Among other things, Srebro [1] discusses two matrix norms: the trace norm and the Frobenius norm. The trace norm of a matrix X is defined as the L_1 norm of the singular values of X. Let $X = U\Lambda V^T$ be the singular value decomposition of X, and let $\vec{\lambda} = \text{diag}(\Lambda)$ be the vector of singular values (the diagonal entries of Λ). Then,

$$||X||_{\rm tr} = ||\vec{\lambda}||_1 = \sum_i |\lambda_i|.$$
(1)

The Frobenius norm of a matrix X is the L_2 norm of the vector of singular values,

$$||X||_{\text{Fro}} = ||\vec{\lambda}||_2 = \sqrt{\sum_i \lambda_i^2}.$$
 (2)

Srebro states the following Lemma,

Lemma 1 For any matrix X, $||X||_{Fro} \leq ||X||_{tr} \leq \sqrt{\operatorname{rank}X} ||X||_{Fro}$, where $\operatorname{rank}(X)$ is the number of non-zero singular values of X.

A brief proof is given. We find the proof satisfactory for establishing the left inequality, but feel that additional explanation is helpful for establishing the right inequality.

Consider a matrix X with rank X = k > 0 and $||X||_{tr} = t$. Now consider finding the length k vector, \vec{x} , with $\sum_i x_i = t$ such that the L_2 norm is minimized. We show that the minimum such vector, \vec{y} , has $y_i = t/k \forall i$. Consider any vector \vec{x} that satisfies the constraints. Then \vec{y} is a convex combination of permutations of \vec{x} . As $f(x) = x^2$ is a concave function, $||\vec{x}||_2 \ge ||\vec{y}||_2$. Note that $||\vec{y}||_2 = t/\sqrt{k}$. Hence, $||\vec{\lambda}||_1 \le ||\vec{\lambda}||_2 \sqrt{\operatorname{rank} X}$.

References

 N. Srebro. Learning with Matrix Factorizations. PhD thesis, Massachusetts Institute of Technology, 2004.