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Abstract—Although wavelet analysis has been proposed for
speech processing as an alternative to Fourier analysis, most
approaches make use of off-the-shelf wavelets and dyadic
tree-structured filter banks. In this paper, we extend previous
wavelet-based frameworks in two ways. First, we increase the flex-
ibility in wavelet selection by taking advantage of the relationship
between wavelets and filter banks and by designing new wavelets
using filter design methods. We adopt two filter design techniques
that we refer to as filter matching and attenuation minimization.
Second, we improve the flexibility in frequency partitioning by
implementing rational as well as dyadic filter banks. Rational
filter banks naturally incorporate the critical-band effect in the
human auditory system. To test our extensions, we implement
an energy-based measurement which we also compare in perfor-
mance to the mel-frequency cepstral coefficients (MFCCs) in a
phonetic classification task. We show that the designed wavelets
outperform off-the-shelf wavelets as well as an MFCC baseline.

Index Terms—Filter design, phonetic classification, rational
wavelets.

I. INTRODUCTION

THE MOST commonly used observations in automatic
speech recognition (ASR) are based on a short-time

spectral representation that assumes time-stationarity within
fixed-sized time frames. For example, mel-frequency cepstral
coefficients (MFCCs), which are the dominant representations
for ASR, fall into this category [1]. Recently, wavelets and
filter banks (FBs) have been introduced in ASR as potential
speech processing tools to overcome the limitations of such
spectral representations. The wavelet transform provides an
improved signal representation with a tradeoff between time
and frequency resolution. Moreover, the wavelet transform can
be efficiently implemented using FBs that naturally take the
critical-band effect into account, and it has also been shown to
effectively emulate the cochlear transform [2]. We believe that
these properties of the wavelet transform makes it an attractive
representation for phonetic classification.

Much research on acoustic measurement extraction using
wavelet analysis has been done [3]–[7]. Kim et al. proposed a
modified octave-structured FB for speech recognition [8]. Their
experiments showed better performance for the Daubechies
wavelet over MFCCs on the task of Korean digit recognition.
Tan et al. compared the discrete wavelet transform against the
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sampled continuous wavelet transform and MFCC as front-end
processors in a speaker-independent HMM-based phoneme
recognition system [9]. The experiments, performed over a
subset of TIMIT [10], indicated marginal improvement of
the wavelet-based front-end over MFCCs. Farooq and Datta
used Daubechies wavelet packets to obtain a 24-band FB that
mimics MFCCs [4]. The acoustic measurement was obtained
by computing the log energy in each frequency band, and
rotating the outputs with a discrete cosine transform. Phonetic
classification was performed on the TIMIT corpus, over a
limited subset of the data and the phonemes, and compared
with MFCCs. Their results showed that the wavelet-based
measurement outperformed MFCCs in the case of stops and
unvoiced phonemes.

In this paper, we extend previous research on wavelet anal-
ysis for measurement extraction. Most of the wavelets used for
speech analysis are generic and not particularly designed for the
task at hand. For example, some wavelets might correspond to
FBs that have a poor attenuation in the stopband causing en-
ergy leakage. Moreover, wavelet transforms are often imple-
mented using dyadic FBs, which do not necessarily have a good
frequency resolution. In this paper, we design new wavelets
using two filter design techniques: filter matching and attenu-
ation minimization. We also examine rational FBs as a potential
extension to dyadic FBs [11], [12]. To the best of our knowledge,
rational filter banks have not been previously implemented for
acoustic measurement extraction in ASR.

We restrict our implementation of the wavelet-based acoustic
measurement extraction to the task of context-independent
phonetic classification. We believe this examination will give
insight into the advantages and limitations of the proposed
techniques. Although we do not perform speech recognition
experiments, it has been previously shown that gains in pho-
netic classification tend to translate into gains in phonetic and
word recognition [13], [14].

This paper is structured as follows. In Section II, we present a
brief overview on rational wavelets and FBs, and in Section III,
we elaborate on the filter design methods implemented for
dyadic as well as rational FBs. In Section IV, we describe the
experimental setup used to evaluate the framework and the
proposed extensions. In Section V, we present the results for
Daubechies wavelets and tree-structured dyadic FBs, and the
designed wavelets and rational FBs. We summarize and propose
future extensions to the current framework in Section VI.

II. RATIONAL WAVELETS AND FILTER BANKS

The theory of wavelets and filter banks has been studied in-
tensively over the past two decades [11], [15]–[17]. The range of
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their application varies from image and signal processing to geo-
physics. Wavelets and FBs have evolved separately. A wavelet
is a function with compact support capable of representing sig-
nals with good resolution both in the time and frequency do-
mains. Wavelets, like sinusoids, are basis functions that span
the square-integrable space, , and are used to develop se-
ries expansions of signals in that space. An FB, on the other
hand, is an array of filters, which can be low-pass, band-pass, or
high-pass, that decompose a signal into subbands over different
regions of the spectrum. Within the multiresolution framework,
continuous-time wavelets and discrete-time FBs are closely re-
lated. It has been shown that a wavelet transform can be effi-
ciently implemented using FBs [11], [17]. It is this relation that
is typically exploited and that we further stress in this research.

The following is a brief presentation of orthonormal rational
wavelets and FBs. For readers who are interested in a broader
overview on wavelets and FBs, we provide further theoretical
background in Appendices I and II. More detail relevant to the
research described in this paper can be found in [18].

As described in Appendix I, FBs are commonly implemented
in a dyadic fashion, meaning that at each iteration of the FB,
the spectrum is split in half. This results in a spectral decom-
position that does not have a good resolution at the high fre-
quencies. In this paper, we propose to use rational sampling to
obtain a finer spectral resolution and naturally simulate the crit-
ical bandwidths. First, we define the -factor as the ratio of
the bandwidth to the center frequency of a band. For the oc-
tave-band FB with a partitioning ratio of 1/2, the -factor is
2/3. We are interested in the more general partitioning ratio of

, where at each iteration of the FB, the spectrum
is split into the ratios and . To calculate the

-factor corresponding to such a FB, we refer to the frequency
partitioning after one iteration: the bandwidth of the highest fre-
quency band is , and the center frequency of that band is

. The expression for , in this case,
becomes

bandwidth
center frequency

(1)

With this formula, we obtain the value of that matches
a desired -factor. For example, to closely approximate the

-factor of the filters in the MFCC implementation, which is
0.1376, we need to set and the resulting sampling ratio
becomes 8/7. Fig. 1 illustrates the 40 MFSC filters used in the
MFCC computation as well as those generated using a rational
filter bank with a sampling factor of 8/7. Another interesting
sampling ratio is 6/5 which closely approximates the Bark
scale.

There has been research on perfect reconstruction FBs with
rational sampling factors [19] and nonuniform multirate FBs
[20]. We base the remainder of our work on rational FBs on
the research of Blu [12], [21], [22], where we refer the reader
for further detail and proofs.

A rational FB can only approximate a wavelet transform. In
other words, rational sampling factors with FIR filters do not
lead to a multiresolution analysis, and the iteration of a FB does
not generate a unique limit function. This is because the wavelet

Fig. 1. Top figure illustrates the 40 MFSC filters used in the MFCC computa-
tion. Bottom figure shows the filters obtained using the rational filter bank with
sampling factor 8/7.

Fig. 2. Analysis channel of a rational FB of sampling factor p=q along with
the corresponding frequency partitioning.

function corresponding to a rational FB is not shift-invariant.
The shift error, however, can be made arbitrarily small when the
function regularity increases. In [12], Blu designed an algorithm
for the rational case that takes into consideration the shift error.
Fig. 2 illustrates a rational FB as proposed in [12], where is the
low-pass filter and is the high-pass filter. Both FB branches
are downsampled by a factor of ; however, the low-pass branch
is upsampled by a factor of , while the high-pass branch is up-
sampled by a factor of . We briefly describe the FB design
algorithm in Section III-B. We use the term rational wavelets as
mentioned in [12], since the functions do not satisfy the shift-in-
variance property and effectively are not wavelets. Also, we con-
centrate on the rational sampling factor of the form ,
although the references study rational FBs with general sam-
pling factor . For example, referring to Fig. 2, and

.

III. FILTER DESIGN

In this section, we describe two filter design methods imple-
mented in this research. The first filter design method is referred
to as filter matching and is implemented only for the dyadic
case. The second method is referred to as attenuation mini-
mization and is proposed by Blu [12] for the design of rational
filter banks. We also implement it for the dyadic configuration,
which is trivial in this case.
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Fig. 3. Low-pass filter designed to match the order 10 Butterworth filter.

A. Filter Matching

The Filter Matching method refers to minimizing the dif-
ference in modulus between the designed and desired filter
given some constraint. The minimization is formulated in the
frequency domain. We are only concerned with orthonormal
FBs where the analysis and synthesis systems can be modeled
as paraunitary matrices. As described in Appendix I, a parauni-
tary matrix can be factored into blocks of delays and rotation
matrices that are a function of . If we denote the desired filter
by , and the paraunitary analysis filter by , the
problem becomes that of minimizing

(2)

given the following constraint:

(3)

where is the frequency response of the analysis low-pass
filter , and is the number of desired zeros at for
which is also the number of vanishing moments of the wavelet
function [11]. Orthogonality of the FB is constrained by the lat-
tice structure. The algorithm implementation is based on a con-
strained nonlinear optimization.

Fig. 3 shows a 30-tap filter designed to match the Butterworth
filter given the constraints of orthogonality and 3 zeros at .

B. Attenuation Minimization

1) Design of the Low-Pass Filter: The motivation behind
the attenutation minimization algorithm is to find the best fre-
quency-selective low-pass filter given constraints of or-
thogonality and regularity of the FB. The degree of selectivity is
defined as the difference in modulus between and the ideal
low-pass filter. It can be shown that by minimizing the attenu-
ation band of , we minimize the difference between
and the ideal filter [12]. The problem is thus reduced to attenu-
ation minimization, and can be formulated using the Lagrange
multiplier method where we minimize

function constraints (4)

Fig. 4. Low-pass filter designed using attenuation minimization with the cor-
responding ideal filter it matches to and the Daub12 filter.

In our case, function is the attenuation in the stopband,
and the constraints are those of orthonormality and regularity
of the FBs. In order to ensure perfect reconstruction of the FB,
Blu devised a recursive implementation of the algorithm where
the condition for convergence is minimal perfect reconstruction
error [12]. By doing so, the algorithm itself focuses on the at-
tenuation while the iterations minimize the reconstruction error.

2) Design of the High-Pass Filter: If the difference between
the upsampling and downsampling factors is 1, as in our case,
then there is a unique high-pass filter corresponding to the de-
signed low-pass filter [12]. Referring to as the polyphase ma-
trix of of size , we know that it is parauni-
tary. Furthermore, the rational FB is orthonormal and can also
be represented by a paraunitary matrix where
is the polyphase representation of and is of size 1 .
As shown in Appendix I, both and can be factored into
Householder matrices

After obtaining , we factor it to get a rectangular constant
matrix of size . Next we complete so
that it becomes a square orthonormal matrix by adding a single
row to it, in this case. Hence, can be written as

(5)

We can then compute as

(6)
We use this method to design dyadic as well as rational filter
banks as illustrated in Figs. 4 and 5, respectively. Fig. 4 shows
the magnitude response of a 30-tap low-pass filter designed by
attenuation minimization and implemented in a dyadic FB.
We refer to it here as DyadicAM30. For comparison we in-
clude the ideal filter and the low-pass filter corresponding to the
Daubechies wavelet of order 12, Daub12. Unlike Daub12, the
designed filter exhibits a very good attenuation in the stopband.
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Fig. 5. Low-pass and high-pass filters corresponding to the rational FB of sam-
pling factor 8/7.

TABLE I
DESCRIPTION OF THE STANDARD TRAIN, DEVELOPMENT, CORE TEST, AND

FULL TEST DATA SETS OF THE TIMIT CORPUS

Fig. 5 illustrates the designed low-pass and high-pass filters for
a rational FB of sampling ratio 8/7.

IV. EXPERIMENTAL SETUP

To evaluate the wavelet-based framework and our proposed
extensions, we set up phonetic classification experiments on the
TIMIT corpus. We use a segment-based classifier and compare
against a baseline that uses MFCCs. The following is a descrip-
tion of the setup.

A. TIMIT Corpus

TIMIT is a corpus of continuous read speech from 630
speakers, 438 males, and 192 females, representing eight major
dialect groups of American English [10]. There are 61 phone
labels used in the TIMIT phonetic transcriptions. Following
common practice, the 61 phone labels are collapsed into 39
labels prior to scoring, and the glottal stops are ignored [23].
The data sets we use in the classification experiments are the
standard Train, Development, Core Test, and Full Test sets,
which omit all as dialect sentences. The 462-speaker Train set
is used for training in all the experiments, the 50-speaker Devel-
opment set for classification as well as significance scoring, the
24-speaker Core Test set for classification, and the 118-speaker
Full Test set primarily for significance scoring. The sets are
described in Table I. There is no overlap in speakers between
any of Train, Development, and Full Test sets, and the sentences
in the training set are different from those in the development
and test sets. The Core Test set, on the other hand, is a subset
of the Full Test set. It was designed to contain one female and
two males from each of the eight different dialect regions, and
has proven to be a challenging test set.

Fig. 6. Flowchart of the computational stages for the wavelet-based acoustic
measurement.

B. Classifier

The classification experiments are performed using a seg-
ment-based classifier [24]. Each segment is represented by
a fixed-size measurement vector. Since we are only dealing
with phonetic classification, we obtain the segments from the
phonetic transcriptions. In all the experiments, normalization
and principal component analysis (PCA) are performed on the
acoustic observations to whiten the feature space. The mea-
surements are then modeled using diagonal Gaussian mixture
models (GMMs). Maximum likelihood training is used to
estimate the parameters of the Gaussian models. Classification
is implemented using Maximum a posteriori decisions, i.e.,
phone priors are used.

C. Baseline

The speech waveform is first preemphasized by a factor
of 0.97 prior to any processing. Next a Hamming window is
applied to obtain speech frames and the 256-point short-time
Fourier transform (STFT) is computed for the 25.6-ms frames
at a rate of 5 ms. Forty MFSCs are computed, and 14 MFCCs
are then obtained per frame [1]. A 76-dimensional observation
vector is extracted for each segment in the TIMIT phonetic
transcriptions. The segmental measurement is a concatenation
of 3 MFCC and energy averages computed over the segment in
a 3–4–3 proportion, 2 MFCC and energy derivatives computed
using linear least-squared error regression over a time frame of
40 ms centered at the start and end of the segment, and a log
duration [13].

Diagonal GMMs are used to model the acoustic measure-
ments with a minimum of 61 datapoints per mixture compo-
nent and a maximum of 96 mixture models per phone. With this
baseline configuration, we obtain a classification error of ap-
proximately 23.9% on the Development set, 24.6% on the Core
Test set, and 24.4% on the Full Test set.

D. Wavelet-Based Acoustic Measurement

To evaluate the suggested extensions to the wavelet and
FB implementations, we propose an energy-based acoustic
measurement. Fig. 6 illustrates the stages involved in its
computation.
Stage 1) Compute the wavelet transform of the input speech

frame. In all the experiments related to the wavelet-based
acoustic measurement, the frame rate is 200 frames per
second (5 ms per frame) with a frame size of 20 ms. In
this stage, we specify the wavelet type and the frequency
decomposition, whether we are using wavelet packets or
rational sampling.

Stage 2) Compute the energy of each frequency band resulting
in coefficients where is the number of frequency
bands analyzed in Stage 1.

Stage 3) Compute the log of the energy coefficients.
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Fig. 7. Low-pass filters corresponding to the Haar, Daub2, Daub4, Daub6,
Daub10, and Daub12 wavelets.

TABLE II
DESCRIPTION OF THE IMPLEMENTED DAUBECHIES WAVELETS AND THE

CORRESPONDING ERROR RATE ON THE DEVELOPMENT SET. THE RESULTS

ARE FOR THE 26-BAND TREE-STRUCTURED FB IMPLEMENTATION

The frame sizes used for computing the wavelet-based and
MFCC measurements are set to 20 and 25.6 ms, respectively.
The values were optimized for each configuration. The resulting

-dimensional measurement is used to generate a segmental
measurement of dimension , which is extracted over
given phonetic segments similarly to the acoustic measurement
described in Section IV-C. can range between 18 and 30 co-
efficients and the dimensionality of the segmental vector lies
between 96 and 156. PCA is used to project the feature space
onto 76 dimensions as well as whiten it for improved Gaussian
mixture modeling.

V. RESULTS AND DISCUSSION

A. Daubechies Wavelets

First, we test the acoustic measurement using Daubechies
wavelets. Tree-structured FBs are used to obtain the frequency
partitions. Table II lists the implemented wavelets with a brief
description and the corresponding error rates on the Develop-
ment set. A wavelet of order will have a corresponding low-
pass filter with zeros at . From Fig. 7, we notice that the
larger the number of zeros at , the narrower the transition re-
gion and the sharper the filter cutoff. This also leads to a lower
error rate as illustrated in the fourth column of Table II. Intu-
itively, sharp cutoff is a desired characteristic of filters since it
implies good frequency selectivity. We adopt the 26-band tree
described in Table III in the subsequent dyadic implementations
and evaluations. This FB is actually reminiscent of the one pro-
posed in [4], although the frequency bands are not identical. The
frequency bands used here are selected to closely emulate the
critical-band effect where eight filters divide the 0–1-kHz re-
gion into equal bands, and the rest of the filters approximate
logarithmic partitions.

TABLE III
FREQUENCY BANDS CORRESPONDING TO THE 26-BAND FB

B. Designed Filters

1) Filter Matching: We test the filter matching algorithm by
matching it to two desired signals: 1) the Butterworth filter of
order 10 and cutoff frequency and 2) the ideal low-pass
filter. The resulting filters are denoted DyadicFM_Butterworth
and DyadicFM_Ideal, respectively, where FM stands for Filter
Matching. They both have three zeros at and are 30-tap filters.
The designed filters are tested with the 26-band tree-structured
FB, and their corresponding error rate on the Development set
is 24.1% and 23.5%, respectively.

2) Attenuation Minimization: For the dyadic case, six filters
denoted DyadicAM{tap #} are designed, where AM stands for
attenuation minimization. The filters are 10, 16, 20, 26, 30, and
34-tap filters, respectively, and they all have a regularity order
set to 1. We also design the rational FBs listed in Table IV.
We refer to the rational filters as RationalAM{sampling factor}.
The regularity order is also set to 1 for all of them. The rational
FBs are iterated on the low-pass channel times to generate

bands. We iterate until the lower cutoff of the last band-pass
filter is at or close to 1 kHz. We then used DyadicAM30 de-
signed in Section III-B to divide the 0–1-kHz region into eight
equipartitions. This is done to obtain a frequency partition that
models the critical-band spectral resolution. The fifth column in
Table IV gives the overall number of filters in the FB. The length
of the filters is large which is necessary to obtain narrow pass-
bands and also good frequency selectivity as is the case here.
Fig. 8 shows the error rates, which vary between 23.2% and
24.7%, on the Development set for the different filters designed
using attenuation minimization.
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TABLE IV
DESCRIPTION OF THE DESIGNED FILTERS FOR THE RATIONAL FB

Fig. 8. Error rates on the Development set for the six filters designed using the
attenuation minimization technique.

TABLE V
CLASSIFICATION PERFORMANCE (OVERALL AND PHONETIC SUBCLASSES) OF

THE FIVE SELECTED ACOUSTIC MEASUREMENTS AND THE BASELINE (MFCC)
ON THE DEVELOPMENT SET. VOW STANDS FOR VOWEL, NAS FOR NASAL,
STP FOR STOP, WFR FOR WEAK FRICATIVE, SFR FOR STRONG FRICATIVE,

AND CL FOR CLOSURE

C. Overview and Discussion of Classification Performance

For further evaluation of the results, we select five acoustic
measurements listed in the first column of Table V which
also gives the overall classification results as well as the error
rates for the phonetic subclasses on the Development set. The
results for the baseline classifier using MFCCs are included
for comparison. Table VI also shows the evaluation of the
five acoustic measurements on the Core Test and Full Test
sets. Significance scoring is reported for the Development and
the Full Test sets but not for the Core Test set since it has a
small size. The McNemar significance test is used [25]. We
make the following observations based on Tables V and VI.
First, the overall classification error rates corresponding to all
the acoustic measurements match or exceed that of MFCCs
on the Development set. However, there is a difference in
performance over the phonetic subclasses. For example, all the
wavelet-based measurement outperform or roughly match the
MFCCs in the vowel, weak fricative, and closure categories,
but only RationalAM8/7 also shows improvement for the
stops. These observations do not match the results reported by
Farooq and Datta in [4]. It is worth noting that, as mentioned in
Section V-A, the 26-band tree-structure is not identical to the

TABLE VI
CLASSIFICATION PERFORMANCE OF FIVE SELECTED MEASUREMENTS AND THE

BASELINE (MFCC) ON THE CORE TEST AND FULL TEST SETS. MCNEMAR

SIGNIFICANCE SCORES FOR THE DEVELOPMENT AND FULL TESTS ARE

ALSO LISTED. (Y) OR (N) INDICATES WHETHER THE IMPROVEMENT

IS STATISTICALLY SIGNIFICANT AT THE 0.05 LEVEL

one proposed in [4]. More important, the training and test sets
for the two setups are different. One possible reason for our re-
sults might be the smoothness of all the implemented wavelets
which renders them capable of capturing the harmonics of the
vowels as well as the abrupt changes in the consonants. We
also recall that stops are considered the most dynamic types
of sounds. This could explain why RationalAM8/7, which
exhibits a better overall frequency resolution, has the best
result for the stop consonants. DyadicAM30 and DyadicAM34
show improvement over the MFCC for the nasals where most
of the spectral information is concentrated below 1 kHz. This
might explain why the high-frequency resolution introduced by
RationalAM8/7 does not give any improvement. Furthermore,
it does seem that the low-frequency selectivity provided by
DyadicAM30 and DyadicAM34 improves the error rate of
the nasal consonants. At this point, we do not claim to have
a full intuition of the performance of the wavelet-based mea-
surements over the different phonetic subclasses. We hope
that further experiments will help shed the light on some of
the results obtained. The results listed in Table V are also
reminiscent of those obtained by Halberstadt [13], [26]. The
difference in results over the phonetic subclasses suggests
the possibility of implementing a hierarchical architecture
where filters optimized to the different subclasses are designed.
Another observation is that the Daub12 wavelet, performs the
worst on the Core Test and Full Test sets, whereas the acoustic
measurement corresponding to RationalAM8/7, consistently
outperforms the rest of the measurements and the baseline. The
difference in results over the baseline is also significant.

Our best results compare favorably to those mentioned in
the literature as well as those of the baseline classifier. Though
the results mentioned here are for context-independent phonetic
classification, they should not be used for direct comparison
since the training and test conditions differ from one another.

The best reported result for context-independent phonetic
classification is by Halberstadt [26]. He successfully ex-
perimented with heterogeneous measurements and multiple
classifiers and obtained an error rate of 18.3% on the Core
Test set. One of the issues addressed in Halberstadt’s thesis is
that of aggregating several acoustic models in order to boost
the performance and robustness of the models [27]. To get an
idea of the extent of expected improvement upon implementing
aggregation on our acoustic measurements, four-fold aggre-
gation was tested on the acoustic measurement corresponding
to RationalAM8/7. Error rates of 21.8% on the Development



CHOUEITER AND GLASS: IMPLEMENTATION OF RATIONAL WAVELETS AND FILTER DESIGN 945

set, and 22.9% on the Core Test set are obtained. These results
compare very well with the performance of the fourfold ag-
gregated models tested for various segmental measurements in
[27]. The error rates Halberstadt reported on the Development
set ranged between 21.4% and 22.7%.

Other results are reported by Clarkson and Moreno who
implemented support vector machines (SVMs), with various
kernel functions, applied to phonetic classification. They ob-
tained error rates that range between 22.9% and 23.7% on the
Core Test set [28]. Chigier et al. experimented with several
signal representations and reported 22.0% using perceptual
linear predictive (PLP)-based measurements and a neural net
classifier [29]. Chengalvarayan and Deng developed a new
hidden Markov model that integrates generalized dynamic
feature parameters into the model structure. The best result
they reported is an error rate of 31.8% on a 20-speaker test
set [30]. Zahorian et al. obtained 23.0% on the Core Test set
using spectral/temporal features and binary-pair partitioned
neural network classifier [31]. Recently, Gunawardana et al.
implemented hidden conditional random fields for phone classi-
fication [32]. They reported a classification error rate of 21.7%
on the Core Test set. Sha and Saul used large Gaussian mixture
modeling for both phonetic classification and recognition [33].
Their best classification result on the Core Test set was 21.1%.
It is interesting to note that this modeling method could be
applied to any feature vector.

We believe our results are encouraging and portend further
improvement upon the investigation of different wavelet-based
acoustic measurements, the combination of several generated
measurements, in addition to acoustic model aggregation.

VI. CONCLUSION AND FUTURE WORK

We have presented a wavelet and FB framework for pho-
netic classification in which we have exploited two dimensions
of the wavelet and FB theory: filter design and rational sam-
pling. We have shown that off-the-shelf wavelets, particularly
the Daubechies wavelets, do not always give the best results,
and there is a need for wavelet design. We have also shown that
a dyadic FB implementation is not optimal, and we have exam-
ined a method for rational FB design.

The framework is, however, still primitive in terms of de-
sign as well as implementation. For example, it is tested on the
TIMIT corpus, which is a clean data set. It would be challenging
to implement it on a noisy data set, where wavelets have proved
to be efficient in denoising tasks [34].

The framework is also limited to the task of phonetic clas-
sification. A natural extension would be phonetic recognition
taking into account linguistic context-dependency such as
coarticulation.

Given the results that we obtained, we feel that there is room
for further experiments. In our implementation of this frame-
work, we are mostly interested in the effect of filter design and
rational FBs. However, given the trend in Table II, it would
be interesting to see the effect of increasing the length of the
Daubechies filters on the phonetic error rate. Furthermore, the
26-band tree-structured FB is one possible approach we adopt

Fig. 9. Two-channel dyadic FB and the corresponding frequency spectrum par-
titioning. The analysis section consists of filtering followed by downsampling
by 2 while the synthesis consists of upsampling by 2 followed by filtering.

to mimic the critical bands and other designs can be proposed
and implemented. It would also be worthwhile to implement dif-
ferent tree structures that are optimized for the different phonetic
subclasses.

A final, yet crucial point is that the current acoustic obser-
vation is a very simple energy-based measurement that takes
little advantage of the multiresolution analysis provided by the
wavelets and FBs. Hence, there is a need to design a different
wavelet-based measurement that makes better use of the flexi-
bility of the proposed framework.

APPENDIX I
WAVELETS AND FILTER BANKS

Filter Banks: Filter banks can be efficiently implemented
using discrete finite-impulse response (FIR) filters, downsam-
plers, and upsamplers. An important requirement on the FB is
perfect reconstruction, meaning that the input signal processed
by some set of filters at one end of the channel should be per-
fectly reconstructed by another set of filters at the other end.
Such filters are referred to as analysis and synthesis filters, re-
spectively. Perfect reconstruction FBs can be used to imple-
ment series expansions of discrete-time signals in the
space. Fig. 9 illustrates a perfect-reconstruction FB and the cor-
responding frequency bands for the two-channel case. In this
case, is the analysis low-pass, is the analysis high-
pass, is the synthesis low-pass, and is the synthesis
high-pass. For perfect reconstruction, we would like the output
to be at most a delayed version of the input, which, in the -do-
main, is given by

(7)

The output can be written as

(8)
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For (7) and (8) to be equal, we require that the Amplitude Dis-
tortion component be equal to a constant and the Aliasing com-
ponent be equal to zero. In matrix notation, this is written as

(9)

where

(10)

and

(11)

This is known as the perfect reconstruction criterion in the mod-
ulation domain, where is the analysis modulation ma-
trix and the synthesis modulation matrix. An FB that
satisfies (9) is referred to as biorthogonal. A perfect reconstruc-
tion FB is orthonormal if it satisfies

(12)

Based on (12), is referred to as a paraunitary matrix
[16]. In this paper, we work only with orthonormal FBs. We
implement the FBs in the polyphase rather than the modulation
domain since it is more computationally efficient as illustrated in
Fig. 10 [17]. In the polyphase domain, the condition for perfect
reconstruction is

(13)

Furthermore, the condition for orthonormality is

(14)

where the analysis polyphase matrix is denoted

(15)

and the synthesis polyphase matrix is denoted

(16)

Note that is the th polyphase component of the th filter
such that

(17)

In this paper, we are concerned with designing FBs charac-
terized by paraunitary polyphase matrices. There are several
methods available for factoring paraunitary matrices into
smaller building blocks that are easy to manipulate. We proceed
to describe the two methods that are implemented in this paper.

Fig. 10. Polyphase implementation of the two-channel FB. The upsampling
and downsampling by 2 have been moved before and after the analysis and syn-
thesis filters, respectively.

Lattice Factorization: A paraunitary matrix can be fac-
tored into building blocks consisting of delays and rotation ma-
trices [16]

(18)

The lattice factorization of the paraunitary analysis filter
can thus be written as

(19)

where .
With delay blocks and rotations matrices, the degree

of every polyphase component of is and, hence, that of
and is . Such a structure imposes orthog-

onality on the filter bank [16]. One can now solve for given
some desired constraints, such as matching the frequency re-
sponse of a filter and imposing a certain number of zeros at on

. The matrix remains paraunitary for any value
of . However, to impose at least one zero at on , the
following criteria should be satisfied [17]:

(20)

Householder Factorization: Another way of factoring
a paraunitary matrix is using Householder matrices as the
building blocks. The paraunitary analysis filter can then
be written as

(21)

where , the Householder matrix is

(22)

, are unitary vectors, and is a constant
unitary matrix [16].

Tree-Structured FBs: The FB that we have seen so far is
a two-channel one. If one iterates on the low-pass channel, as
shown in Fig. 11, we obtain a constant- octave band. In this
simple case, the FB is said to have a dyadic structure meaning
that at every iteration, the spectrum is split in half. The idea can
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Fig. 11. FB iterated on the low-pass channel and the corresponding frequency
partitioning.

Fig. 12. Tree-structured implementation of a FB and the corresponding fre-
quency partitioning. FB iterations occur at the high-pass as well as the low-pass
channel.

be extended to arbitrary tree-structured FBs by also allowing
iteration on the high-pass channel as illustrated in Fig. 12. Such
structures are used to implement wavelet packets.

APPENDIX II
WAVELETS AND THE MULTIRESOLUTION FRAMEWORK

Wavelet Function: Suppose that is constructed as
a collection of spaces , which have the property of being
spanned by functions of the form

(23)

These functions are known as wavelet functions and they form
an orthonormal basis for the spaces [11], [17]. They also
satisfy a property, known as the two-scale or dilation equation

(24)

which relates the wavelet function to another function known as
the scaling function and is denoted by . It can be shown
that the set of scaling functions span the nested and
complete spaces such that [11]

(25)

The scaling functions are of the form

(26)

They also satisfy a two-scale equation

(27)

The idea of a multiresolution framework manifests itself in (27)
which relates the basis functions at one scale to those at a higher

Fig. 13. Relation between space V and spaces W and V where V =

W + V .

scale. Furthermore, (24) indicates that there is a relation be-
tween the wavelet and scaling functions and, hence, between
the and spaces. It has been shown that is the dif-
ference between and [11]. Fig. 13 illustrates the idea
for and shows that any signal belonging to can be
represented in terms of a basis which spans a lower-resolution
space plus some “detail” left out in . This “detail” is, in
turn, represented in terms of a basis which spans . Hence,
the original signal has been split into a coarse approximation
and some detail. This representation can be easily extended to
include more scales. Furthermore, by taking the Fourier trans-
form of (24) and (27), we get

(28)

where

(29)

It can be shown that and are the low-pass and high-
pass filters, respectively, of a two-channel FB, and the iterations
of (28) converge to piecewise smooth scaling and wavelet func-
tions if the corresponding filters satisfy certain conditions such
as regularity [11]. At this point, it suffices to know that for a
filter to be regular, it is necessary, but not sufficient, for it to have
at least one zero at the aliasing frequency — for the dyadic
two-channel case. Furthermore, the wavelet transform can be
efficiently implemented through an iteration of FBs.
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