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Abstract

Recording speech and other sound is difficult in environments with a large amount of noise
and/or crosstalk. In these environments, array microphones are needed in order to obtain a clean
recording of desired speech. In this work, we have designed, implemented, and tested LOUD,
a 1020-node microphone array. To the best of our knowledge and as documented by Guin-
ness World Records [6], this is currently the largest microphone array in the world. We have
implemented an acoustic beamforming algorithm for sound source amplification in a noisy en-
vironment, and have obtained preliminary results demonstrating the efficacy of the array. From
one to 1020 microphones, we have shown a 13.7dB increase in peak SNR for a representative
utterance, an 87.2% drop in word error rate (WER) with interferer present, and an 91.3% drop
in WER without an interferer.

1. INTRODUCTION

Speech recognition, and sound recording in general, in the presence of significant noise or
crosstalk is difficult. When sound is recorded in a noisy environment through a single mi-
crophone, proximity of the microphone to the speaker’s mouth is essential for audio of suf-
ficient quality for speech recognition. This proximity can not be achieved without tethered
close-talking microphones. However, human friendly pervasive computing environments such
as CMU’s Aura [4] or MIT’s Oxygen [15] are characterized by mobile users going about their
daily business and preclude the use of tethered microphones. Arrays of microphones have a spa-
tial extent that can be exploited along with the propagation qualities of a sound wave to detect,
separate, amplify, and track speech sources in a noisy environment.
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We have created a modular microphone array called the Large acOUstic Data (LOUD)
array, which currently consists of 1020 microphones. Our motivation for building a large array
is that the performance of a microphone array improves linearly as the size of the array grows.
This is well established in the theoretical literature on microphone arrays (e.g., [2, 23]), and our
experimental results given in Section5 confirm this in practice. LOUD is also novel in that it
utilizes a new scalable parallel processing architecture developed in our lab called Raw [22],
which is specifically designed to handle large volumes of streaming data. The details of LOUD’s
use of Raw are beyond the scope of this paper; this information may be found in our technical
report [25].

We begin the paper with an overview of related work in Section2. We then outline the
details of our microphone array implementation in Section3. Section4 presents the setup and
methods used in our experiments to evaluate the array. In Section5, we present and discuss the
results of our experiments. In Section6, we conclude and outline our plans for future work

2. RELATED WORK

Sensor arrays have been extensively explored in the past half-century, initially as a tool for
radar-based tracking of objects [18], and then for a number of other applications including
radio astronomy [8], sonar systems [14], and seismology [9]. Over the past two decades, arrays
of microphones (i.e., acoustic sensors in air) have been increasingly used for sound source
separation and amplification, and since the late 1980s have been explored as a tool for capturing
audio in difficult acoustic environments [3, 12].

Microphone arrays have quickly become popular as an aide for speech recognition, and
several recent projects report significant improvements in recognition performance when using a
microphone array when compared to a single omnidirectional microphone. For instance, Moore
et al. [13] report a near three-fold decrease in recognition error rates using a circular array of
eight microphones in a conference room, and Sullivan [21] reports similar gains with an eight-
microphone linear array. However, all of these used substantially smaller arrays than the one
presented in this paper.

There is a handful of larger arrays in existence. Intermediate sized arrays of 32, 64, and
64 microphones, have been studied by Wilsonet al., Havelock, and Stanford, respectively [26,
7, 19]. Flanaganet al. describe a 400-microphone square array two meters on a side that has
been used to record speech in a large auditorium [3]. Finally, the array of 512 microphones
described by Silvermanet al. [17], has to our knowledge been the largest microphone array to
date. However, the publications stemming from this work mostly use a 16-microphone subset
of the large array. For instance, Adcock showed improved recognition performance for this
smaller array size [1]. Based on investigation of past work, it appears that there is little or no
published work on speech recognition experiments using microphone arrays with numbers of
microphones close to that of the array presented in this paper.

3. IMPLEMENTATION

3.1. Hardware

We have opted to create small microphone modules to ensure LEGO-like modularity in the de-
sign of our array. The 1020-node microphone array (Figure1) consists of 510 printed circuit



ICSV14• 9–12 July 2007• Cairns• Australia

boards (PCBs) each of which contains two Panasonic WM-54BT Electret Condenser micro-
phones. Each PCB also contains one stereo A-to-D converter (Cirrus Logic CS53L32A), and a
small CPLD (Xilinx Coolrunner XCR3032XL). The A-to-D converter samples at 16 KHz, gen-
erating 24-bit serial data for each microphone. Our decision to place two microphones on one
PCB was mainly due to the fact that the A-to-D converter is able to accommodate two channels
of audio. The two-microphone boards are connected in chains of 16 boards (32 microphones),
and each chain plugs into a connector board. The data are streamed through the chain and into
the connector board using time-division multiplexing. Each connector board takes eight chains,
and four connector boards are used to accommodate a maximum of 1024 microphones in total.

Figure 1.A picture of the LOUD 1020-node microphone array

3.2. Algorithm

In order to selectively amplify sound coming from a particular source or multiple sources, we
use a technique called beamforming. Beamforming algorithms filter the sound signal spatially
by taking advantage of the properties of sound propagation through space. Currently, we are
using a delay-and-sum beamforming algorithm [24, 2], the simplest way of computing the beam.
As the name suggests, delay-and-sum beamforming applies a delay to the sound signal recorded
at each microphone, and adds the shifted signals together. Mathematically, ifxi[n] is the sample
recorded at theith microphone at timen, τi is the delay for theith microphone, andM is the
number of microphones in the array, the output of delay-and-sum beamforming at timen is
computed as

y[n] =
M∑
i=1

xi[n− τi] (1)

Each delayτi is exactly the time required for sound to travel from the target source to
microphonei. These delays can be empirically measured or calculated from the array geometry
and are different for each sound source location. By delaying the signal from each microphone
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by the propagation delay, we selectively amplify sound coming from a particular direction.
Sound coming from other directions is attenuated, with the amplification and attenuation char-
acteristics dictated by the array geometry. More information on this technique is available in
many sources [2, 23, 24]. Our delay-and-sum beamforming algorithm runs in real time on the
Raw processor (see our technical report [25] for details).

For the work presented in this paper, we assume that the position of the speaker is known
in advance (however, Section6 outlines our work in source localization). Hence, it is necessary
to determine the sound propagation delay from the source to each microphone in the array. This
is done in advance using the following procedure. A broadband “chirp” (frequency sweep) is
played through a small loudspeaker located at the point marked as the sound source location. A
reference recording is obtained with a single microphone at the loudspeaker position. The audio
captured by each microphone is also captured and stored on disk. The recordings are then up-
sampled by a factor of 50 to obtain sub-sample precision in the calculation. A cross-correlation
function (basically a dot-product at every possible time offset) is then calculated between the
reference recording and the signal from each microphone. The time shift that maximizes the
cross-correlation is taken as the propagation delay for that microphone. If the sound recorded
by microphone of interest and the reference microphone at samplen are given byx[n] andr[n],
respectively, then the time shift between them is determined as

τ = arg max
n

∞∑
m=−∞

x[m + n]r[m] (2)

Anecdotally, this method has proven more accurate than calculating microphone delays
from array and point geometry. This can likely be attributed to some variability in microphone
positions on the boards.

4. EVALUATION

We have conducted preliminary experiments with the LOUD array. The task was to recog-
nize the speech of a person in a very noisy hardware laboratory. The main noise sources were
several tens of cooling fans for computers and custom hardware, and a loud air conditioner.
The subject read a series of random digit strings, and the speech was simultaneously recorded
with the LOUD microphone array and a high-quality noise-canceling close talking microphone
(Sennheiser HMD-410). In some of the trials, another person served as the interferer, reading
a text passage (the “Rainbow Passage”) at the same time as the main speaker was speaking.
The interferer scenario models a situation where several people in a room are talking, but we
are interested in recording the voice of only one person, such as a conference or a surveillance
situation.

The experimental setup was as follows. The array was positioned on a counter 145 cm
from the ground. The main speaker stood in line with the left edge of the array, 88.5 cm to the
left of the center of the array, 137 cm in front of the array, with mouth position approximately
25 cm above the bottom row of the array. The interferer stood at a mirror image point in line
with the right edge of the array, or 88.5 cm to the right of center, and 137 cm in front.

On each recording, we performed a beamforming run for each of 23 different microphone
configurations, ranging from one microphone to all 1020 microphones, and stored the resulting
audio streams to disk. This process simulated simultaneously recording the same audio stream
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with arrays of varying sizes, allowing us to evaluate the effect of the number of microphones
on array performance. Due to hardware constraints at the time of data collection, it was not
practical to record the output of each of the 1020 microphones; however, this capability is now
in place.

For this initial round of experiments, we recorded 150 utterances from two male native En-
glish speakers with an interferer, and 110 utterances from the same speakers without interferers.
In order to provide a baseline for the speech recognition experiments, we also simultaneously
recorded 80 utterances with interferer using a close-talking microphone. In the interferer trials,
the person not serving as the subject served as the interferer. Certainly, much more extensive
testing is necessary in order to evaluate the microphone array in sufficient detail (see section6).

The MIT SUMMIT recognizer [5] trained on a combination of clean and noisy speech
from the Aurora digits corpus [10] was applied to the recorded speech. We note that due to the
channel differences between the close-talking microphone used to record the Aurora data and
the LOUD microphone array, it is unrealistic to expect the array test data to match accuracy
rates previously reported for Aurora.

5. RESULTS

Figure2 gives approximate peak SNRs for a representative utterance, displaying the trend of
improvement as the number of microphones is increased. The close-talking microphone, with
an SNR level of 35.0dB, serves as the baseline. The SNR improves from 17.2dB with one
microphone to 30.9dB with all 1020 microphones.

Figure 3 gives the WERs for the experimental data that we have collected, for all the
array sizes ranging from one microphone to all 1020. Our baseline WER is for a close-talking
microphone, at 1.2%. This is consistent with results from the Aurora corpus when tested on
clean speech [10], meaning that our speech recognizer performs on a level consistent with other
state-of-the-art recognizers. The WER drops from 97.0% for one microphone to 12.4% for the
full array (an 87.2% drop) in the presence of an interferer, and from 92.9% to 8.0% (a 91.3%
drop) without an interferer.

5.1. Discussion

The results in Figures2 and3 demonstrate the benefit of using arrays of this size. In this work,
we focused on the design of the system, and did not implement sophisticated beamforming
algorithms or other signal processing software components. However, even with the simplest
beamformer possible, we were able to obtain increasing SNRs and gains in recognition accuracy
from one to 1020 microphones.

The most drastic jump in the recognition accuracy curve is seen when the number of
microphones goes from 32 to 60. This could be because this completes the full line of the array
(60 microphones), making the beam width almost twice as narrow as with 32 microphones.
After this point, adding more microphones does not make the array wider, just taller. Another
reason for the jump is that the landmark component of the recognizer [5] was not optimized
for low SNRs. We note that the WER even with 1020 microphones (12.4% and 8.0%) is clearly
significantly short of the 1.2% baseline from the close-talking microphone; and this is consistent
with the SNRs noted in the recordings. However, with more complicated signal processing and
beamforming algorithms and a better match between the recognizer training and test conditions
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Figure 2.Peak SNRs for one representative recording.
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Figure 3.Experimental word error rates.

(see Section4), we are confident that the recognition accuracy of audio recorded with the array
can approach that of a close-talking microphone.

Comparison with past work is difficult for several reasons. One reason is differences in
experimental conditions. Our data were collected in a very noisy environment; likely noisier
than most of the currently-published results. For instance, Mooreet al.[13] cite an accuracy
rate of 42.4% with a single omnidirectional microphone and one interferer, compared to our
3.0%; Adcock [1] is at 58%; and Sullivan [21] is at 33%. While SNR is one intuitive way
of comparing noise levels, it is actually difficult to compare based on SNR, since the various
methods for determining SNR can produce very different results. In fact, there is much opinion
that SNRs may not be a good measure of speech quality at all [16, 1].

In general, it can be noted that many in the scientific community feel that researching large
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arrays is impractical and unbeneficial. While this work by no means constitutes an exhaustive set
of experiments, we hope that by demonstrating a consistent improvement with increasing array
sizes, we have shown that, at least at the current time, this belief is not entirely accurate. While
our accuracy rates even with a 1020-microphone array fall short of that of recordings made
with a close-talking high-quality microphone, we believe that this merely serves to motivate
future research in adaptive beamforming (e.g. [20]) and other advanced sound source selection
techniques (see Section6).

6. CONCLUSION AND FUTURE WORK

In this work we have introduced LOUD, a 1020-node microphone array and beamformer. We
have presented SNRs and recognition accuracy scores for 23 different array sizes, ranging from
one to 1020 microphones, showing a steady improvement all the way to 1020 microphones. We
believe that with these results we have made the case that large microphone arrays deserve a
thorough investigation.

In order to evaluate the quantitative performance of the array further, more speech data
must be collected from more speakers, in more points, in different noise environments, with dif-
ferent array configurations and spacings, etc. We plan to produce an array microphone recording
corpus, which we will make available for public distribution on the web. Other array corpora
have been made available in the past, but only with a smaller number of microphones (e.g. Jan
et al. [11] have data from 37 and 23 microphones).

We have also implemented an algorithm that allows us to track multiple speakers as they
move in the space around the array, and selectively listen to any one of them. A video demon-
strating this system is available at
http://cag.csail.mit.edu/mic-array/videos/. The efficacy of this approach has not yet been
evaluated in controlled experiments; however anecdotally speaking the performance is promis-
ing. Future work will also consider the effect of room acoustics and environmental conditions
(other than noise). Array performance can be affected by reverberations and distortions due to
the room in which the array is located. We plan to measure array performance with different
room configurations in order to understand these effects.
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