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ABSTRACT

We present a novel distance measure for comparing two speech

segments that uses a local version of the well-known DTW algo-

rithm. Our approach is based on the idea of finding word-level

speech patterns that are repeated by the same speaker. Using this

distance measure, we develop a speaker segmentation procedure

and apply it to the task of segmenting multi-speaker lectures. We

demonstrate that our approach is able to generate segmentations

that correlate well to independently generated human segmenta-

tions. In experiments performed on over ten hours of multi-speaker

lecture data, we were able to find speaker change points with pre-

cision and recall rates of 80% and 100%, respectively.

1. INTRODUCTION

The problem of speaker segmentation, also known as speaker change

detection, has been well examined by researchers in recent years.

Although there are many reasons why one might want to segment

an audio stream by its constituent speakers, two major reasons

stand out. First, for audio documents, speaker changes are of-

ten considered natural points around which to structure the doc-

ument for navigation by listeners. In broadcast news, for example,

speaker changes typically coincide with story changes or transi-

tions. Audio recordings of meetings, presentations, and panel dis-

cussions are also examples where organizing audio segments by

speaker identity can provide useful navigational cues to listeners.

A second motivation for speaker segmentation relates to auto-

matic transcription of speech. In many scenarios, the performance

of automatic speech recognition can benefit greatly from speaker

adaptation, whether supervised or unsupervised. Speaker segmen-

tation, while not a strict pre-requisite for speaker adapation, is im-

portant for performing adaptation on multi-speaker data, as it can

provide the recognizer with homogenous speaker data.

Unsupervised approaches to speaker segmentation typically

consist of two components: a distance metric for comparing two

segments of speech, and a method for determining change points

in the audio stream using the distance metric. Most current ap-

proaches to speaker change detection use either the Bayesian In-

formation Criterion (BIC) or log likelihood ratios for comparing

two speech segments [1, 2]. The main difference between many

segmentation approaches is the manner in which the distance mea-

sures are used to produce a segmentation. Some take the distance

between two halves of a growing window, while others take two

halves of a fixed-size analysis window that slides through time.

Support for this research was provided in part by the National Science
Foundation under grant #IIS-0415865.

In most cases, a change point is hypothesized when the distance

exceeds a certain threshold.

2. SEGMENTAL DTW

The focus of this paper is a novel distance metric for comparing

two speech segments that is based on a local variant of dynamic

time warping (DTW) that we call segmental DTW. Our approach

is based on the idea of finding word-level speech patterns that are

repeated by the same speaker. In previous work, the segmental

DTW algorithm was used as the first stage in a clustering algorithm

for performing word discovery [3].

Segmental DTW is a variant of traditional dynamic time warp-

ing which searches for multiple local alignments of two input ut-

terances, X and Y , and their associated distance matrix D. The

algorithm works by dividing the distance matrix into a set of diag-

onal bands of width R and searching for the best warp path within

each band. The diagonal bands serve multiple purposes. First, they

constrain the degree of warping so that two sub-utterances are not

overly temporally distorted during alignment. Second, they allow

for multiple alignments, as each band corresponds to another po-

tential path with different start and end points.

Following path discovery, each path is trimmed by finding

the least average subsequence of the path with minimum length

L [4]. The minimum length criterion is used to prevent spurious

matches between short segments within each utterance. Since each

cell D(i, j) corresponds to the distortion between frames i and j,

the least average subsequence represents the portion of the aligned

path which exhibits good alignment.

At this stage we are left with a family of warp path fragments

Φ(X ,Y), as shown in Figure 1. For performing speaker segmen-

tation, the distance measure with which we propose to compare

two utterances X and Y is defined as

Ds(X ,Y) � min
ϕ∈Φ(X ,Y)

dϕ(X ,Y), (1)

where dϕ(X ,Y) is the average distortion of the warp path frag-

ment, ϕ. That is, the distance is the distortion of the minimum

distortion alignment path fragment between the two segments.

When two utterances that share both a word and a speaker in

common, the alignment path is likely to match the common word,

resulting in a low distortion. Similarily, if the utterances are spo-

ken by different speakers, the distortion is likely to be much higher,

even if the utterances share a word in common, simply because

of variation in speaker characteristics in speaking that particular

word. Of course, we cannot guarantee that every pair of adjacent

utterances with a common speaker will also share a speech pattern
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Fig. 1. The segmental DTW procedure for two utterances X and Y . The
family of warp path fragments, Φ(X ,Y), are shown as colored segments
of the constrained diagonal warp paths. Fragments are color coded accord-
ing to their average distortion, with brighter values corresponding to lower
distortion.

on the order of a word. However, we can increase the likelihood of

finding such repeating patterns by processing blocks of utterances.

Though our segmental DTW distance measure is relatively

straightforward to describe, it differs from conventional solutions

in two important ways. First, speech segments are not considered

as “bags of frames”, where each frame is processed independently

of the other frames in the segment. Instead, the alignment path

fragments require frames to be considered in the context of other

frames - as part of a sequence, rather than a representative token

on its own. In this regard, our approach is similar in spirit to that

taken by Gillick et. al for speaker detection [5]. The second way

in which our approach differs from traditional distance measures,

is that utterances are compared on the basis of their most similar

token (in this case, a sequence of frames), rather than by averaging

all tokens from both utterances.

The effectiveness of this approach can be seen qualitatively

by considering the utterance level similarity matrix for a physics

lecture as shown in Figure 2. For this matrix, utterance distances

are converted into the similarities using a fixed threshold, θ.

S(X ,Y) =

(
1 − D(X ,Y)

θ
if D(X ,Y) < θ

0 otherwise
(2)

Even without access to the true speaker change points for the

lecture shown in Figure 2, the similarity matrix exhibits a dis-

tinct block structure that makes it relatively trivial to visually iden-

tify the speaker change points. In the next section we address

how to move from this visual representation into one that is more

amenable to automatic segmentation.

2.1. Building a segmentation profile

In this section, we propose a method for producing a segmentation
profile from the similarity matrix shown in the previous section. A

segmentation profile is a time varying measure of how likely an

utterance is to be a speaker change point, i.e. a discontinuity in

the similarity matrix, A. Based on this, we propose to track the

normalized sum of the cells under a triangular region that slides

along the main diagonal of the similarity matrix. This method can

be summarized by the diagram in Figure 3. The dissimilarity of

segment k to its adjacent segments can be expressed as a function
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Fig. 2. Utterance level similarity matrix for a physics lecture consisting
of two speakers and three segments. The darkness of a cell (i, j) indicates
the similarity of utterance i and utterance j using the minimum distortion
alignment path fragment.

Fig. 3. The diagonal region used to compute the segmentation profile. In
this example, D = 4.
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Fig. 4. The log dissimilarity profile for the physics lecture from Figure 2.
The width of the diagonal band considered is D = 100 utterances.

of the normalized sum of nearby cells in the similarity matrix.

VD(k) = − log
` 1

FD(k)

kX
i=k−D+1

i+D−1X
j=k

A(i, j)
´

(3)

where FD(k) is a normalizing term that represents the number of

cells being added. Figure 4 illustrates a dissimilarity profile for

the physics lecture from Figure 2, using a diagonal band, D, of

100 utterances.

As the triangular window slides down the main diagonal of

the similarity matrix, the sum of the cells in the window will reach

local minima at discontinuities in the matrix. The intuition behind
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this approach can be readily seen by considering Figure 2 again.

For points in the lecture that are very similar to adjacent regions,

more of the cells in the triangular region centered at that particular

point tend to be very dark. Conversely, points in the lecture that

are dissimilar to adjacent regions have fewer dark points.

Aside from its intuitive appeal, the choice to consider a small

triangular region is motivated by computational reasons as well.

With this method, for any particular utterance index, k, it is only

necessary to compute similarity scores for pairs of utterances that

are within D of k. It follows that the overall running time will

be O(D2N), making the computation linear in the length of the

audio stream.

As illustrated in Figure 4, the dissimilarity profile appears to

have distinct peaks that coincide with the reference boundaries.

Unfortunately, intrinsic variation in the profiles result in many spu-

rious peaks, so simply picking the peaks in the profile would over-

generate the number of potential segment boundaries. We instead

utilize an alternative processing technique which focuses on find-

ing distinct peaks.

2.2. Finding Distinct Peaks

We note two characteristics of distinct dissimilarity peaks that dif-

fer from spurious peaks. First, the distinct peaks happen to persist

when filtered with smoothing windows of different widths. Sec-

ond, they they are significantly higher than neighboring values.

The former characteristic can be exploited by performing so-called

scale-space filtering on the dissimilarity profile. Scale-space filter-

ing is a technique widely used in pattern recognition and computer

vision which generates multiple resolution representations of a sig-

nal by filtering with Gaussian windows of different variances [6].

We denote the various smoothed versions of the signal as

Vσ(k) = Gσ(k) ∗ V (k), (4)

where Gσ(k) is a Gaussian window with variance σ. Progressively

larger values of σ reduce the number of peaks in the smoothed sig-

nal. We then take the peaks from the smoothed profile and recover

the peaks from the original profile by backtracing along the pro-

files with progressively larger values of σ. This process is shown

in Figure 5. At this stage, we are left with peaks that “survive” the

scale-space filtering process.

We next turn to the second characteristic of distinct peaks

listed above. In order to exploit the characteristic that distinct

peaks rise higher above local neighboring values than non-distinct

peaks, we can use the smoothed profile with the lowest value of σ
as a form of gain control by subtracting it from the original profile.

We can then threshold this difference

V (p) − Vσ(p′), (5)

to produce a set of hypothesized segment boundaries. In Eq. 5, p′

is a peak found in the smoothed version of the profile, Vσ(k), and

p is the corresponding peak found by backtracking to the original

profile, V (k). Figure 5 illustrates this thresholding procedure. The

threshold used in our experiments was set to a fixed value of 0.2 by

using a held out lecture as development data. In general, however,

the peak picking algorithm is relatively insensitive to the choice

of threshold value because of the peakiness of the profile at actual

change points.
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Fig. 5. Illustration of scale space filtering to backtrace peaks in the dis-
similarity profile. The solid blue line is the original profile, and the dashed
black lines are smoothed versions of the profile for different values of
σ. The red circles represent the peak found at the lowest value of σ,
backtraced to find the peak on the original profile. The labeled quantity,
V (p) − Vσ(p′), is the value which is thresholded in order to determine
how distinctive a peak is in relation to its neighboring values.

3. DATA DESCRIPTION

The data used in our segmentation experiments was a subset of

the lectures in the MIT World lecture corpus. Unlike the lectures

examined in the previous chapters, we specifically selected lec-

tures consisting of speech from multiple presenters speaking for a

significant period of time (several minutes or more). At the time

of this writing, these lectures were all publicly available on the

MIT World website [7]. The subject material contained within the

lectures is wide-ranging; topics include hurricane relief response,

medical technology, weapons proliferation policy, and quantum

mechanics. In all, the data represents more than ten hours of

speech contributed by at least 25 different speakers. A summary

of the lectures is given in Table 1.

One of the useful aspects of this data is the availability of high

level reference segmentations provided by organizers of the MIT

World site. Each lecture is accompanied by a summary page which

includes an index of major landmarks in the lecture as judged by a

human listener. For the most part, these landmarks typically cor-

respond to speaker changes, but not all speaker changes are in-

cluded. For instance, minor speaker turns occuring as part of a

Q & A session are not individually labeled, but are grouped to-

gether as a separate section. Since these landmarks are intended

to help guide listeners to important times in the lecture, we focus

on the task of automatically finding these landmarks and not just

arbitrary speaker changes. In some ways, using these landmarks

as our target references is less ambitious than traditional speaker

change detection tasks as it does not require exhaustively finding

all speaker changes. On the other hand, determining how to select

the particular change points that constitute important boundaries

to human listeners is also a nontrivial task.

4. RESULTS AND DISCUSSION

The results of our segmentation procedure are summarized in Ta-

ble 2. Rather than use a floating threshold which yields a detection
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Title # Speakers Length
1. Transforming Healthcare 5 1:31

2. Human Machine Relationships 5 1:32

3. Transforming the Next Century 3 1:07

4. Weapons of Mass Confusion 7 2:01

5. Response to Hurricane Katrina 4 1:58

6. Future of Flight 5 1:44

Table 1. A summary of the 6 lectures used in this paper. The number of
speakers listed for each lecture is taken from the MIT World web site, and
is a lower bound, as most of the discussions also include questions from
the audience.

error tradeoff curve, we instead use a fixed threshold and evaluate

the precision and recall of the resulting segmentation. Our reason

for doing this is because for actual deployment, an actual segmen-

tation is desirable, meaning the utility of the algorithm is strongly

tied to the threshold selected.

For our evaluation, a hypothesized boundary is marked as cor-

rect if it falls within seven utterances of a true boundary. In tem-

poral terms, we observed that the average distance between those

hypothesized boundaries marked as correct and reference bound-

aries was 8.5 seconds. Table 2 shows that with the development-set

selected threshold, the overall recall rate is 100.0%, meaning that

all of the human annotated boundaries are found by our segmen-

tation procedure. The overall precision rate is 80.0%, meaning

that of the 35 boundaries proposed, seven were not on the list of

human-proposed boundaries. It should be noted, however, that all

of these “false alarms” actually do correspond to speaker change

boundaries that are simply not annotated in the reference. There-

fore, while these proposed boundaries should still be considered

errors in the context of our experiment, they may not necessar-

ily detract from the performance of the system when actually de-

ployed. Indeed, when the automatically generated segmentations

are displayed together with the reference segmentations in Fig-

ure 6, one can observe that all of the false alarms occur in the

last segment of each lecture, which corresponds to the Q&A sec-

tion where multiple, unlabeled speaker changes take place. Aside

from these few false alarms, the automatic boundaries correlate

well with the reference boundaries, indicating that our proposed

procedure may prove useful for providing navigational boundaries

for this particular task.

Lecture # Ref # Hyp Precision (%) Recall (%)Bounds Bounds
1. 5 7 71.4 100.0

2. 5 6 83.3 100.0

3. 2 2 100.0 100.0

4. 7 8 87.5 100.0

5. 4 7 57.1 100.0

6. 5 5 100.0 100.0

Overall 28 35 80.0 100.0

Table 2. Segmentation statistics for the processed lectures. # Ref Bound-
aries is the number of segmentation boundaries provided by the human
annotation. # Hyp Boundaries is the number of segmentation boundaries
hypothesized by our segmentation algorithm.

Transforming Healthcare

Human−Machine Relationships

Transforming the Next Century

Weapons of Mass Confusion

Response to Hurricane Katrina

Future of Flight

Fig. 6. Comparison of human generated segmentation with automatic
segmentation for the 6 processed lectures. For each lecture, the reference
boundaries are shown as blue lines in the upper panel, and the automati-
cally generated boundares are shown as red lines in the lower panel.

5. CONCLUSION

The goal of this work has been to illustrate how the speaker spe-

cific nature of segmental DTW can be exploited to perform speaker

segmentation. To that end, we have implemented and evaluated a

segmentation algorithm that is able to find “significant” speaker

changes as evaluated by human listeners. Although we recognize

that there may be more optimal methods for generating segmen-

tations from a set of inter-utterance distances than the one we de-

scribe, our procedure is relatively straightforward and computa-

tionally efficient. Moreover, our main interest is not in finding

an optimal segmentation algorithm per se, but rather in exploring

the potential of segmental DTW as a novel way of comparing ut-

terances. In that context, the results of this work are promising, as

they demonstrate that segmental DTW can indeed be used as a way

to break lengthy audio streams into more manageable segments by

their constituent speakers.
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