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ABSTRACT ture vector employed by HMM-based recognizers funda-

The use of segment-based features and segmentation neff€ntally limits the range of acoustic models that can be ex-
works in a segment-based speech recognizer complicate?'ored for encoding acoustic-phonetic mfo'rmatlo'n. While
the probabilistic modeling because it alters the sample spacdnany research groups have focused on improving frame-
of all possible segmentation paths and the feature observaP@s€d HMM ASR systems, some groups have tried to avoid
tion space. This paper describes a novel Baum-Welch train-this limitation by constructing segment-based ASR systems
ing algorithm for segment-based speech recognition which[3: 5, 10].

addresses these issues by an innovative use of finite-state The acoustic models in a segment-based ASR system
transducers. This procedure has the desirable property ofnodel a sequence of feature vectors computed on time in-
not requiring initial seed models that were needed by the tervals that are not necessarily equal. The segment-based
Viterbi training procedure we have used previously. On the ASR system developed in our group, themmIT system,
PhoneBook telephone-based corpus of read, isolated wordsuses two different types of feature vectors, nanselgment

the Baum-Welch training algorithm obtained a relative er- featuresandlandmark feature¢6]. The segment features
ror reduction of 37% on the training set and a relative er- are computed from the portion of the speech waveform be-
ror reduction of 5% on the test set, compared to Viterbi 10nging to a hypothesized phonetic segment, and the land-
trained models. When combined with a duration model, mark features are computed from fixed-size waveform in-
and more flexible Segmentation network, the Baum-Welch tervals centered at landmarks. The landmark feature frame-
trained models obtain an overall word error rate of 7.6%, work is motivated by the belief that acoustic cues important

which is the best result we have seen published for the 8,00000r phonetic classification are located at acoustic landmarks
word task. corresponding to oral closure (or release) or other points of

maximal constriction (or opening) in the vocal tract [13].
The segment feature framework promotes flexible modeling
of phonetic segments without the conditional independence

The use of mathematically rigorous hidden Markov models 2SSumption imposed by HMMs. BuMmIT, the segment
(HMMs) has in part contributed to the dramatic improve- features and landmark features can be used jointly or sepa-
ment in automatic speech recognition (ASR) over the last "at€lY- . _
two decades. The acoustic models in HMM ASR systems .TheSUMMIT segment_—based recognizer consists of two
model a temporal sequence of feature vectors computed af&jor components. The first component proposes segments,
a fixed frame-rate, most commonly at 10ms/frame. Since and the second models the acoustic observations on the seg-
the duration of a typical phone can vary from 20ms to over Ments. A segment-based ASR system either implicitly or
200ms, the number of fixed frame-rate feature vectors with- €xplicitly hypothesizes segmentations of the speech wave-
in the same phonetic segment is usually much greater tharfOrm, althoughsummiT typically uses explicit segmenta-
one. These feature vectors within the same phonetic segion, especially for real-time performance. It is worth not-
ment are typically highly correlated. However, HMMs have ing that the first component does not simply hypothesize a
an inherent conditional independence assumption on the obSingle sequence of non-overlapping segments; rather it pro-
servation feature vectors. Thus, the fixed frame-rate fea-duces a segment network, which allows a set of segmenta-
- - 4 b DARPA und N6600L.96.1 tion sequences to be encoded. The use of a segment network
IS researcn was SUppOrte y under contract -99-1- H .
8904 monitored through Naval Command, Control and Ocean Surveillance redU(.:es the.accuracy requirement on the first component,
Center, by the NSF under award 9872995-1483, and by the Spoken Lan-tUS increasing the robustness of the overall segment-based
guage Systems Group Affiliates Program. system. Frame-based HMM ASR systems do not generate a
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segment network. The frame-based approach can be viewedptimal word sequence. Eq. 1 becomes:
as using an implicit fully-connected segment network.

ThesumMmIT recognizer also deploys a probabilistic de- W* = arg max Z P(S,U,W,0)
coding strategy. For conventional speech recognizers, the vS,0
Baum-Welch training algorithm has been shown to have a ~ arg max P(S,U,W,0) )
smoother convergence property than the Viterbi training, S,;UW

currently used by some segment-based systems. The use Qlthe approximation n Eq. 2 is commonly known as the “Vi-
segment-based features and segmentation networks compli- ' y

cates the probabilistic modeling because it alters the sampleger%' apprOX|m3t!o?. tk;l’hfe expressudﬁ(S, U,W,0) can
space of all possible segmentation paths and the feature oo € Gecomposedinto the form-

servation space. Viterbi-based training avoids these compli- P(§ 7. 5)
cations by only learning from the single best forced align- L
ment for a given initial model. This paper describes a novel = P(O|S, U, W)P(S|U,W)PUIW)P(W). (3)

Baum-Welch training algorithm for segment-based speech
recognition, which addresses these complications by an in-
novative usage of the finite state transducer. It is important
to note that Baum-Welch training was used for the segment- g o A 213\ oy ST DT o

I . P(S,U,W,0) = P(O|S)P(S|U)P(UW)P(W). (4
based recognition systems in [3, 10]; however these sys- ( ) (OIS)PSIU)PUIWIPW). (4)
tems do not have the same difficulties from their feature P((3|§) is the usual acoustic model. The temgw) is

vectors and segmentation network. In these studies the feag,q weighted mapping between the sequences of sub-word

ture vectors are uniformly sampled, as in a typical frame- its to sequences of sub-phone units. The t&( |17

based recognition system. The segmentation networks argjescribes the sequences of sub-word units that can be gener-

also similar to those of a frame-based system, an implicit 510 for a given word sequence, typically accomplished by

fully-connected segment network. a dictionary lookup table and phonological rules to model
In the following sections we first describe the proba- systematic phonological variations in fluent speeEhW)

bilistic formulation used for segment-based ASR, and then is the language model.

describe the Baum-Welch training procedure we have de-  In the summIT segment-based speech recognition sys-

veloped that accounts for the constrained segmental searckem [17], various constraints such as the acoustic model,

space. We then report experimental results obtained on thed, model topologyM, context dependency;, phonolog-

PhoneBook telephone-based corpus of read, isolated wordsical rules [8], P, lexicon, L, and language modely, are

where we compare the Baum-Welch training against the all represented by weighted finite-state transducers (FSTs).

Viterbi training procedure we have used previously. Finally, With these FSTs, the joint probability in the right hand side

we discuss benefits and trade-offs between Viterbi training of Eq. 4 has an FST equivalent,

and Baum-Welch training for segment-based ASR and de- L . o .

scribe our future plans for improving both segment-based P(O|S) - P(S|U) - P(U|W) - P(W)

and frame-based recognition. T T T T )

A o M o(CoPoL)o G

With apQroL)rigte gonditional independence assumptions, the
termP(S,U, W, O) becomes,

2. PROBABILISTIC FOUNDATION OF

SEGMENT-BASED ASR The.recognition problem of Eg. 2 is thus convertgd to
the equivalent problem of searching for the best path in
. . o i MoCoPoLoG.
In the typical formulation, the goal of recognition is to find A natural question to ask is “where is the segment net-
the sequence of word&™ = Iy, ..., Wy which givesthe \yqri constraint in Eq. 57" It is actually hidden inside the
maximum a posteriori probability given the acoustic obser- st FST A In this case, the sequences of sub-phone states,
vationsO, that is: S, contain phonetic or even syllabic landmarks. The set

of mappings between sequences of observation vectors and
W* = argmax P(W|0) = argmax P(W,0), (1)  the sub-phone state sequences encodet is limited by
w w the segment network. With the segment network constraint,
the FSTA is less “bushy” than without. The FS4 can be
whereW ranges over all possible word sequences. In mostthought of as the composition of two FSTsg 0 Aj,, where
ASR systems, a sequence of sub-word uritsand a se-  the FSTAg represents the segment network constraint with
guence of sub-phone state®, are decoded along with the the output symbol “#p” for marking phonetic boundaries,



and the FSTA,, simply translates the output symbol “M”  Viterbi training [12, 6]. In Viterbi training, each observa-
into the set of all possible sub-phone states. Figure 2 showdion is assigned to singleacoustic model. For most HMM-
a sample segment network, and its corresponding FST repbased speech systems, the acoustic models are trained with

resentations for landmark featureks. Baum-Welch training, in which each observation is assigned
to asetof acoustic models with weights [12]. Only a por-
2.1. Landmark Models tion of each observation, equal to its posterior probability, is

i associated with each model. Many studies have found that
The segment-based landmark modelsimmIT are agen-  for HMM-based systems, the Baum-Welch trained acous-
eralized version of those in a frame-based HMM ASR sys- tic models outperform Viterbi-trained ones. However, it is

tem. The two systems differ in three aspects. First, the 0b-pot known whether Baum-Welch training of segment-based
servation feature vector for landmark models is not limited 5.,stic models would improve recognition performance.

to a fixed frame-rate feature vector, but is rather sampled  The newly proposed Baum-Welch training of segment-

non-uniformly. Whether uniformly sampled or not, itis im- 554 acoustic models consists of two steps. First, the “ex-

portant to note tha'F in both systems a}ll the input sequencesyectation” step (or E step) computes the posterior probabil-
are the same on different segmentation paths. Second, thg;ag va(i) defined as:

segment network in segment-based systems constrains the
search space, whereas HMM-based system do not. The seg- Yul(i) = P(g, = i|0,\) Vi=1,2, . (6)
ment network constraints can be relaxed to produce a fully-
connected network like the one used by HMMs. Third, the where the random variablg, is equal to integei when
model topology FSTM currently used bysuMMIT is dif- the observatior0,, belongs to the*” acoustic model(O
ferent from that of an HMM, as illustrated in Figure 1. In is a sequence oV observations{O;,Os,...,On}, A is
summary, the segment-basedMmIT ASR system imple-  the parameter set for the current acoustic models, Zind
mented with FSTs is a very flexible framework. It can be is the number of acoustic models. The posterigr(i), is
easily configured to implement an HMM by appropriately the probability that the:* observation belongs to th&"
altering the FSTsds and M, and the observation feature acoustic model. The acoustic model in this case is the land-
vectorsO. mark model. Second, the “maximization” step (or M step)
trains observation probability density functions (PDFs) with
i(0):€ the posterior-weighted observations for every acoustic model.

In the following sections, we will describe the details of
@ t(alb):alb @ these two steps.

3.1. Computation of the Posterior Probabilities

K

cey

@)

To compute the posterior probabilities, we employ the stan-
dard equation using the forward probability, (i), and back-
ward probability,5,, (i),

. o (%) Bn (i
(i) = #’ (7)
Zi:l an/(z)ﬁn(l)
whereq,, (i) andg, (i) are defined as,
(b)
Oén(i) :P(OlOg...On,qn :i|/\), (8)
Fig. 1. lllustration of the model topology FSTH . (a) is N — P(O. 1O 0 — i 9
used by the currersummIT landmark features, and (b) is Bn(i) = P(On410ns2..- Onlan =0, ) (9)
for a 3-state HMM with skip transitions. In HMM-based ASR systems, there is no segment network
which constrains the mapping between feature observations
and acoustic models. However, in a segment-based ASR
system, the segment netwodoesconstrain the possible
3. BAUM-WELCH TRAINING OF mappings between observations and acoustic models. This
SEGMENT-BASED ACOUSTIC MODELS segment network constraint needs to be taken into account
when computing thev, (i) and 3, (i) variables. This is
Currently, the segment-based acoustic modelsurmiIT the key difference between Baum-Welch training for HMM

are trained with a procedure called segmental K-means, ormodels and segment-based models.
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Fig. 2. lllustration of a sample segment network and its corresponding FST representation. Here only the EShown
since FSTA ), simply translates the input symbdl'b, Ms, Mh into the set of all possible sub-phone states. The segment
network in (a) contains four phonetic segments with four landmark feature veétorg,2, 1.3, and L4, and four segment
feature vectorsS1, 52, S3, andS4. The feature vectordy'l, F2, ..., '8 are the corresponding fixed frame-rate feature
vectors using by HMMs. (b) shows the corresponding F&sTfor landmark features with two identical input sequences,
L1L2L3L4,andthe symbal/b represents the set of all landmark models. The syspalenotes phone landmark locations.
(c) shows the corresponding FSTls for a frame-based HMM. Since the symb#p in (c) does not provide any constraint,
the size of the correspondinj= Ag o Ay, is typically bigger than that of segment-based models in (b).

Given a sequence of observatiofsand its correspond-
ing segment networkS, one can construct an FSA, that

hand side of Eq. 10 is an acceptor for the (possibly infinite)
sequences of sub-phone units implied by the word sequence,

specifies all possible mappings between each observation|V’. They are then mapped to acoustic observations by FST

O;, and each state variablg. This is done in two steps.
We first convert the segment network,into its FST rep-
resentationAg, then FSTAg is composed with FST

to form FSTA. Let W be the linear FST representing the
sequence of reference wordd]. An FST, Z, conforming
to the segment network and reference word sequenide

A.

3.2. Train Observation PDFs from Posterior-Weighted
Feature Vectors

The observation PDFs for acoustic models are typically in

can be computed by a sequence of FST operations, namelyye form of Gaussian mixture models (GMMs), because of

Z = Aoprojecti(MoCoPoLoW). (10)

The constraint lattice represented by F&€ncodes all pos-
sible mappings betweef; andq,, given the segment net-
work and reference word sequence.

As described in Sec. 2, FST§ P, andL represent var-
ious other constraints, and the F3T represents the model
topology used by the recognizer. When the E&Ts com-
puted for each tupléS, O, W}, the forward and backward
variablesw,, (7) andj, (i) can be computed on the network
specified byZ. Finally,~,, (i) can be computed from,, (7)
andg, (i) according to Eq. 7. The second term on the right-

their modeling power and their computational efficiency.
The currentsuMMmIT implementation already uses the EM
training of Gaussian mixture models from feature vectors
with unity weights [1, 2]. The EM training of the Gaussian
components can be done via the “split and merge” proce-
dure [16], “k-means” [4], or “model aggregation” [7]. Since
the first step of k-means is a random initialization of the
centroids, the resulting Gaussian mixture models can vary
in performance from different initializations. Experimen-
tally the split and merge procedure matches the best per-
formance of multiple training runs with different k-means
initializations. We have observed consistent WER improve-



ment from using the model aggregation. For this work, only first stage is a recognizer using a reduced phone set [15], the
the split and merge procedure is used. We will explore using requirement of good initialization models limits the types of
model aggregation in the future. reduced phone sets to be a many-to-one mapping of an exist-
To train GMMs from posterior-weighted feature vectors ing recognizer’s phone set. Because Baum-Welch training
instead of unity weighted ones, the training procedure needsdoes not require any pre-trained initial acoustic model, the
to be modified slightly. To complete a Baum-Welch train- set of reduced phone set are not limited. However, Baum-
ing iteration, the update equations needs to simply take theWelch training is slower since it has to iterate through the
posterior probabilities;, (i) weighting into account. training data a number of times. On the PhoneBook task,
Baum-Welch training is about ten times slower than the Vi-

4. EXPERIMENT & DISCUSSION terbi training baseline.

We have experimented the new Baum-Welch training on Training and Test WERs VS. Training lterations
landmark feature observations for the PhoneBook task [11].
The PhoneBook telephone-based corpus consists of read,
isolated words from a vocabulary of close to 8,000 words.
In the baseline systems the landmark models were Viterbi
trained [9]. As defined in [9], we focus on the harder task
of the “large” set containing about 80,000 training utter-
ances and 7,000 test sentences, with a decoding vocabulary
of 8,000 words.

The baseline word error rate (WER) on the training is
4.3%, and on the test is 9.9%. This baseline is with land- LT st
mark acoustic models only. In [9] Livescu et al. also pre- O NG
sented a WER of 8.7% with duration models. Since we are
focused on Baum-Welch training of the landmark models Fig. 3. Training and test WERs as a function of training it-
in this paper, we only compare it with the results of land- erations. The upper curve is the test WERs, and the lower
mark models. Table 1 summarizes the results of WERs of curve is the training WERs. As the training iteration in-

[ Training Method | # Params | Training WER | Test WER | creases, the number of parameters in the aco_usti'c mo.dels
Viterbi T55M 3% 5.9% glso mcreases._T_h_e WE_RS of 100.0% from the first |tera_t|on
Baum-Welch 1.64M 27% 9.4% is from the flat initialization models. After a total of 87 it-
erations, the training WER converges to 2.7%, and the test
Table 1. Word error rates (WER) of segment-based recog- WER converges to 9.4%.
nizer training using Viterbi training and Baum-Welch train-
ing on the training set and test set.

WER (%)

the baseline systems and of Baum-Welch trained models. 5. FUTURE
The Baum-Welch trained acoustic models achieved a rela-
tive error reductions of 37% on training, and a relative error The work reported in this paper summarizes our initial ef-
reductions of 5% on test. The WER improved significantly forts in converting the training process of our segment-based
on training, but on test the improvement was much smaller. speech recognizer to Baum-Welch training. Our initial ef-
Although the WER improvement on the test is small, forts focused on converting the landmark model training.
Baum-Welch training has a desirable advantage over ViterbiPrevious works have shown improved WER performance
training. Viterbi training requires an initial set of acoustic Wwith the combination of landmark models and segment mod-
models for forced alignment of the training data, whereas els [14] and the combination of landmark models and dura-
Baum-Welch training is bootstrapped with flat initialization tion models [9]. Since these models were all Viterbi trained,
models—mixtures with single zero-mean unit-variance Gau-we are optimistic that similar improvements will be achieved
ssian components. The performance of Viterbi trained acou-with Baum-Welch trained models. We therefore plan to ex-
stic models is thus dependent on the quality of the initial tend the Baum-Welch training to the segment models and
models. Since the initial models are typically learned from the duration models. Similar constraint lattices represented
additional data, the implicit training set is arguably bigger by FST Z can be computed for segment and duration fea-
than the stated training set. More seriously however, in tures. We have worked out these problems mathematically,
some cases the initialization required by Viterbi training is and are currently implementing them.
difficult to obtain. For example, when Tang et al. exper- In addition to converting our training procedure to Baum-
imented with a two stage recognition system in which the Welch, we are also exploring the effect of varying the size
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of our segment network, since the effect of the segmenta-[7] T.J. Hazen and A.K. Halberstadt, “Using aggregation to
tion network on the overall recognition system performance improve the performance of mixture Gaussian acous-
is not well understood. For example, with a less constrained  tic models,” inProc. Intl. Conf. on Acoustics, Speech,
segment network, and Viterbi trained duration models, we and Signal Processingeattle, WA, pp. 653—-656, May
achieve a PhoneBook test WER of 7.6%, which we believe 1998.

is the lowest reported result on this task.

Finally, we are ultimately interested in exploring the
benefits of combining frame-based and segment-based acou-
stic modeling. We are currently modifying our recognizer
so it can accommodate a more complicated model topol-
ogy, and so it can decode without a segmentation network.[9] K. Livescu and J. Glass, “Segment-based recognition on
With the completion of these modifications, tee@mmIT the PhoneBook task: initial results and observations on
recognizer will have a common framework for both frame- duration modeling,” irProc. European Conf. on Speech
based and segment-based recognition. The common frame-  Communication and Technolagpalborg, Denmark,
work will enable us to ultimately compare and combine the pp. 1437-1440, Sept. 2001.
frame-based and segment-based systems so that we can in-

vestigate the fusion of the frame-based and the segment{10] M. Ostendorf, V. Digilakis, and O. Kimball, “From
based approaches without lattice re-scoring. HMM'’s to segment models: a unified view of stochastic

modeling for speech recognitiodEEE Trans. Speech
and Audio Processingol. 4, no. 5, pp. 360-378, 1996.

[11] J. Pitrelli, C. Fong, S. Wong, J. Spitz, and H. Le-

[8] I. L. Hetherington, “An efficient implementation of
phonological rules using finite-state transducers,” in
Proc. European Conf. on Speech Communication and
TechnologyAalborg, pp. 1599-1602, Sept. 2001.

6. ACKNOWLEDGMENTS

We would like to thank Karen Livescu for her help in pro- ung, “PhoneBook: A phonetically-rich isolated-word
viding the baseline PhoneBook recognizer and answering ~ (€léphone-speech database,” Rmoc. Intl. Conf. on
many PhoneBook-related questions. Acoustics, Speech, and Signal Processiigtroit,
Michigan, vol. 1, pp. 101-104, May 1995.
7. REFERENCES [12] L. R. Rabiner, A tutprial on hidden Marko.v.models
and selected applications in speech recognitiBngt.
[1] J. Bilmes, “A gentle tutorial on the EM algorithm and its IEEE, vol. 77, pp. 257-286, 1989.
application to parameter estimation for Gaussian mix- [13] K. Stevens, “Applying phonetic knowledge to lexical
ture and hiQden_Markov models,” Tech. Rep. ICSI-TR- access,” irProc. European Conf. on Speech Communi-
97-021, University of Berkeley, 1997. cation and TechnologyMadrid, Spain, pp. 3-11, Sept.

1995.
[2] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maxi-

mum likelihood from incomplete data via the EM algo- [14] N. Stim and I. L. Hetherington and T. J. Hazen and
rithm,” Journal of the Royal Statistical Society, Series E. Sandness and J. R. Glass, “Acoustic modeling im-
B, vol. 39, pp. 1-38, Jun. 1977. provements in a segment-based speech recognizer,” in
IEEE Automatic Speech Recognition and Understand-
[3] V. V. Digilakis, Segment-based stochastic models of ing WorkshopSnowbird, pp. 139-142, Dec. 1999.
spectral dynamics for continuous speech recognition

Ph.D. thesis, Boston University, Jan. 1992. [15] M. Tang, S. Seneff, and V. W. Zue, “Modeling lin-
guistic features in speech recognition,”moc. Euro-
[4] R. Duda and P. HartPattern classification and scene pean Conf. on Speech Communication and Technology
analysis New York, Chichester, Brisbane, Toronto, Geneva, Switzerland, Sept. 2003.
Singapore: John Wiley & Sons, 1973. [16] S. Young, J. Odell, D. Ollason, V. Valtchev, and

P. Woodland, The HTK book Cambridge, UK: Cam-

[5] H. Gish and K. Ng, “Parametric trajectory models for bridge University, 1997,

speech recognition,” iRroc. Intl. Conf. on Spoken Lan-
guage ProcessingPhiladelphia, PA, vol. 1, pp. 466— [17] V. Zue, S. Seneff, J. R. Glass, J. Polifroni, C. Pao,

469, Oct. 1996. T. J. Hazen, and I. L. Hetherington, UBITER A
telephone-based conversational interface for weather
[6] J. R. Glass, “A probabilistic framework for segment- information,” IEEE Trans. on Speech and Audio Pro-
based speech recognitiol@omputer Speech and Lan- cessingvol. 8, no. 1, pp. 100-112, 2000.

guage vol. 17, no. 2-3, pp. 137-152, 2003.



