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Abstract

In this paper, we use subword modeling to learn the pronun-
ciations and spellings of new words. The subwords are gen-
erated with a context-free grammar, and are intermediate units
between phonemes and syllables. We first evaluate the effec-
tiveness of the subword model in automatically generating the
spelling and pronunciation of new words. Then the subword
model is embedded in a multi-stage recognizer which consists
of word, subword, and letter recognizers. In a preliminary set of
experiments, the hybrid system outperforms a large-vocabulary
isolated word recognizer. The subword model is also used to
improve the performance of the letter recognizer by generating
a spelling cohort which is used to train a small letter n-gram.
The small letter n-gram has a reduced perplexity compared to a
much larger n-gram, and can be used by the letter recognizer for
the spoken spelling mode. This could translate to an improved
letter error rate in future letter recognition experiments.

Index Terms: subword modeling, new word acquisition

1. Introduction

The need for more flexible and adaptive automatic speech
recognition (ASR) has never been greater due to the widespread
emergence of speech-enabled applications and devices [11, 4]
as well as spoken dialogue systems for information retrieval [9,
15]. One of the factors impeding the broad acceptance of ASR
is the frustration experienced by users when the system breaks
down when an unknown word occurs. For open-ended word
recognizers with fixed vocabularies, this problem is inevitable
since the recognizer does not have immediate access to either
the baseforms or spellings of the unknown words. This issue of
unknown words has motivated considerable research in the area
where different approaches have been adopted.

Statistical grapheme-to-phoneme models have been pro-
posed and shown to perform well in the task of spelling esti-
mation in [3, 7], and pronunciation generation of new words
in [5, 7]. Speak-and-spell models have been implemented for
the acquisition of city names within dialogue systems in [1, 6].
Furthermore, out-of-vocabulary (OOV) word detection mod-
els, which involve no spelling estimation, have been embed-
ded within word-based speech recognizers, and shown to reduce
word error rate (WER) in [2, 14].

In this paper, linguistically motivated subword modeling is
used for learning new words. The subwords are generated us-
ing a context-free grammar (CFG) that encodes positional and
phonological constraints. The proposed approach has the ad-
vantage of automatically acquiring the spelling and pronunci-
ation of new words. We envision the subword model imple-
mented within a dialogue system, thereby taking advantage of
user interactions and augmenting the system with a learning ca-
pability. The subword model would be activated upon the de-
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tection of an OOV word, and any newly acquired word could
then be added to the lexical baseforms.

Apart from providing spoken dialogue systems with error
recovery strategies, there are several potential uses of a new
word acquisition capability. The subword model can be imple-
mented within a word recognizer as in [2], for example, with the
additional feature that it can learn the spelling of the detected
OOV word. Furthermore, the new word acquisition mechanism
can also be used to build a word recognizer bottom up. Given
a set of words whose baseforms are unavailable, the subword
model can dynamically generate the lexical baseforms and up-
date the lexicon.

In this research, we focus on the effectiveness of the sub-
word model in automatically generating the spelling and pro-
nunciation of new words. We also implement the subword
model within a very simple dialogue system where a person
speaks a word, and an isolated word recognizer (Stage I) pro-
poses and displays a list of top candidate words. If the person
rejects all the words, the system enters the second stage (Stage
II), which uses a subword model. The subword model gener-
ates hypothesized word spellings via a sound-to-letter model,
and filters invalid spellings using a very large lexicon. If the
person rejects the list of words presented by the second stage, a
third stage (Stage IIT) prompts for a spoken spelling of the word.

For this particular dialogue system, we are interested in ad-
dressing two questions: (1) How does the isolated word rec-
ognizer augmented with the subword model compare against a
large-vocabulary isolated word recognizer ? and (2) How can
the subword model be used to improve the performance of the
spelling mode?

In the rest of this paper, Sections 2 and 3 describe the sub-
word units and the spelling estimation model. Section 4 de-
scribes the data and Section 5 describes the experimental setup
and reports on the preliminary results. Section 6 concludes and
discusses future work.

2. Subword Units

The subwords used in this research are generated through a
bootstrapping procedure with a CFG that encodes phonological
constraints and sub-syllable structure. First a list of linguisti-
cally motivated subwords is proposed, and a set of hand-written
rules are used to describe all possible ways a particular subword
can be spelled. The subwords are intermediate units between
phonemes and syllables which only encode pronunciation infor-
mation. Next a lexicon is parsed with these rules, and the CFG
is manually augmented to cover the words that failed to parse.
This process is iterated until the entire lexicon parses. The to-
tal number of subwords obtained through this procedure is 677.
The CFG is described in more detail in [13]. Figure 1 illus-
trates the parsing of the words diction and facial into subword
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Syllable Structure | onset rhyme onset usyl
Subword Units d+ -ihk sh+ -axn
Letter Clusters d ic ti on
Syllable Structure | onset rhyme onset usyl
Subword Units f+ -ey sh+ -axl
Letter Clusters f a ci al

Figure 1: Parse analysis of the words diction and facial obtained
using the CFG.

units such as onset and rhyme (denoted with + and - respec-
tively). The illustration also shows a common characteristic of
the English language where the same pronunciation is realized
by different letter clusters (e.g., “ti” vs “ci”) based on context.
Two by-products of the CFG are a direct mapping between sub-
words and their spellings as well as between subwords and their
phonemic representation. The former mapping is used to create
statistical sound-to-letter (S-to-L) and letter-to-sound (L-to-S)
models, while the latter to generate phonemic baseforms from
subword representations.

3. Pronunciation and Spelling Estimation

In this section, we model the pronunciation and spelling estima-
tion processes mathematically, and describe our current imple-
mentation using finite-state transducers (FSTs).

Given acoustic observations, A, the optimal letter spelling,
L*, can be written as:

L* = argmaz P(L|A) = argmax ZP(L7 UlA)
L L -

(¢S]

~ argmaz maz P(L,U|A)
L U

~ argmaz max P(A|U)P(U)P(L|U)
L

Where L is a sequence of letters, and U is the set of subwords
units. P(A|U) is the acoustic model, and P(U) is modeled
as an n-gram on the subwords. The last line assumes that the
acoustic events, A, are conditionally independent of the letters,
L, given the subwords, U, i.e. P(A|U, L) = P(A|U).

The product P(A|U)P(U) models the subword search
space, which can be implemented as a weighted FST, R [10]:

@

Where C' denotes the mapping from context-dependent model
labels to context-independent phone labels, P the phonologi-
cal rules that map phone labels to phoneme sequences, Lex
the subword lexicon, which is a mapping from subword to
phonemic units obtained from the grammar, and G the sub-
word language model (LM). The architecture of R follows a
typical word-based speech recognizer where the input is a set
of context-dependent phone models and the output is an N-best
list of subwords which encodes possible pronunciations of the
utterance. A search through R produces an N-best list of sub-
word sequences, which is denoted Ry _pest-

Finally, the spelling search space, as represented in Equa-
tion 1, can be modeled as:

R=CoPolLexoG

L = Ry_pest 0Tuar 0D 3)

Tuor is a statistical sound-to-letter mapping which encodes the
conditional probability of letter sequences, L, given the sub-
words, U. D is a deterministic word filter or acceptor, and is
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used to inforce hard spell-checking, such that if the generated
spelling is not in a very large lexicon, it is rejected. Follow-
ing the filtering stage, a spelling cohort of size M is generated.
A letter transition weight is set to reduce the length difference
between the reference words and the top hypothesis.

In the rest of this paper, we refer to the output of R as a
subword N-best list and the output of L as a spellings cohort.

4. Data Sets

Our evaluations are performed on 4682 nouns drawn from the
development set of the Phonebook telephone-quality isolated
words corpus [12]. The original lexicon for the isolated word
recognizer consists of 55k nouns extracted from the LDC Pron-
lex dictionary. In our experiments, we refer to the Phonebook
nouns that are in the 55k lexicon as V55, (in-vocabulary), and
to the words that are not as OOV 5. There are 3228 IV55; and
1454 OOV 55, words in the Phonebook nouns.

The word acceptor, D, is built with a ~300k lexicon, which
is mostly a subset of the Google n-gram corpus. The Google
corpus originally contains ~13 million unique words, and is
very noisy. It is reduced to ~2.5 million words by only keeping
lower-cased words with alphabetic symbols. The corpus is then
intersected with a carefully cleaned ~500k lexicon and is aug-
mented with nouns from the Phonebook development set and
Pronlex. The result is a ~300k clean corpus of commonly used
English words. The 300k lexicon is also used to build a large
isolated-word recognizer.

5. Experiments and Results

This section describes several experiments conducted on the
Phonebook data. We utilize the L-to-S system to automati-
cally generate subword and phonemic baseforms for words in
the 300k lexicon. We then investigate how effective this base-
forms file is in both traditional isolated word recognition and as
a training corpus for the subword language model.

The SUMMIT segment-based speech recognition system
is used in all our experiments [8]. Context-dependent diphone
acoustic models are used and their feature representation is
based on 14 MFCCs (Mel-Frequency Cepstral Coefficients) av-
eraged over 8 regions at hypothesized phonetic boundaries. The
diphones are modeled with diagonal Gaussian mixture models
with a maximum of 75 mixtures per model, and are trained on
telephone speech.

A maximum likelihood (ML) estimate of T2, is obtained
using the 300k lexicon. The lexicon is parsed using the L-to-
S system into subword units and their corresponding spellings.
The ML estimate of T¢27, is then obtained simply using counts
over the parsed lexicon.

A more detailed look at the subword model is illustrated
in Figure 2. When an utterance is presented to the subword
model, a subword N-best list with corresponding acoustic and
LM scores is produced by the subword recognizer. The subword
list is transformed into an exhaustive spellings cohort by using
Tu2r, and invalid words are filtered out with D.

The subword LM weight and the letter transition weight are
empirically tuned on a development set.

Isolated Word Recognizers: First, we investigate the ability
of the L-to-S system to automatically generate the baseforms
of the 300k lexicon. A 300k isolated word recognizer is then
built with the automatically generated baseforms, and evaluated
in terms of top 10 and top 20 accuracies, meaning that success
occurs if the correct word is in the top 10 and top 20 candi-
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Figure 2: A diagram depicting the pronunciation and spelling
estimation by the subword model.

Top 10 accuracy Top 20 accuracy
IVssk | OOVss, | All | IVsse | OOVss, | All
55k | 83% 0% 57% | 86% 0% 59%
300k| 72% 72% 2% | T7% 7% 7%

Table 1: Comparison of the 55k and 300k isolated word recog-
nizers, in terms of IVss5,, OOVss,, and overall accuracy. Both
recognizers are evaluated based on the top ten and twenty word
candidates.

dates respectively. The results are reported in Table 1 for the
3228 IVss5, and the 1454 OOVs55, words. We note here that
all the evaluated words including the OOV 55, words are in the
300k lexicon. We report the results for the two subsets (IVss,
OOVs55y,) separately in order to compare against the 55k word
recognizer. As shown in Table 1, the performance of the V55
and OOVs5, subsets is the same for the 300k system. This
illustrates that the automatically generated pronunciations are
performing comparably to the manually transcribed ones. Fur-
thermore, the V55, words suffer significant degradation with
the 300k system compared to the 55k word recognizer (i.e. 86%
to 77% for top 20 accuracy) due to the larger vocabulary. As ex-
pected, the accuracy of the 55k word recognizer on the OOV 55,
subset is 0%.

Subword Language Models: The subword model produces an
N-best list of subword sequences, guided by a subword trigram
LM, P(U), that is trained on a large corpus. A critical issue
is the quality of this LM. In this section, we evaluate the per-
formance of several subword language models. We trained the
subword LMs from three training corpora: (1) the 55k lexicon,
(2) the 55k lexicon, augmented with just the OOVs5, words
in Phonebook, and (3) the 300k lexicon. Figure 3 assesses the
performance of the three subword recognizers on the OOV 55y
words. Each of the recognizers produces 1000 N-best subword
lists which are then converted into a cohort of all possible valid
spellings. A match occurs if the correct word is in the spelling
cohort, and we report accuracies on cohorts of sizes 10, 20, and
100, as well as on the whole spelling cohorts. As illustrated in
Figure 3, the inclusion of only the OOVj55, words in the sub-
word LM training data results in a substantial improvement in
performance (i.e. 60% to 69% for top 10 accuracy). Only a
slight degradation is incurred with the full 300k lexicon (i.e.
69% to 68% for top 10 accuracy).

Subword N-best length: The computational requirements of
the subword model can be significantly reduced with a smaller
subword N-best list, so it is of interest to measure degradation in
performance as a function of N-best length, N. As illustrated in
Figure 4, modest degradation is incurred in the top 10 accuracy
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Figure 3: Accuracy of the three subword recognizers for differ-
ent depths of the spelling cohort evaluated on the 1454 OOV 55,
words. The spellings are generated with a subword 1000-best
list.
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Figure 4: The subword model accuracy as a function of the
length of the N-best list. Accuracy is reported on spelling co-
horts of size 10, 20, and 100, as well as on the full spelling
cohort. The 300k LM subword recognizer is used.

as N is decreased from 1000 to 100 (69% to 66%).

Next, we evaluate the subword model in a simple dialogue
system, where the user speaks a single word and a word rec-
ognizer generates a 10-best list of words. If the correct word
is not in the 10-best list, the subword model is automatically
triggered, and a spelling cohort of size 10 is generated. If the
correct word is not in the cohort, the user is asked to spell the
word.

Currently, we have designed an online user interface that
implements this multi-stage isolated word recognizer. How-
ever, we have not yet collected user data to evaluate the system.
For this reason, we use the 4682 Phonebook nouns to simulate
words spoken by users. A 55k word recognizer is used in Stage
I, and all words that fail to appear in the 10-best list are passed
to the subword model in Stage II. In this research we focus on
the estimation of the spelling and pronunciation of an OOV, not
on the detection of an OOV word. Thus, we rely on direct user
feedback to achieve perfect OOV detection. In our experiments,
this is simulated by automatically passing all words that failed
Stage I to Stage II.
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Figure 5: Accuracy of the word and subword recognition stages
for a spelling cohort of size ten evaluated on [V55, and OOVssy
words.

Multi-Stage System In this section, we evaluate the overall per-
formance of the multi-stage recognizer for IVss; and OOVssy
and OOV words. The 55k word recognizer is used in Stage I,
and the 300k LM subword recognizer with a 1000-best list of
subwords is used in Stage II. The pie charts in Figure 5 describe
the percentage of matching words in a spelling cohort of size
ten for the word and subword recognition stages versus words
that require a spoken spelling mode (letter recognition). For
the IVs5, words, Stage I proposes the correct word among the
top 10 word candidates 83% of the time. If the correct word is
not in the top 10, the system reverts to the subword model in
Stage II. Stage II recovers an additional 1% of the IV55, words,
which now make the top-10 cut due to the availability of al-
ternative pronunciations beyond the baseform supplied in the
lexicon. The top 10 accuracy of Stage II on the OOVs55;, words
is 69%. We note that the top 10 list of Stage II excludes any re-
sults from Stage I. Hence, we can compare the overall accuracy
of Stages I and II to the top 20 accuracy of the 300k isolated
word recognizer shown in Table 1. The overall accuracy of the
first two stages is 79%, which outperforms the top 20 accuracy
of the 300k isolated word recognizer (77%), most probably due
to the more focused 55k word recognizer in the first stage.
Perplexity Experiments The analysis of results for the spo-
ken spelling mode is being deferred until we have collected
user data. However, in this section, we address the question of
whether the subword model can improve the performance of the
spoken spelling mode. The spelling mode is based on a letter
recognizer and requires a letter LM. We propose and evaluate
two letter trigrams: (1) a small letter trigram built from the 100
top candidates in the spelling cohort produced by the subword
model, and (2) a large letter trigram built with the 300k lexicon.
The two trigrams are evaluated in terms of mean perplexity on
the OOV 55, words that failed to be recognized by the subword
model. Mean perplexities of 11.7 and 16 are obtained for the
100 and 300k letter trigrams respectively. The 27% relative
reduction in perplexity achieved by the small spelling cohort
should hopefully propagate to an improved letter error rate. An
added benefit is a dramatically reduced LM size.

6. Summary

We presented a subword model that can estimate the pronuncia-
tion and spelling of a new word. We first showed it is effective in
automatically generating baseforms files required for building
word recognizers. We also implemented the subword model in
a multi-stage isolated-word recognizer, and reported on prelimi-
nary results, comparing it with a more traditional, isolated word
recognizer. Finally, we used the spelling cohort produced by the
subword model to build a letter trigram for the spoken spelling
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stage. The small letter trigram achieves a lower mean perplexity
than a 300k trigram on a subset of the OOV 55, words.

In the future, we plan to investigate in more detail the
model’s capability to dynamically generate and update a base-
forms file. We will also implement a live system that includes
a word, subword and back-up letter recognizer. We would also
like to embed a subword-based OOV model within a continuous
speech recognizer. This would involve more challenging issues
such as the correct detection of an OOV word occurrence.
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