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ABSTRACT
We study speaker verification for handheld devices assuming realis-

tic, noisy test conditions and assuming no prior knowledge of the

noise characteristics. Data were recorded in office (“quiet”) and

street intersection (“noisy”) environments, with the use of an inter-

nal microphone and an external headset. We assume that the speaker

models are trained using the office data and tested in matched and

mismatched environment/microphone conditions. Two approaches

were studied, both built upon a subband feature framework: 1) a

posterior union model (PUM) that focuses verification on match-

ing subbands thereby reducing the effect of the training and test-

ing mismatch, and 2) universal compensation (UC) that combines

multi-condition training and the PUM to provide robustness to noises

of arbitrary temporal-spectral characteristics. Multi-condition train-

ing using simulated noise data of different characteristics provides a

“coarse” compensation for the noise, and the PUM refines the com-

pensation by ignoring noise variations outside the given training con-

ditions. These two models were compared to baseline systems and

have shown improved robustness for realistic noisy speech data.

1. INTRODUCTION

This paper investigates speaker verification in realistic noise condi-

tions, with particular consideration for handheld devices. We tackle

a major challenge arising from such devices – mobility, and hence

highly time-varying and potentially unknown acoustic environments.

Recently, much research has been conducted towards reducing the

handset/channel effect. Linear and nonlinear compensation tech-

niques have been proposed, with applications to feature, model and

match-score domains. Feature compensation includes well-known

filtering techniques such as cepstral mean removal or RASTA [1],

discriminative feature design [2] and various feature transformations

(e.g., [3]). Score-domain compensation includes H-Norm [4], Z-

norm [5] and T-Norm [6]. Model-domain compensation includes the

speaker-independent variance transformation, and the transforma-

tion for synthesizing supplementary speaker models for other chan-

nel types from multi-channel training data [7]. Additionally, channel

mismatch has been tackled using model adaptation methods, effec-

tively using new data to learn channel characteristics (e.g., [8]).

To date, research has targeted the impact of environmental noise

through filtering techniques such as spectral subtraction or Kalman

filtering [9], [10], assuming a priori knowledge of the noise spec-

trum. Other techniques rely on a statistical model of the noise, for

example, PMC [11], or on the use of microphone arrays [12]. Recent

studies on the missing-feature method suggest that, when knowl-

edge of the noise is insufficient for cleaning up the speech data,
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one may alternatively ignore the severely corrupted speech data and

base the recognition only on the data with little or no contamina-

tion (e.g., [13], [14]). Missing-feature techniques are effective given

partial noise corruption, a condition that may not be realistically as-

sumed for many real-world problems.

This study aims to develop a method that enables the modeling

of unknown, time-varying noise corruption without assuming prior

knowledge of the noise statistics. A new method, namely universal

compensation (UC), is proposed. The UC technique is an exten-

sion of the missing-feature method, i.e., recognition based only on

reliable data but robust to any corruption type, including full corrup-

tion that affects all time-frequency components of the speech. The

UC method involves a combination of the multi-condition training

method and the missing-feature method. Multi-condition training,

with simulated noisy data of different noise characteristics, serves as

the first step to provide a “coarse” compensation for the noise. The

missing-feature method serves as the second step to fine “tune” the

compensation by ignoring noise variations outside the given training

conditions, thereby accommodating mismatches between the simu-

lated training noise condition and the realistic test noise condition.

In our implementation, the posterior union model (PUM) [15] – a

missing-feature model without assuming identity of the corrupted

data, was used to estimate the matching data between the model and

the test signals. A preliminary study on the UC model for speaker

identification with synthetic noisy data was reported in [16].

2. METHODOLOGY

2.1. Universal Compensation (UC) Model

Denote by Φ0 the training set containing clean training data for a

speaker, and denote by P (X|s, Φ0) the probability distribution of

frame feature vector X associated with speaker s trained on Φ0. As-

sume that each frame vector X = (x1, x2, ..., xN ) consisting of

N subband feature components, with xn representing the nth sub-

band component. The first step of the UC method is to multiply

the training set Φ0 by corrupting the clean training data with simu-

lated noise of different characteristics (e.g., white noise at different

SNRs). Assume that this leads to augmented training sets Φ0, Φ1,

..., ΦL, where Φl denotes the lth training set derived from Φ0 with

the inclusion of a certain noise condition. Then a new probabilis-

tic model for the test frame vector can be formed by combining the

probability distributions trained on the individual training sets:

P (X|s) =
L�

l=0

P (Φl|s)P (X|s, Φl) (1)

where P (X|s, Φl) is the probability distribution of the frame vec-

tor trained on set Φl and P (Φl|s) is the prior probability for the
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occurrence of the noise condition represented in Φl, for speaker s.

Eq. (1) is a multi-condition model. A recognition system based

on (1) should have improved robustness to the noises seen in the

training sets Φl, as compared to a system based on P (X|s, Φ0).

The second step of the UC method is to make (1) robust to

noise conditions not fully represented in the training sets Φl with-

out assuming extra noise information. One way to this is to ignore

the heavily mismatched subbands and focus the score only on the

matching subbands. Let X = (x1, x2, ..., xN ) be a test frame and

Xl,s ∈ X be a subset in X containing all the subband components

that match the corresponding model components trained in noise

condition l for speaker s. Then, using Xl,s in place of X as the

test vector for each trained noise condition, redefine (1) as

P (X|s) =
L�

l=0

P (Φl|s)P (Xl,s|s, Φl) (2)

where P (Xl,s|s, Φl) is the marginal distribution of the matching

subset Xl,s, derived from P (X|s, Φl) with the mismatched sub-

band components ignored to improve mismatch robustness between

the test frame X and the trained noise condition l (i.e., the missing-

feature principle). For simplicity, assume independence between the

subband components. So the marginal distribution P (Xsub|s, Φl)
for any subset Xsub ∈ X can be written as

P (Xsub|s, Φl) = �
xn∈Xsub

P (xn|s, Φl) (3)

where P (xn|s, Φl) is the probability distribution of the nth subband

component for speaker s trained under noise condition l.
Given a test frame X , the matching component subset Xl,s for

each l and s may be defined as the subset in X that gains maximum

probability over the appropriate noise condition and speaker. Such

an estimate for Xl,s is not directly obtainable from (3) by maximiz-

ing P (Xsub|s, Φl) with respect to Xsub. This is because the values

of P (Xsub|s, Φl) for different sized subsets Xsub are of a differ-

ent order of magnitude and are thus not directly comparable. One

way around this is to normalize P (Xsub|s, Φl) using the probabili-

ties for the same subset from all the speakers and noise conditions,

and then select the matching subset by maximizing the normalized

probability. This effectively leads to a posterior probability formu-

lation of (2). Define the posterior probability of speaker s and noise

condition Φl given test subset Xsub as

P (s, Φl|Xsub) =
P (Xsub|s, Φl)P (s, Φl)�

s′,l′ P (Xsub|s′, Φl′)P (s′, Φl′)
(4)

On the right, (4) performs a normalization for P (Xsub|s, Φl) using

the average probability P (Xsub) of the subset calculated over all

speakers and trained noise conditions, with P (s, Φl) = P (Φl|s)P (s)
being a speaker/noise condition prior. Maximizing posterior proba-

bility P (s, Φl|Xsub) for Xsub leads to an Xl,s estimate that effec-

tively maximizes the likelihood ratios P (Xl,s|s, Φl)/P (Xl,s|s′, Φl′)
for (s, Φl) compared to all (s′, Φl′) �= (s, Φl).

Rewrite (1) in terms of the posterior probabilities P (s, Φl|X):

P (X|s) = � L�
l=0

1

P (s)
P (s, Φl|X) � P (X) (5)

The last term in (5), P (X), is not a function of the speaker index and

thus has no effect in recognition. Replacing P (s, Φl|X) in (5) with

the optimized posterior probability for the test subset and assuming

an equal prior P (s) for all the speakers, we obtain an operational

version of (2) for recognition:

P (X|s) ∝
L�

l=0

max
Xsub∈X

P (s, Φl|Xsub) (6)

where P (s, Φl|Xsub) is defined in (4) with P (s, Φl) replaced by

P (Φl|s) due to the assumption of a uniform P (s).

The search in (6) for the matching subset can be computationally

expensive for large frames X . We simplify the algorithm by approxi-

mating each P (Xsub|s, Φl) in (4) using the probability for the union

of all subsets of the same size as Xsub. As such, P (Xsub|s, Φl) can

be written, with the size of Xsub indicated in brackets, as [15]

P (Xsub(M)|s, Φl) ∝
�

all X′
sub

(M)∈X

P (X ′
sub(M)|s, Φl) (7)

where Xsub(M) represents a subset with M components (M ≤ N ).

Since the sum in (7) includes all subsets, it includes the matching

subset that can be assumed to dominate the sum due to the best data-

model match. Eq. (7) for 0 < M ≤ N can be computed effi-

ciently using a recursive algorithm assuming independence between

the subband components (i.e., (3)). Note that (7) is not a function of

the identity of Xsub but only a function of the size of Xsub (i.e., M ).

We therefore effectively turn the maximization in (6) for the identity

of the matching subset, of a complexity of O(2N ), to the maximiza-

tion for the size of the matching subset, maxM P (s, Φl|Xsub(M)),

of a complexity of O(N), where P (s, Φl|Xsub(M)) is of a form

as (4) with each P (Xsub|s, Φl) replaced by the union probability

P (Xsub(M)|s, Φl). We call maxM P (s, Φl|Xsub(M)) the poste-
rior union model (PUM), which has been studied previously [15] as

a missing-feature method without requiring identity of the noisy data

assuming clean data training (i.e., Φl = Φ0). The UC model (6) is

reduced to a PUM with single-condition training (e.g., L = 0).

So far we have discussed the calculation of the probability for a

single frame. The probability of a speaker given an utterance with T
frames XT

1 = {X1, X2, ..., XT } can be defined as

P (XT
1 |s) = [

T�
t=1

P (Xt|s)]1/T
(8)

where P (Xt|s) is defined by (6). Since P (Xt|s) is a properly nor-

malized probability measure, the value of P (XT
1 |s), with normal-

ization against the length of the utterance as shown in (8), can be

used directly for speaker verification as well as for identification.

2.2. Generation of Multi-Condition Training Data

As shown in (2), the UC model effectively practices a reconstruction

of the test noise condition using a limited number of trained noise

conditions. To make the model suitable for a wide range of noises,

white noise at consecutive SNRs can be used to corrupt the training

data. This spans the full frequency range and a wide amplitude range

and therefore allows the expression of sophisticated noise spectral

structures. Alternatively, low-pass filtered white noise of different

SNRs may be considered for the training data. The low-pass filter-

ing simulates the high-frequency rolloff characteristics seen in many

microphones. Finally, a combination of different types of noise, in-

cluding real noise data as in common multi-condition model train-

ing, can be used to train the model. Without prior knowledge of the

structure of the test noise, a unform prior P (Φl|s) can be used to

combine different noise conditions. To limit the size of the model,
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Fig. 1. Spectra of utterances in office (left) and intersection (right)

we can limit the number of mixtures in (1) by pooling the training

data from different conditions together and training the model as a

usual mixture model to a desired number of mixtures.

3. EXPERIMENTS

Experiments were conducted on a handheld-device database, col-

lected at MIT for studying speaker verification in realistic noisy

conditions with limited enrollment data [17]. The database con-

tains 48 enrolled speakers (26 male, 22 female) and 40 impostors

(23 male, 17 female), each reciting a list of name and ice-cream fla-

vor phrases. The part of the database containing the ice-cream flavor

phrases was used in the experiments. There were six phrases rotated

among the enrolled speakers, with each speaker reciting an assigned

phrase 4 times for training and 4 times for verification. The train-

ing and test data were recorded in separate sessions, involving the

same or different background/microphone conditions and different

phrase rotation. The same practice applies to the impostors, with

each impostor repeating an assigned phrase 4 times in each given

background/micophone condition with condition-varying phrase ro-

tation. The impostors saying the same phrase as an enrolled speaker

were grouped to form the impostor trials for that enrolled speaker.

Data were collected in two different environments: office (with a

low level of background noise) and street intersection (with a higher

level of background noise), using two different types of microphone:

internal (built in the device) and external (a headset). Fig. 1 shows

the typical characteristics of the environments. The speaker mod-

els were trained based on the office data and tested in matched and

mismatched conditions. The office data served as Φ0, from which

multi-condition training sets Φ1, ..., ΦL were generated by intro-

ducing different corruptions into Φ0. In our experiments, we added

low-pass filtered white noise to each training utterance at nine SNRs

from 4 to 20 db (increasing 2 db every step). This gives a total of

ten training conditions (including the no corruption condition), each

characterized by a specific SNR. We treated the problem as text-

dependent speaker verification, and modeled each enrolled speaker

using an 8-state HMM, each state each condition (i.e., P (X|s, Φl))

modeled by 2 diagonal-Gaussian mixtures. Additionally, 3 states

with 16 mixtures per state were used to account for the beginning

and ending backgrounds; they were tied across all the speakers.

The speech was divided into frames of 20 ms at a frame rate of

10 ms. Each frame was modeled by a feature vector consisting of

subband components derived from the decorrelated log filter-bank

amplitudes [18]. Specifically, for each frame a 21-channel mel-scale

filter bank was used to obtain 21 log filter-bank amplitudes. These

were decorrelated by using a high-pass filter H(z) = 1 − z−1 into

20 decorrelated log filter-bank amplitudes. These 20 decorrelated

amplitudes were then uniformly grouped into 10 subbands, each

subband containing two decorrelated amplitudes corresponding to

two consecutive filter-bank channels. These 10 subband compo-

nents, with the subtraction of the sentence-level mean (similar to

cepstral mean removal) and with the addition of their correspond-

ing first-order delta components, form a 20-component vector X =

Table 1. Closed-set identification rates for enrolled speakers (Index:

o–office; s–street intersection; h–headset; i–internal microphone)

Training-Testing PUM UC BSLN-Cln BSLN-Mul

oh-oh 97.40 97.92 91.15 97.40

oi-si 82.29 89.06 53.12 71.35

oi-sh 67.19 80.21 29.69 56.77

(x1, x2, ..., x20), of a size of 40 coefficients, for each frame. We

implemented four systems all based on the same feature format, and

all having the same state-mixture topology as described above:

1. PUM: trained on “clean” (office) data and optimally selecting

subband components for recognition

2. UC: trained on the simulated multi-condition data and using

PUM to reduce training/testing mismatch

3. BSLN-Cln: a baseline system trained on office data as for

PUM and using all subband components for recognition

4. BSLN-Mul: a baseline system trained on multi-condition data

as for UC and using all subband components for recognition

We first compared the four systems assuming matched condition

training and testing, both in the office environments with the use of

a headset. Fig. 2 presents the DET curves, along with the equal error

rate (EER) for each system. The office data are not perfectly clean,

often with burst noise at the time the microphone being switched

on/off and some random background noise. By ignoring some of

the mismatched data, both PUM and UC performed better than their

counterparts, BSLN-Cln and BSLN-Mul. Also, training the models

using the simulated multi-condition data showed usefulness for re-

ducing the mismatch, as seen for the better performances obtained

by the two multi-conditionally trained models: UC, BSLN-Mul.

Next, we tested the four systems assuming there is training/testing

mismatch in environments but not in microphone type. The mod-

els were trained using the office data and tested using the street-

intersection data, both collected using the internal microphone. Fig. 3

shows the results. Both PUM and UC offered significantly improved

performance, reducing the EER by 44.9/42.5% (PUM/UC) as com-

pared to BSLN-Cln, and by 26.6/23.4% as compared to BSLN-Mul.

BSLN-Mul improved over BSLN-Cln with the inclusion of the sim-

ulated noisy training data. In this case, UC performed similarly to

PUM for verification.

Further experiments were conducted assuming mismatch in both

environments and microphone types. The models were trained us-

ing the office data with an internal microphone and tested using the

street-intersection data with a headset. Fig. 4 presents the results.

Again, both PUM and UC offered improved performance, reducing

the EER by 43.0/53.4% (PUM/UC) as compared to BSLN-Cln, and

by 23.2/37.2% as compared to BSLN-Mul. UC outperformed PUM

in this case, showing better robustness to the combined mismatch.

Finally, the closed-set identification results for the 48 enrolled

speakers are provided in Table 1. Two observations may be drawn:

1) multi-condition training with the simulated noisy data improved

the performance, as seen by the performance differences between

PUM/UC, and between BSLN-Cln/BSLN-Mul; 2) further improved

robustness may be obtainable by combining multi-condition training

with a missing-feature model, as evident by the performance differ-

ence between UC and BSLN-Mul.

4. CONCLUSIONS

This paper showed that a combination of multi-condition training

and the missing-feature theory has the potential to offer improved
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Fig. 2. Performance in matched training and testing: office/headset
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Fig. 3. Performance with mismatch in environments: training – of-

fice, testing – street intersection, both using internal microphone.

noise robustness in the absence of information of the noise. The

method, namely universal compensation (UC), was tested on a hand-

held device database collected in realistic noisy conditions for speaker

verification. Trained on clean data and simulated, simple noisy data,

the UC model showed encouraging robustness to sophisticated re-

alistic noise. Further research will be focused on the design of im-

proved multi-condition training set for the UC model to better model

real-world noisy speech data.
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