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ABSTRACT

Articulatory feature models have been proposed in the au-
tomatic speech recognition community as an alternative to
phone-based models of speech. In this paper, we extend this
approach to the visual modality. Specifically, we adapt a re-
cently proposed feature-based model of pronunciation vari-
ation to VSR using a set of visually-salient features. The
model uses a dynamic Bayesian network to represent the
evolution of the feature streams. A bank of SVM feature
classifiers, with outputs converted to likelihoods, provides
input to the DBN. We present preliminary experiments on
an isolated-word VSR task, comparing feature-based and
viseme-based units and studying the effects of modeling
inter-feature asynchrony.

1. INTRODUCTION

Traditionally, visual speech is modeled as a single stream of
contiguous units, each corresponding to a hidden phonetic
state. These units are defined by mapping several visually
similar phonemes to a single viseme. However, a many-to-
one mapping does not always exist, as the appearance of the
mouth during phone production can be heavily influenced
by the surrounding context. This often occurs when articu-
lators not primarily involved in the production of the current
phone evolve asynchronously from the primary articulators.
Figure 1 shows an example of such de-synchronization in a
segment taken from the center of the utterance “promote
birth”. Note that during the /t/ segment, the lips, which
would normally be in a medium-open position, are com-
pletely closed due to the upcoming bilabial phoneme.

One way to capture such variability is by using context-
dependent units. However, visual coarticulation effects such
as the one described above can span three or more phonemes,
requiring a large number of models. This leads to an inef-
ficient use of the training data, and cannot anticipate new
variations. Alternatively, we can break the assumption that
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Fig. 1. Mouth images aligned with the corresponding phoneme sequence.

visemes are the basic building blocks of visual speech and
instead model articulatory events, which we believe are the
more natural visual units.

From the point of view of speech production, each sound
can be described by a unique combination of several artic-
ulator states, or articulatory features (AFs), such as: the
presence or absence of voicing, the position of the tongue
body and tongue tip, the opening between the lips, and so
on. A word consists of a number of (not necessarily syn-
chronous) sequences of articulatory targets. Conventional
speech models make the simplifying assumption that a word
can be broken up into phonemes, each of which is an atomic
unit. The articulatory approach offers a more flexible and
parsimonious architecture. For example, the visual speech
segment in Figure 1 can be explained as the de-synchroniza-
tion of the lips from the remaining articulators. Although
similar pronunciation models have been used in modeling
spontaneous acoustic speech [9], to the best of the authors’
knowledge, this is the first application of the multi-stream
articulatory feature approach in the visual domain. In the
following sections, we present a visual speech recognition
framework that models visual speech in terms of the under-
lying articulatory processes.

2. VISUAL ARTICULATORY FEATURE
DETECTION

We treat articulatory features as the hidden states underlying
the surface visual observations [12], and learn them using a
supervised learning approach. An observed feature vector
is used as the input to a statistical classifier, which outputs
the hidden articulatory feature labels. A preprocessing step
extracts the observed feature vector from the input image.
In principle, each articulatory feature classifier could use



different observation-level measurements. For example, the
classifier for “lip-rounding” could take motion vectors as
input, while the “dental” classifier could use color input.

We assume a set of training examples with images of
mouths and the corresponding articulatory feature labels;
each image has several discrete labels, one for each AF. In
preliminary experiments, we have found that support vec-
tor machines (SVMs) outperform Gaussian Mixture Models
on the task of articulatory feature classification for a single
speaker, and have therefore chosen to use SVM classifers.

In dealing with the visual modality, we are obviously
limited to modeling the visible articulators. As a start, we
have chosen a feature set based on the one in [8]. Specif-
ically, we are using features associated with the lips, since
they are always visible in the image: LIP-OP (closed, nar-
row, medium and wide), LIP-RND (rounded, unrounded)
and LAB-DEN (labio-dental, not labio-dental). This ig-
nores other articulators that might be distinguishable from
the video, such as the tongue and teeth; we plan to incorpo-
rate these in the future.

Note that the standard formulation of SVM classifica-
tion produces a hard decision (the class label). However,
in order to not lose information by forcing a decision at
this early stage, we produce soft decisions in the form of
posteriors P (Ft = f |Xt = x), where Xt is the image at
time t and Ft is a particular AF. We convert SVM outputs
to posterior probabilities using a sigmoidal mapping [3].
Furthermore, since our recognizer uses a generative model,
it is more natural to use likelihoods than posteriors. We
therefore convert the posteriors to (scaled) likelihoods us-
ing P (Xt = x|Ft = f) ∝ P (Ft = f |Xt = x)P (Ft = f).

3. A DYNAMIC BAYESIAN NETWORK FOR
FEATURE-BASED VSR

Our recognition model is based on the work described in [9].
The model generates, for each word in its vocabulary, all
sequences of AF values that are possible realizations of that
word, along with the probabilities of those realizations. In
order to take advantage of the semi-independent evolution
of the AF streams–in other words, the factorization of the
AF state space–we implement the model as a dynamic Baye-
sian network (DBN). Figure 2 shows (a slightly simplified
version of) one frame of the DBN used in our experiments.
Conditioned on the identity of the word, the model essen-
tially consists of three parallel HMMs, one per AF, where
the joint evolution of the HMM states is constrained by syn-
chrony requirements.

Intuitively, the way in which a given word’s pronunci-
ations are generated by the model is as follows. First, a
baseform phonemic pronunciation is drawn from the set of
allowed baseforms for the word (e.g. /iy dh er/ or /ay dh
er/ for “either”; note that Figure 2 assumes one baseform

per word, but the extension to multiple baseforms is triv-
ial). This baseform pronunciation defines a set of target fea-
ture value trajectories, one for each AF F . The AFs then
proceed through their trajectories, possibly at different rates
(i.e. asynchronously). This asynchrony is not completely
unconstrained, however: Sets of trajectories that are more
“synchronous” are more probable than less “synchronous”
ones. Finally, the surface value SF

t that is actually produced
by the speaker at time t for feature F may differ from the un-
derlying target value UF

t , usually due to either undershoot
(e.g. the lips not closing all the way for a /b/) or context
effects. In the model we are currently using, only context-
independent feature changes are modeled, indicated in Fig-
ure 2 by the fact that the only parent of SF

t is UF
t ; it would

be simple, however, to extend the DBN to include context-
dependent feature changes.
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Fig. 2. One frame of a DBN for feature-based VSR. Edges without par-
ents/children in the figure point from/to variables in adjacent frames. All
variables are discrete-valued. UF

t
are the underlying feature values, and

SF
t

are the surface values, at time t. iF
t

is an index into the state sequence
of feature F . wdTrt is the word transition variable: Its (binary) value
indicates whether or not this is the last frame of the current word.

To make the notion of asynchrony more precise, let iF
t

be the index into the trajectory of feature F at time t; i.e., if
F is in the nth state of its trajectory at time t, then iFt = n

(see Figure 2). We define the degree of asynchrony between
two features F1 and F2 at time t as |iF1

t − iF2

t |. The prob-
abilities of varying degrees of asynchrony are given by the
distributions of the asyncj variables. checkSync

j
t simply

checks that the degree of asynchrony between its parent fea-
tures is in fact equal to async

j
t : It is always observed with

value 1 and its distribution is
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and 0 otherwise, where iF1

t and iF2

t are the indices of the
features corresponding to checkSync

j
t . 1

1A simpler structure, as in [8], could be used, but it would not allow for
EM training of the asynchrony probabilities.



In order to incorporate the likelihoods computed from
the SVM outputs, we use the Bayesian network mechanism
of soft evidence [1]. This is used when a variable is not ob-
served, i.e. there is no hard evidence about it, but we have
some information that causes us to favor some values over
others; this is exactly what the SVM outputs tell us about the
AF values. Soft evidence allows us to combine a generative
model with likelihoods computed by any means, including
discriminative classifiers such as SVMs. This can be done
by adding, for each articulatory feature F , a “dummy” evi-
dence variable EF

t , whose value is always 1 and whose dis-
tribution is constructed so that P (EF

t = 1|SF
t = f) is pro-

portional to the likelihood P (Xt = x|SF
t = f) computed

from the SVM discriminant values (see previous section).
To perform recognition with this model, we can use stan-

dard DBN inference algorithms [10] to find the most likely
sequence of values for wordt. The parameters of the dis-
tributions in the DBN can be learned from data via maxi-
mum likelihood using the Expectation-Maximization (EM)
algorithm [5], given observations for the word variable and
SVM soft evidence outputs for a set of training data.

4. EXPERIMENTS AND RESULTS

We have conducted pilot experiments to investigate several
questions that arise in using the proposed feature-based sys-
tem. First, we would like to compare the effects of using
feature-based versus viseme-based classifiers, as well as of
using a feature-based versus viseme-based pronunciation
model. A viseme-based pronunciation model is a special
case of our DBN, in which the features are constrained to be
completely synchronous (i.e. async

j
t is identically 0) and no

feature changes are allowed (i.e. SF
t = UF

t ). Using viseme
classifiers with a viseme-based pronunciation model is es-
sentially the conventional viseme-based HMM that is used
in most VSR systems. In order to use a feature-based pro-
nunciation model with viseme classifiers, we use a many-
to-one mapping from surface features (SF

t ) to visemes. For
now, we concentrate only on the effects of asynchrony be-
tween the features; in other words, the feature-based pro-
nunciation models that we consider allow asynchrony but no
feature changes (i.e. async

j
t can vary, but SF

t = UF
t ). Also,

since we do not have ground truth articulatory feature labels,
we investigate how sensitive the system is to the quality of
the training labels in terms of both feature classification and
word recognition. In order to facilitate quick experimen-
tation, these initial experiments focus on an isolated-word
recognition task and use only a small data set, with manual
settings for the (small number of) DBN parameters.

4.1. Data and Visual Signal Preprocessing
For these initial experiments, we used 21 utterances taken
from a single speaker in the AVTIMIT [7], a corpus of audio-
visual recordings of subjects reading phonetically balanced
sentences and has a vocabulary of 1793 words. Of these,

SVM type LIP-OP LIP-RND LAB-DEN viseme

Forced train 44% 63% 50% 33%
Manual train 59% 78% 87% N/A

Table 1. Classifier accuracies for the feature and viseme SVMs, aver-
aged over the N classes for each SVM: acc = 1

N � N

i=1
acc(class i).

Chance performance is 1

N
. The numbers of classes are: 4 for LIP-OP, 2

for LIP-RND and LAB-DEN, and 6 for the viseme SVM (consisting of those
combinations of feature values that occur in the forced transcriptions).

10 utterances were used for training and 11 for testing. To
simulate the isolated-word task, utterances were split into
words, resulting in a 70-word test set. Each visual frame
was also manually transcribed with 3 AF values.

The raw video stream was preprocessed by first extract-
ing 37x54 pixel mouth regions from the image sequence
and converting them to grayscale (see Figure 1). Then, a
DCT transform was applied to each image to obtain a set of
1998 coefficients, of which the 900 highest-frequency coef-
ficients were retained. The dimensionality was further re-
duced via PCA, with the top 100 PCA coefficients used as
the final observation vector.

4.2. Classification

A radial basis function (RBF) kernel SVM classifier was
trained for each of the three features using the LIBSVM
software package [3]. To find the optimal values of the SVM
parameters, four-fold cross-validation was performed on the
training set. In order to study the effects of training label in-
accuracy, we consider two cases. In one case, the training
labels consisted of phoneme labels from an existing acoustic
forced transcription converted to AF labels using a table. In
the other case, the manual feature transcriptions were used.
We also trained a viseme SVM using the forced transcrip-
tions. Table 1 shows the resulting classification rates.

4.3. Word ranking experiments
Because of the extreme difficulty of this task–lipreading iso-
lated words excised from continuous speech with a rela-
tively large vocabulary–we cannot expect to obtain reason-
able word recognition error rates. Instead, we perform a
word ranking experiment: For each spoken word in the test
set, we compute the probability of each word in the vocabu-
lary and rank the words based on their relative probabilities.
Our goal is to obtain as high a rank as possible for the cor-
rect word. Performance is evaluated using both the mean
rank of the correct word over the test set and the entire dis-
tribution of the correct word ranks.

We used the Graphical Models Toolkit [2] for all DBN
computations. In the models with asynchrony, LIP-RND
and LIP-OP were allowed to desynchronize by up to one
index value (one phoneme-sized unit), as were LIP-OP and
LAB-DEN. Table 2 summarizes the mean rank of the cor-
rect word in a number of experimental conditions, and Fig-



Mean rank, Mean rank,
Classifier unit sync model async model

Viseme 281.6 262.7 (.1)
Feature, forced train 216.9 (.03) 209.6 (.02)
Feature, manual train 165.4 (.0005) 149.4 (.0001)

Feature, oracle 113.0 (2 × 10−5) 109.7 (3 × 10−5)

Table 2. Mean rank of the correct word in several conditions.

ure 3 shows the entire empirical cumulative distribution func-
tions (CDFs) of the correct word ranks in several of these
conditions. In the CDF plots, the closer the distribution is to
the top left corner, the better the performance. We consider
the baseline system to be the viseme-based HMM, i.e. the
synchronous pronunciation model using the viseme SVM.

In these experiments, the asynchronous pronunciation
model always outperforms the synchronous one, regardless
of the type of classifiers used. This may seem counterin-
tuitive when viseme classifiers are used; however, certain
apparently visemic changes may be caused by feature asyn-
chrony; e.g. a /k/ followed by an /uw/ may look like an /ao/
because of LIP-OP/LIP-RND asynchrony. Next, the forced
train vs. manual train comparison suggests that we could ex-
pect a sizable improvement in performance if we had more
accurate training labels. While it may not be feasible to
manually transcribe a large training set, we may be able to
improve the accuracy of the training labels using an itera-
tive training procedure, in which we alternate training the
model and using it to re-transcribe the training set. To show
how well the system could be expected to perform if we had
ideal classifiers, we replaced the SVM soft evidence with
likelihoods derived from our manual transcriptions. In this
“oracle” test, we assigned a very high likelihood (≈0.95) to
feature values matching the transcriptions and the remain-
ing likelihood to the incorrect feature values. Table 2 also
gives the significance (p-value) of the mean rank differences
between each model and the baseline (according to a one-
tailed paired t-test [13]). The differences between each syn-
chronous model and the corresponding asynchronous model
are not signnificant (p ≥ .1 on this test set), but all feature-
based models are significantly better than the baseline.

5. SUMMARY AND FUTURE WORK

We have shown, for a limited VSR scenario, that a recog-
nizer that models the articulatory asynchrony inherent in the
human speech production system can outperform one that
does not. We plan to continue testing this model on more
data and in comparison with more realistic viseme-based
baselines. We are also interested in applying this model to
the problem of audio-visual fusion. Most state-of-the-art
audio-visual speech recognizers model the asynchrony be-
tween the audio and visual streams [6]. However, the fusion
is done at the level of the phoneme/viseme. We believe that
the feature is a more natural level for audio-visual fusion.
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Fig. 3. CDF of the correct word’s rank, using the visemic baseline and
the proposed feature-based model. The rank r ranges from 1 (highest) to
the vocabulary size (1793).

This has been previously suggested [11], but to our knowl-
edge has not been attempted. The structure we have used
can be naturally extended to perform this type of fusion; all
that is required is a complementary set of classifiers for the
acoustically-salient features, such as voicing and nasality,
and the corresponding additional variables in the DBN.
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