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ABSTRACT

In this paper we describe our recent efforts to improve acoustic-
phonetic modeling by developing sets of heterogeneous, phone-
class-specific measurements, and combining these diverse mea-
surements into a probabilistic classification framework. We
first describe a baseline classifier using homogeneous measure-
ments. After comparing selected sub-tasks to known human
performance, we define sets of phone-class-specific measure-
ments which improve within-class classification performance.
Subsequently, we combine these heterogeneous measurements
into an overall context-independent classification framework.
We report on a series of phonetic classification experiments us-
ing the TIMIT acoustic-phonetic corpus. Our overall frame-
work achieves 79.0% accuracy on the NIST core test set.

1. INTRODUCTION

Over the past several years, our group has pursued a segment-
based approach to speech recognition. One of the potential ad-
vantages of this approach over conventional frame-based meth-
ods is that it provides more flexibility in choosingwhatacoustic
attributes to extract, andwhereto extract them from the speech
signal. We believe such flexibility will be necessary to take full
advantage of the acoustic-phonetic information encoded in the
speech signal. To date we have used homogeneous feature vec-
tors to represent the acoustic-phonetic information needed to
discriminate among all sounds. Although this framework has
worked well, obtaining good phonetic classification and recog-
nition results [1, 4, 9], our recent work indicates that further
gains can be obtained by incorporating heterogeneous, phone-
class-specific measurements into our framework. There are at
least two potential advantages to this approach. First, hetero-
geneous measurements provide the opportunity to develop di-
verse measurements which focus on the phonetically relevant
information for discriminating among the sounds in a particu-
lar phone class. Second, heterogeneous measurements permit
the removal of dimensions that are unnecessary in a particular
phone class, thus making better use of the training data and re-
ducing the computation required for classification.

There are two major challenges involved in implementing this
strategy. First, measurement sets which provide within-phone-
class improvements in phonetic classification must be devel-
oped. Second, the use of these heterogeneous measurements
must be combined into an overall classification framework. We
address both of these problems in this paper.

1This research was supported by DARPA under contract N66001-
94-C-6040, monitored through Naval Command, Control and Ocean
Surveillance Center.

2. TASK, CORPUS, AND CLASSIFIER

Unlike phonetic recognition, the task of phonetic classification
makes use of an externally provided segmentation of the speech
signal, thus eliminating any possibility of deletion or insertion
errors. The classification experiments reported in this paper are
context-independent (one model per phone), although the fea-
ture measurements were allowed to draw information from out-
side the boundaries of the current speech segment.

All experiments were conducted using the TIMIT acoustic-
phonetic corpus [6]. In accordance with common practice [8],
we collapsed the 61 TIMIT labels into 39 labels before scoring
and we ignored glottal stops. For the experiments in this pa-
per, we make reference to the manner classes of vowels/semi-
vowels (VS), nasals/flaps (NF), stops (ST), weak fricatives
(WF), strong fricatives (SF), and closures/silence (CL). Table 1
indicates the mapping to 39 phone classes and the manner label
of each class.

We used the standard NIST 462 speaker training set, and 24
speaker core test set for final testing. An independent set of
50 speakers was used for system development. For purposes of
significance testing by McNemar’s test [3], we also evaluated
classification performance on a test set of 118 speakers, which
was the full NIST 168 speaker test set minus our development
set. Note that there is no overlap of speakers between any of the
sets, and the training set has different sentences from the devel-
opment and test sets. Table 2 indicates the number of tokens in
the data sets on a class-by-class basis.

A mixture Gaussian classifier was used for all experiments,
which made use of phone priors from the training data (e.g., a
phone unigram). Normalization and principal component anal-
ysis were performed to whiten the feature space. For each trial
of model training, a maximum of 12 full-covariance Gaussian
kernels were allowed per phone. The mixture kernels were
seeded via randomly initialized K-means clustering and trained
using the EM algorithm. The number of mixtures was selected
to achieve a minimum of approximately 500 tokens per kernel.
Multiple trials of model training were performed and combined
to produce more robust mixture models.

3. BASELINE CLASSIFIER

A baseline classifier was first established using homogeneous
measurements. This measurement set reflects previous classifi-
cation work [1] in our group.

After preemphasis and DC-offset removal, a short-time Fourier
transform (STFT) analysis was performed every 5 ms using a
20.5 ms Hamming window. The STFT was converted to a set of
40 Mel-frequency spectral coefficients, which were then trans-
formed to 12 Mel-frequency cepstral coefficients (MFCC’s)
using a cosine transform. A 61-dimensional homogeneous
measurement vector was calculated for each phonetically la-
beled segment in the TIMIT transcriptions. The measurement
vector consisted of three MFCC averages computed approxi-
mately over segment thirds (actually in a 3–4–3 proportion),



1 iy VS 2 ih ix VS 3 eh VS
4 ae VS 5 ah ax ax-h VS 6 uw ux VS
7 uh VS 8 aa ao VS 9 ey VS
10 ay VS 11 oy VS 12 aw VS
13 ow VS 14 er axr VS 15 l el VS
16 r VS 17 w VS 18 y VS
19 m em NF 20 n en nx NF 21 ng eng NF
22 dx NF 23 jh SF 24 ch SF
25 z SF 26 s SF 27 sh zh SF
28 hh hv WF 29 v WF 30 f WF
31 dh WF 32 th WF 33 b ST
34 p ST 35 d ST 36 t ST
37 g ST 38 k ST
39 bcl pcl dcl tcl gcl kcl epi pau h#, CL

Table 1: 39 phone classes from [8], and manner class membership.

# of tokens in set
Task Train Dev Test Core
Overall 140,225 15,057 35,697 7,215
Vowel/Semivowel 58,840 6,522 15,387 3,096
Nasal/Flap 14,176 1,502 3,566 731
Stop 16,134 1,685 4,022 799
Fric/Clos/Sil 51,075 5,348 12,722 2,589

Table 2: Number of tokens in each data set, ignoring glottal stops.

two MFCC derivatives computed over a time window of 40 ms
centered at the segment beginning and end, and log duration.

This baseline configuration achieved classification accuracies
of 78.9% and 78.4% on the development and core test sets, re-
spectively. These results compare favorably with others previ-
ously reported in the literature [5, 9, 11, 13]. Figure 1 shows
a bubble plot of the baseline classifier confusion matrix on the
development set. Nearly 80% of the confusions occur by choos-
ing an alternative in the correct manner class. Another 7% oc-
cur due to confusions involving the closure/silence class. This
analysis suggested to us that if we could reduce the confusions
within each manner class using class-specific measurements,
then overall accuracy would also improve.

4. HUMAN VS MACHINE

Although we were able to achieve good performance on pho-
netic classification with our baseline classifier, we were inter-
ested to understand how machine performance compared with
humans at the same task. For this purpose, we made use of
previously reported perceptual studies concerning human clas-
sification performance using the TIMIT corpus. We examine
the sub-tasks of vowel and stop classification below.

Cole and Methusamy [2] have performed perceptual studies on
vowels excised from TIMIT. For this study, 16 vowel labels
from TIMIT were selected, and 168 tokens of each were ex-
tracted, for a total of 2688 tokens. The 16 vowels for this study
were /iy ih ey eh ae er ah ax aa ao uh uw ow aw ay oy/, or in
IPA symbols, [iy * ey

� æ� � � � = V uw ow
�
w
�

y oy]. The
results indicated that vowels presented in isolation were iden-
tified with 54.8% accuracy, while vowels presented with one
segment of context were identified with 65.9% accuracy. Our
baseline classifier obtains 69.8% accuracy on the development
set in this 16-way vowel identification task. Although the test
sets are not exactly the same, this result indicates that humans
and machines are performing about equally well in this task.

Lamel [7] has reported on perception of stop consonants ex-
tracted from TIMIT. The results are broken down according
to context. We will consider three phonetic contexts, namely
syllable-initial stops in a vowel-stop-vowel sequence, vowel-
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Figure 1: Baseline classifier confusions, with radii linearly propor-
tional to the error. The largest bubble is 5.2% of the total error.

Error Rate
Phonetic Human Machine Increase
Context Error (%) Error (%) Factor
V–S–V 3.4 11.3 3.3
V–F–S–V 12.2 32.9 2.7
V–N–S–V 7.6 18.7 2.5

Table 3: Human vs machine stop classification.

fricative-stop-vowel sequences, and non-syllable-initial stops
in homorganic nasal clusters. Only short speech segments of
three phones (V–S–V) or four phones (V–F–S–V and V–N–S–
V) were presented to the listener. These sequences were some-
times across word boundaries, so listeners could not use lexical,
syntactic, or semantic information. We obtained a list of the
testing tokens so that we could use the same set. We trained our
classifier on speakers that were not in the test set under consid-
eration to ensure that the system remains speaker-independent.
Our system was trained on stops from all contexts, so it provides
a context-independent result.

Table 3 summarizes the results. For syllable-initial single-
ton stops followed by a vowel, Lamel reports that human
listeners achieved 3.4% error. The machine classifier per-
formed more than three times worse, obtaining 11.3% error.
For vowel-fricative-stop-vowel sequences, human listeners ob-
tained 12.2% error, while the machine classification performed
more than two and a half times worse, obtaining 32.9% error.
For non-syllable-initial stops in homorganic nasal clusters, hu-
man listeners obtained 7.6% error on TIMIT tokens, while the
machine obtained 18.7% error. Thus, the machines performed
about two and a half times worse.

These results indicated that for stop consonants, there is a
significant amount of low-level acoustic phonetic information
which the automatic classifier is not effectively extracting. This
experimental outcome is consistent with results in the litera-
ture comparing human and machine performance in a variety of
speech recognition tasks [10]. These results also motivated our
attempts to extract more low-level acoustic-phonetic informa-
tion from the speech signal through the use of heterogeneous
measurements.



5. HETEROGENEOUS FEATURES

Analysis of our classification systems showed that the within-
phone-class performance was dependent on the time-frequency
resolution of the Fourier analysis. Furthermore, the optimal
settings for individual phone-classes differed substantially. For
example, experiments with an earlier system showed that stop
classification was optimized with increased time resolution,
whereas the nasal consonants preferred decreased time resolu-
tion, as indicated in Figure 2. Therefore, when a single Ham-
ming window duration is chosen, it is a compromise among the
conditions that are favorable in different phone classes. This
observation provided evidence for the hypothesis that a het-
erogeneous feature space could offer improvements in over-
all classification accuracy. In addition, as we noted in Fig-
ure 1, most phonetic confusions occur within the correct man-
ner class. As a result, we have chosen initially to determine
heterogeneous measurements to improve within-manner-class
classification accuracies. In the current work we combined the
three manner classes of weak fricatives, strong fricatives, and
closures into a single class. In the following paragraphs we
describe phone-class-specific measurements and report within-
class classification accuracies on the development set. We com-
pare the performance of these measurements to the baseline and
also report the McNemar significance level of the difference.

For vowel/semivowel measurements, we used 62 dimensions.
The first 60 dimensions were calculated as in [13]. These in-
volve calculation of MFCC-like frame-based measurements,
followed by a cosine transform in the time dimension to en-
code the trajectories of the frame-based features. The use of
a tapered, fixed length (300ms) window in the cosine trans-
form results in capturing some contextual information which
can be modeled in an unsupervised manner through the mix-
tures in the Gaussian models. In addition to these 60 measure-
ments, duration and average pitch were also included for a total
of 62 measurements. The pitch measurement was calculated
using a cepstral-based method. These measurements resulted
in a vowel/semi-vowel accuracy of 74.3% on the development
set, which improves upon the 73.1% (0.02 significance level)
obtained by the baseline system, and is competitive with previ-
ously reported results [11].

For nasals, baseline measurements were altered by changing the
Hamming window duration to 28.5 ms and adding a measure of
average pitch, giving a total of 62 measurements per segment.
These nasal-optimized measurements achieved 85.2% on the
development set, compared to 83.4% obtained by the baseline
system (0.001 significance level).

In our stop classification experiments, we increased the time
resolution by using a 10 ms Hamming window, and used a 50
dimensional feature vector, composed of MFCC averages over
halves of the segment (24 dimensions), time-derivatives of the
MFCC tracks at the segment boundaries and at the start of the
previous segment (24 dimensions), a measure of low-frequency
energy in the previous segment (1 dimension), and log duration.
We found that averaging over halves of the segment instead of
thirds did not cause a drop in performance for the stops. Due to
smaller dimensionality (50 dimensions), we adjusted the classi-
fier by lowering the minimum number of tokens per Gaussian
kernel from 500 to 300. In a six-way stop classification task,
these measurements obtained 83.4% on the development set,
compared to 79.6% for the baseline (10�4 significance level),
and compare favorably to previously reported results [12].

For fricatives and closures, a 26.5 ms Hamming window was
used for frame-based calculations. Time derivatives of only 11
MFCC’s (instead of 12) were extracted at the segment bound-
aries. Three new measurements were added: the zero-crossing
rate, the total energy of the entire segment (which is similar but
not the same as the information in the first MFCC coefficient),
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Figure 2: Comparison of within-class stop and nasal classification
as a function of Hamming window duration. The vertical bars show
one standard deviation in the performance calculated over five trials of
mixture model training.

and a time derivative of the low frequency energy at the be-
ginning of the segment. This 62-dimensional measurement set
obtained 91.2% on the development set, compared to 90.9% for
the baseline (0.1 significance level).

6. OVERALL FRAMEWORKS

The second major challenge which must be addressed in order
to use heterogeneous measurements is to define a framework
for overall classification which makes use of these diverse mea-
surements. The goal of phonetic classification is to determine
the most probable phone,��, given the acoustic feature vector
f . We can expand the decoding procedure over a set of phone
classesCi according to the expression

�� = argmax
�

P (�jf) = argmax
�

X

i

P (�jCi; f)P (Cijf):

If each phone belongs to only one class, as is the case in this
paper, then the summation overi becomes trivial since for each
phone there is only onei such thatP (�jCi; f) is nonzero.

In these expressions,f represents all of the measurements that
might be used by the system. Thus, each set of heterogeneous
measurements is a subset off . In fact, we can cast the above de-
coding as a hierarchical process [1]. Thus, at level zero, a single
measurement setf (0) � f is used to determine the probability
of membership in classj at level one, that is

P (C
(1)
j jf) � P (C

(1)
j jf (0)):

In this expression we have decided to approximateP (C
(1)
j jf)

by P (C
(1)
j jf (0)) based on practical considerations, such as

problems with high classifier dimensionality and superfluous
measurement dimensions. These considerations led us to the
assumption that each class probability can be more accurately
estimated in practice using a subset of the features contained
in f . This assumption does not necessarily hold from a purely
theoretical standpoint, where issues stemming from finite train-
ing data can be ignored. Continuing at level one, the feature set
used to determine the conditional probability of level two class
membership can depend upon the conditioning level one class
index,j. We indicate the feature set dependence onj using the
notationf (1)j . Thus the conditional probability of level two class
membership is obtained using the approximation

P (C
(2)
i jC

(1)
j ; f) � P (C

(2)
i jC

(1)
j ; f

(1)
j ):



Using this notation and the above approximations, our previous
decoding equation becomes

argmax
i

X

j

P (C
(2)
i jC

(1)
j ; f

(1)
j )P (C

(1)
j jf (0)):

This process can be iterated to as many stages as desired. In
the present implementation, the level two classesC

(2)
i are the

individual phones, so no further iteration is required. This
MAP framework for combining heterogeneous measurements
achieved 80.0% on the development set compared to 78.9 for
the baseline (10�5 significance level), and was also used for
final testing on the NIST core set to obtain 79.0%. When com-
pared to the NIST core baseline of 78.4%, the significance level
was0:16. However, we suspected that the small size of the core
set made significance testing somewhat coarse. Therefore, we
also compared the baseline and heterogeneous framework re-
sults on the 118 speaker test set, which includes all data not
in the training or development sets, with results summarized in
Table 4. The overall results of 78.4% and 79.0% were the same
as for the core set, but with better significance levels. These re-
sults confirm that heterogeneous measurements are producing
significant improvements on independent testing data.

The above MAP framework allows for some interaction be-
tween the scores at different levels. Alternatively, we have im-
plemented a strict framework in which the first classifier makes
a hard decision about the level one class membership. This
strict framework also achieved 80.0% on the development set,
and fewer than 1% of the testing tokens were classified differ-
ently from the MAP framework. The strict framework requires
the computation of only one level one feature setf

(1)
j for each

segment, which provides an opportunity for computational sav-
ings compared to the MAP framework. This strict framework
can be thought of as a strategy for pruning the full MAP frame-
work, and other pruning strategies could also be devised which
save computation with minimal effect on performance [1].

7. CONCLUSIONS

These experiments demonstrate the viability of using heteroge-
neous, phone-class-specific measurements to improve the per-
formance of acoustic-phonetic modeling techniques. We have
obtained preliminary solutions for handling the two challenges
of developing diverse features to improve classification accu-
racy and having a framework to combine the features into an
overall system. Our final results of 79.0% on the core test set
compare favorably to results in the literature. Zahorian [13] re-
ports 77.0% on the core test set, while Leung et al. [9] report
78.0% on a different test set.

The design of a feature extraction mechanism for pattern classi-
fication frequently leads to a tradeoff between retaining as much
relevant information as possible while at the same time avoid-
ing unmanageably high classifier dimensionality. Our studies of
human/machine comparisons make us believe that conventional
measurement extraction procedures err on the side of ignoring
relevant phonetic information in order to streamline the clas-
sifier. The heterogeneous frameworks proposed in this paper
provide an alternative way to deal with this tradeoff. In fact,
the final classifier successfully manages to make use of 290 dif-
ferent measurements for each proposed segment. In addition,
it is important to recognize that conventional measurement ex-
traction procedures which are optimized over all phones tend
to settle on a compromise among the measurements that are
best in different phone classes. It is not clear if heterogeneous
features will ultimately outperform homogeneous features for
typical speech recognition tasks. For example, if the modeling
difficulties and computational burden could be overcome, it is
likely that using all the measurements proposed in this paper

Task Baseline HeterogeneousSignificance
Overall 78.4 79.0 0.001
Vowel/Semivowel 72.2 72.7 0.18
Nasal/Flap 83.5 84.6 0.004
Stop 80.4 82.1 0.002
Fric/Clos/Sil 90.9 91.2 0.06

Table 4: Classification accuracies on the 118 speaker test set.

jointly in a single classifier would match or exceed the perfor-
mance achieved here using a hierarchy of multiple classifiers.
However, this line of investigation has generally not been taken
because of the difficulties which surround it.

In future work, we plan to search for other sets of measure-
ments which improve within-class classification performance,
and to use different partitions of the phones into classes. We
would like to explore alternative methods of combining hetero-
geneous measurements and multiple classifiers. In addition, we
plan to develop techniques for using these phone-class-specific
measurements in phonetic recognition and word recognition.

We would like to thank Lori Lamel for providing us with to-
ken lists from her stop perception experiments. We would like
to thank T.J. Hazen and Kenney Ng for ideas and discussion
regarding robust training procedures.

8. REFERENCES
[1] R. T. Chun.A Hierarchical Feature Representation for Phonetic

Classification. M.Eng. thesis, Department of Electrical Engi-
neering and Computer Science, Massachusetts Institute of Tech-
nology, Cambridge, March 1996.

[2] R. A. Cole and Y. K. Methusamy. Perceptual studies on vowels
excised from continuous speech. InICSLP, pages 1091–1094,
Banff, Canada, October 1992.

[3] L. Gillick and S.J. Cox. Some statistical issues in the comparison
of speech recognition algorithms. InICASSP, pages 532–535,
Glasgow, Scotland, May 1989.

[4] J. Glass, J. Chang, and M. McCandless. A probabilistic frame-
work for feature-based speech recognition. InICSLP, pages
2277–2280, Philadelphia, October 1996.

[5] W. D. Goldenthal. Statistical Trajectory models for Phonetic
Recognition. Ph.D. thesis, Department of Aeronautics and As-
tronautics, Massachusetts Institute of Technology, Cambridge,
September 1994.

[6] L. Lamel, R. Kassel, and S. Seneff. Speech database develop-
ment: Design and analysis of the acoustic-phonetic corpus. In
Proc. of the DARPA Speech Recognition Workshop, Palo Alto,
February 1986. Report No. SAIC-86/1546.

[7] L. F. Lamel. Formalizing Knowledge used in Spectrogram Read-
ing: Acoustic and Perceptual Evidence from Stops. Ph.D. the-
sis, Department of Electrical and Computer Engineering, Mas-
sachusetts Institute of Technology, Cambridge, May 1988.

[8] K. F. Lee and H. W. Hon. Speaker-independent phone recogni-
tion using hidden Markov models.IEEE Trans. Acoust., Speech,
Signal Processing, 37(11):1641–1648, November 1989.

[9] H. Leung, B. Chigier, and J. Glass. A comparative study of signal
representations and classification techniques for speech recogni-
tion. In ICASSP, pages 680–683, Minneapolis, April 1993.

[10] R. P. Lippmann. Speech perception by humans and machines. In
Proc. of the ESCA Workshop on the “Auditory Basis of Speech
Perception”, pages 309–316, Keele University, U. K., July 1996.

[11] P. Schmid.Explicit N-best Formant Features for Segment-Based
Speech Recognition. Ph.D. thesis, Department of Computer Sci-
ence and Engineering, Oregon Graduate Institute of Science and
Technology, Portland, October 1996.

[12] X. Wang, S. A. Zahorian, and S. Auberg. Analysis of speech
segments using variable spectral/temporal resolution. InICSLP,
pages 1221–1224, Philadelphia, October 1996.

[13] S. A. Zahorian, P. Silsbee, and X. Wang. Phone classification
with segmental features and a binary-pair partitioned neural net-
work classifier. InICASSP, pages 1011–1014, Munich, Ger-
many, April 1997.


