
HIERARCHICAL LARGE-MARGIN GAUSSIAN MIXTURE MODELS
FOR PHONETIC CLASSIFICATION

Hung-An Chang and James R. Glass

MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, Massachusetts, 02139, USA

{hung an,glass}@csail.mit.edu

ABSTRACT

In this paper we present a hierarchical large-margin Gaus-

sian mixture modeling framework and evaluate it on the task

of phonetic classification. A two-stage hierarchical classifier

is trained by alternately updating parameters at different lev-

els in the tree to maximize the joint margin of the overall

classification. Since the loss function required in the train-

ing is convex to the parameter space the problem of spuri-

ous local minima is avoided. The model achieves good per-

formance with fewer parameters than single-level classifiers.

In the TIMIT benchmark task of context-independent pho-

netic classification, the proposed modeling scheme achieves

a state-of-the-art phonetic classification error of 16.7% on the

core test set. This is an absolute reduction of 1.6% from the

best previously reported result on this task, and 4-5% lower

than a variety of classifiers that have been recently examined

on this task.

Index Terms— hierarchical classifier, committee classi-

fier, large margin GMM, phonetic classification

1. INTRODUCTION

Over the years there has been much research devoted to the

issue of acoustic modeling for automatic speech recognition.

Topics of investigation have included feature representation,

classifier structure, and training methods. It is fair to say that

the most popular classifier structure in use today is the Gaus-

sian mixture model (GMM), typically trained via maximum

likelihood (ML) methods. To be sure, many alternative classi-

fiers have been explored - especially those of a more discrim-

inative nature such as neural-networks, conditional random-

fields, support-vector machines, and other large-margin meth-

ods. In addition, many different discriminative training meth-

ods of GMMs have also been explored including maximum

mutual information, minimum classification error [7], and more

recently large-margin methods [2, 6, 14, 15]. One of the

nice properties of large-margin-based methods is that the loss

function of the training data is convex over the parameter

space. Thus spurious local minima that may be encountered

in other training scheme can be avoided.

In this paper we explore the use of a hierarchically struc-

tured large-margin GMM classifier. The use of hierarchies for

acoustic modeling has not received as much attention in the

literature, although there are some good results that have been

achieved [1]. Hierarchies allow the potential for the classifica-

tion problem to be divided into smaller sub-problems. Thus,

there is the potential for a hierarchical classifier to be more

robust since there are more training exemplars in the pooled

classes. Hierarchies can also be used to partition a large fea-

ture vector into committees of smaller dimensionality clas-

sifiers, or to focus on particular acoustic measurements for

a given class of sounds. Smaller dimensional classifiers of-

fer the potential for more robust performance, and we have

observed considerable benefit to such committees for ML-

trained GMM classifiers in the past [5].

In this paper, we propose a hierarchical large margin GMM

that incorporates the hierarchical classification with large mar-

gin training. In the remainder of the paper we first introduce

the hierarchical GMM classifier in more detail and present

large margin training within a hierarchical framework. We

then describe experimental results on the benchmark TIMIT

task of phonetic classification. Finally, we conclude and de-

scribe our future plans for research in this area.

2. HIERARCHICAL LARGE MARGIN GMMS

In this section, we first illustrate the hierarchical GMM clas-

sifier in more detail, and then describe the large margin train-

ing scheme for the hierarchical classifier. We focus here on a

2-level hierarchical classifier, however the scheme is general-

izable to other kinds of hierarchies.

2.1. Hierarchical GMM Classifier

Consider a 2-level hierarchical GMM classifier H , illustrated

in Figure 1, which can be constructed either by human knowl-

edge or by automatic clustering algorithms. A leaf node c of

H represents an individual class label (e.g., a phone) that H
can output, and its parent node s = S(c) represents the cluster

where c belongs (e.g., a manner class). Each non-root node

of H has a set of GMM parameters to model the distribution

272978-1-4244-1746-9/07/$25.00 ©2007 IEEE ASRU 2007



{All Phones}

S0={nasals} S1={stops}

……

Sk={…}

…

m n …

…

p t … … … …

…

{All Phones} Level (0)

Level (1)

Level (2)

Fig. 1. Hierarchical classifier

of the feature vectors at that node. For convenience, we call

class-level parameters for the GMM parameters of the nodes

at the same level as c, and, similarly, cluster-level parameters

for those at the same level as s.

To illustrate how H works, let us first consider the re-

sponse of a class-level node c when a feature vector x is fed

to H . Instead of looking at the log probability of the GMM di-

rectly, we look at the Mahalanobis distance returned by each

mixture component of the model. Let μcm and Ψcm be the

mean and inverse covariance for the mth mixture component

of c. Given x, the mixture component returns a Mahalanobis

distance

(x − μcm)TΨcm(x − μcm) + θcm, (1)

where θcm is a scalar offset that incorporates information of
the mixture weight and the determinant of the mixture compo-

nent. As in [2], we can reduce the expression of the distance

in Eq. (1) into a compact form by introducing an extended

feature vector z = [xT 1]T ∈ �d+1 and an extended parameter

matrix

Φcm =
[

Ψcm −Ψcmμcm

−μTcmΨcm μTcmΨcmμcm + θcm

]
. (2)

By introducing z and Φcm, the distance in Eq. (1) can be

expressed as

d(Φcm, z) = zTΦcmz. (3)

Note that if we increment θcm by a constant, we can make

the extended matrix Φcm positive semi-definite. Combining

the Mahalanobis distances of all mixture components of c, the

overall distance of x to c can be computed by

D(Φc, z) = − log(
∑
m

exp(−d(Φcm, z))), (4)

where Φc denotes the set of all extended parameter matrices

{Φcm} for all the mixture components of c. Similarly, for a

cluster-level node s, we can have a set of parameter matrices

Θs for the cluster-level model, and when given a feature x,

the model of s returns distance

D(Θs, z) = − log(
∑

k

exp(−d(Θsk, z))). (5)

With the distances computed by the two levels of nodes,

H outputs a predicted label ŷ for z by the following criterion:

ŷ = arg min
c

{wCD(Φc, z) + wSD(ΘS(c), z)}, (6)

where wC and wS are the relative weights that reflect how H
trusts the information from the two levels, respectively, and

S(c) is the parent of c. Generally, wC and wS can be deter-

mined by cross-validation with held-out training data. Note

that since the computation for the classification involves only

basic calculations of GMMs plus fixed amounts of additions

and multiplies, the overall complexity of the hierarchical clas-

sifier is similar to conventional GMM classifiers.

2.2. Hierarchical Large Margin Training

Here we present the parameter training scheme for the hi-

erarchical classifier given a set of labeled training examples

{(xn, yn)}N
n=1, where xn ∈ �d and yn ∈ {1, 2, . . . , C}.

Given the class label yn, we can get the cluster label sn =
S(yn) by the hierarchical tree. We use {ΦML

c } to denote the

maximum-likelihood (ML) class-level parameters before the

large margin training, and similarly use {ΘML
s } for the cluster-

level parameters. Also, we use zn to denote the extended vec-

tor of xn.

As in [2], we seek model parameters such that each train-

ing example is correctly classified by a large margin. For each

xn (or equivalently zn), consider the distance

wCd(Φynmn
, zn) + wSd(Θsnkn

, zn), (7)

where mn = arg minm{zTnΦML
ynmzn} is the mixture compo-

nent of yn that is closest to zn according to the initial model

ΦML
yn

and kn = {arg mink zTnΘML
snkzn}. Note that the distance

in Eq. (7) is a lower bound of the distance of the correct label

used in classification. If we can have

∀c �= yn,
wCD(Φc, zn)) + wSD(ΘS(c), zn) ≥

1 + wCd(Φynmn , zn) + wSd(Θsnkn , zn) , (8)

then we can guarantee zn is correctly classified by at least 1

unit margin. Any violation of the criterion in Eq. (8) is con-

sidered a loss, and we can compute the loss for each training

example by

�n =
∑

c[1 + wC(d(Φynmn , zn) − D(Φc, zn))
+wS(d(Θsnkn

, zn) − D(ΘS(c), zn))]+
, (9)

where the function [f ]+ = max(0, f). By this definition, �n

is a convex function over the parameter space of Φ and Θ.

We also use a weighted sum of �n to be the final loss func-

tion we try to minimize; that is

L =
∑

n

wn�n, (10)

where �n is computed by Eq. (9) and the weight wn is chosen

such that correcting each training sample contributes roughly

the same amount of reduction in the loss function. More

specifically, as in [2], we choose wn = min(1, 1
�ML

n
), where

�ML
n is the loss of the nth example under the initial ML model.

273



By setting wn in this way, we can effectively prevent the out-

liers in the training example from seriously affecting the re-

sult. Because the loss function in Eq. (10) is convex to the

positive semi-definite parameter matrices Φ and Θ, we can

use a convex optimization algorithm such as conjugate gra-

dient (CG)[9] or other positive semi-definitive programming

methods to find the optimal set of parameters[10].

Since we have two levels of parameters, we can imple-

ment the training by the following method. We first fix cluster

level matrices Θ and adjust Φ and L using CG. After a certain

number of iterations, we then switch to adjust Θ while fixing

Φ. We repeat these two steps for several rounds until the CG

terminates automatically, or a maximum number of iterations

is reached. The idea of this training scheme is similar to that

of a turbo code in that we use the output of the first level

in the hierarchy to help optimize the second level, and vice

versa. By doing this, we can reduce the original optimization

problem into 2 sub-problems with fewer parameters to update

and thus the algorithm can run more efficiently. In our TIMIT

phonetic classification experiments we set t1 = 50, t2 = 60,

and r = 3.

Algorithm 1 Turbo Training

1: Fix Θ, run CG on Φ for t1 iterations to minimize L.

2: Fix Φ, run CG on Θ for t2 iterations to minimize L.

3: Repeat 1 and 2 until CG stops or r rounds have reached.

4: Use held-out training data to choose the final models.

Note that the margin in the training is not necessarily fixed.

We can set up different margin constraints by scaling the pa-

rameter matrices Φ and Θ with a factor α before computing

�n. Different values of α can have a large impact on the result-

ing models. Effectively, a smaller α results in a larger margin.

This will potentially make more training samples have a pos-

itive loss and thus make more training examples considered

during training. In general, more samples being considered in

the optimization can result in a more robust decision bound-

ary so that the resulting model will be more generalizable to

unseen data. However, if we choose a very small α, the large

margin training will include many examples that may not be

very informative for selecting a good decision boundary and

will therefore limit the gain of the large margin training. Thus,

choosing a good scaling factor is important and we will dis-

cuss this issue in the next section.

3. EXPERIMENTS

In this section, we present the classification results of the hi-

erarchical large margin GMMs on the well-defined TIMIT

benchmark task of context independent phonetic classifica-

tion [13]. In addition to exploring single hierarchical classi-

fiers, we also explored the use of committee-based classifiers

to improve performance [5].

Method Feature Error Rate

Hierarchical GMM[1] Seg 21.0%

Hidden CRF[3] Frame 21.7%

Large Margin GMM[2] Frame 21.1%

RLS2[4] Seg 20.9%

Table 1. Recent reported results on TIMIT core test set. Fea-

ture type refers to segmental (1 vector/phone) or frame-based.

3.1. Corpus Setup

In our experiments we used the standard NIST training set

(462 speakers, 3696 utterances, 140225 tokens) for training,

and standard core test set (24 speakers, 192 utterances, 7215

tokens) for testing. In addition, we also used the standard de-

velopment set (50 speakers, 400 utterances, 15056 tokens) to

decide the relative weights of the two level models in the hi-

erarchy, to provide early stopping of the training, and to tune

the weight of the phone prior. The development set was also

used to tune the optimal value of the margin scaling factor α
that was used during training.

The standard 61 TIMIT phone labels were reduced into

48 classes as in [8]. When evaluating the models, we further

mapped the labels into the commonly used 39 classes [1]-

[4] to calculate the classification error rate. As in commonly

done, we also ignored glottal stops (/q/) for both training and

testing. The error rate of the reduced 39-class classification

on the core test set of TIMIT is a well-defined benchmark

problem. Table 1 lists the results of some recently reported

experiments for this task.

3.2. Features

In the experiments, we trained models for the eight different

segmental feature measurements (i.e., one vector per phone)

that were used in [5]. The eight different measurements, S1-

S8, are summarized in Table 2. They differ primarily in a)

the duration of the Hamming window used to compute the

short-time Fourier transform, b) the number of Mel-frequency

Cepstral Coefficients (MFCCs) or perceptual linear prediction

(PLP) coefficients used and c) whether the coefficients were

consolidated via a temporal basis function (that extended 30ms

beyond the segment boundaries) of either averages or cosine

transforms. Each feature vector also included log duration.

The number of dimensions of each type of feature is deter-

mined by number of spectral coefficients and the number of

temporal basis functions. For example, S1 has 5∗12+1 = 61
dimensions.

3.3. Baselines

For the classification experiments, we built the 2-level hier-

archy by clustering the phone class into nine clusters accord-

ing to their broad manner of articulation. The nine clusters

274



# Window Spectral Temporal

Dims [ms] Representation Basis

S1 61 10 12MFCC 5 avg

S2 61 30 12MFCC 5 avg

S3 61 10 12MFCC 5 cos

S4 61 30 12MFCC 5 cos

S5 64 10 9MFCC 7 cos

S6 61 30 15MFCC 4 cos

S7 61 20 12PLPCC 5 avg

S8 61 20 12PLPCC 5 cos

Table 2. Summary of features used for experiments.

Set Gauss 2-mix 4-mix H(1,2) H(2,4)

Dev 24.8% 23.8% 23.5% 24.7% 23.8%

Test 25.2% 24.4% 24.1% 25.2% 24.3%

Table 3. Error rates of the ML GMM classifiers.

are stops, nasals, strong fricatives, weak fricatives, high vow-

els, low vowels, short vowels, semi-vowels, and closures (in-

cluding silences). For each of the eight features, we trained

5 kinds of ML baseline models: “Gauss”,“2-mix”, “4-mix”,

“H(1,2)”, and “H(2,4)”. “Gauss” refers to a single full co-

variance Gaussian model, while “2-mix” and “4-mix” repre-

sent GMMs with two and four Gaussian components respec-

tively. “H(1,2)” is a hierarchical model using one Gaussian

at the class-level model and two Gaussian components for

the cluster-level model; “H(2,4)” is defined similarly. The

GMMs were trained by the cross-validation EM (CV-EM) al-

gorithm [11] and selected by the development set. (Pick the

one with lower error rate among two independent trails.) For

“H(1,2)” and “H(2,4)”, we also used the development set to

find a proper set of relative weights wC and wS between the

two levels of the hierarchy.

Table 3 lists the average error rates of the ML models on

the development and core test set when trained on the eight

different feature sets, S1-S8. From the table, we can see that,

on average, the performance of “H(1,2)” is close to “Gauss”

and that of “H(2,4)” is close to “2-mix”, showing that ML

training does not derive much benefit from the hierarchical

framework. Although the data is not shown in the table, we

also observed that, for two of the feature sets, the “4-mix”

models performed worse than their corresponding “2-mix”

models, showing that in some cases the models were over-

fitting the training data.

3.4. Large margin models

3.4.1. Single classifier results

In this section we present the classification results of the mod-

els for each type of feature after the large margin training. The

Set Gauss 2-mix 4-mix H(1,2) H(2,4)

Dev 19.2% 18.7% 18.8% 18.8% 18.5%

Test 20.6% 20.0% 20.0% 19.9% 19.6%

Table 4. Error rates of the large margin GMM classifiers.

large margin models “LM Gauss”, “LM 2-mix”, and “LM

4-mix” are trained as in [2], while “LM H(1,2)” and “LM

H(2,4)” are trained by the scheme presented in the previous

section.

As mentioned previously, the margin scaling factor α can

significantly affect the performance of the models. To illus-

trate how the model performances vary according to α, we

sample several values of α and plot the average error rate of

the eight features on the development set in Figure 2. As the

figure shows, the error rates decrease as α is reduced from

0.25 to 0.05, and increase as α gets smaller than 0.05. The

trend of the curves are as discussed in Section 2. Another in-

teresting observation is that the more complex the model is,

the greater the variation in classification performance; indi-

cating that finding a good value of α becomes important as

the model become more complex.

Table 4 shows the average results of the models for the

eight feature sets on the development and core test set, re-

spectively, under α = 0.05. From the table we can see that

although “LM 4-mix” has almost twice the number of param-

eters as “LM 2-mix”, the performances of the two kinds of

models are on average quite similar. This shows that simply

increasing the number of mixtures may not necessarily im-

prove the overall performance, since the model may over-fit

the training data. On the other hand,“LM H(1,2)” and“LM

H(2,4)” achieve better performance than the other three mod-

els on average, showing that the hierarchical models are per-

haps generalizing better to unseen data. To see whether the

proposed modeling scheme has significant improvement over

the current state of art, we compared the outputs of “LM

H(2,4)” with that of RLS2 model [4] and conducted a McNe-

mar significance test [12]. Six out of the eight models were

significantly different at the 0.001 level. This also includes

the model trained with feature set S2, which was also used

for the RLS2 experiments.

3.4.2. Committee classifiers

In addition to performing classification with a single feature

vector, we can also create a committee-based classifiers that

combines information provided by the different feature sets.

As in [5], our committee-based classifier combined the out-

puts of the individual classifiers for S1-S8 by summing their

log posterior probabilities. The performances of the committee-

based classifier was also affected by the margin scaling factor

α. Figure 3 shows the performances of the committee-based

classifiers on the development set under different value of α.

275



18.51

18.0

18.5

19.0

19.5

20.0

20.5

21.0

21.5

- 0.05 0.10 0.15 0.20 0.25

E
rr

o
r 

R
a
te

 (
%

)

LM Gauss

LM 2-mix

LM 4-mix
LM H(1,2)

LM H(2,4)

Fig. 2. Average error rate on the development set. Error bars

show 0.25 standard deviation across feature sets.

Set Gauss 2-mix 4-mix H(1,2) H(2,4)

Dev 17.0% 16.2% 16.1% 16.5% 15.9%

Test 17.8% 17.1% 17.1% 17.2% 16.8%

Table 5. Error rates of committee classifiers.

The detailed performances of the committee classifiers on the

development and test sets (using α = 0.1) are listed in Table

5. As in the earlier large-margin experiments, the “H(2,4)”

model yields the best result.

We found it interesting to observe that for all five types

of classifiers we explored the optimal value of α for an indi-

vidual classifier did not result in the best committee classifier.

The optimal value of the committee based classifiers tended

to be consistently slightly larger than that of individual clas-

sifiers. One possible explanation for this observation could

be that the diversity of the individual classifiers may tend to

decrease as α becomes smaller, since the overlap of the train-

ing examples used in the large margin training would tend to

become larger. As a result, although each individual classi-

fier became more accurate, they became less complementary

of each other and thus the overall committee was not as ef-

fective as the one with a set of more diverse but reasonably

accurate committee members.

3.4.3. Heuristic selection of α

In the previous experiments we used a brute force search on

the development set to find a good value of α. Although this

method was effective, it was also time consuming in that we

have to first have the trained models before we can evaluate

the performances on the development set. It would be much

preferable if we could find a suitable value of α before train-

ing, especially for the case of large vocabulary continuous

speech recognition where discriminative training may take a

15.92
16.02

15.8

16.0

16.2

16.4

16.6

16.8

17.0

17.2

17.4

17.6

17.8

- 0.05 0.10 0.15 0.20 0.25

LM Gauss
LM 2-mix
LM 4-mix
LM H(1,2)
LM H(2,4)

Fig. 3. Average error rate on the development set.

very long time.

We explored a heuristic method for finding α which was

inspired from the observation that, for a training token with

positive loss, the value of the loss also has a convex shape

variation according to α. To explain this, let us consider a

training example n with positive loss. We call such kind of

training examples “effective” since only such examples would

be considered in the large margin training. For convenience,

we shorten the expression of the loss by �n =
∑

c�=yn
[1 +

αΔc]+.

A small α can have a two-sided effect on �n. On the one

hand, for a strong competing class c1 with Δc1 > 0, small α
can make [1 + αΔc1 ]+ small, and in this sense, may decrease

the loss value. On the other hand, a small α may also make a

weak competing class c2 with Δc2 � 0 contribute to the loss

by making 1+αΔc2 > 0, and may also increase �n. Because

the loss is piece-wise linear to α, there exists an α̂ such that

�n can be minimized.

In other words, there exists a certain value of α that can

minimize the loss for n, and that value can potentially be a

good choice for n since it balances the two effects: trying to

increase margin as much as possible (or, equivalently, choos-

ing α as small as possible) while not letting too many weak

competing classes disrupt the training. Following this idea,

if we pick a value α̂ that minimize the average loss of the all

effective examples, that value may also be a suitable choice

of α for the whole training set.

We applied this heuristic approach to select α for “LM

H(1,2)” and “LM H(2,4)”. The performances of the resulting

model for all eight feature sets is listed in Table 6. The “com”

in the table refers to committee classifier. Both of the two

sets of models have performances very close to the models

with α = 0.05, which demonstrates the effectiveness of the

heuristic method. Note that this table shows the best overall

result for any single feature set obtains an error rate of 18.7%,

while the best overall committee-based classifier obtains an

276



LM H(1,2) LM H(2,4)

dev test α dev test α
S1 18.9% 20.0% 0.070 19.1% 20.4% 0.070

S2 18.9% 19.8% 0.070 18.3% 19.4% 0.072

S3 18.3% 19.6% 0.063 17.9% 19.7% 0.069

S4 18.3% 19.4% 0.067 18.1% 18.7% 0.069

S5 18.7% 19.7% 0.064 18.6% 19.6% 0.062

S6 19.1% 20.2% 0.068 18.7% 20.4% 0.069

S7 19.6% 21.0% 0.076 19.2% 20.6% 0.071

S8 18.7% 19.9% 0.067 18.7% 19.8% 0.071

avg 18.8% 20.0% 18.6% 19.8%

com 16.6% 17.2% 16.0% 16.7%

Table 6. Error rates of classifiers with pre-determined α.

error rate of 16.7%.

4. CONCLUSION AND FUTURE WORKS

In this paper we have incorporated large margin GMM train-

ing into a hierarchical classification framework. The resulting

classifier obtains excellent performance on the task of TIMIT

phonetic classification, achieving 18.71% error rate in a sin-

gle classifier case and 16.74% in the case of committee-based

classification. Because the proposed method can incorporate

additional phonetic information, it can achieve excellent per-

formance while using fewer parameters than any other state-

of-the-art technique. By using fewer parameters, the proposed

model not only requires less computations but also can avoid

over-fitting when confronted with data sparsity problems.

In the future, we plan to extend this work to the task of

phonetic recognition to see how much gain in the classifi-

cation can be transferred to phonetic recognition. Our prior

experience in this area indicates that improvements in classi-

fication typically carry over to reduced substitution errors in

recognition tasks [5]. We would also like to conduct exper-

iments on context-dependent phone models for word-based

recognition. Generally, the data sparsity problem becomes

more severe in context-dependent modeling, and our hope is

that the hierarchical large margin modeling method should be

effective for this problem as well.

Acknowledgements
The authors are grateful to Fei Sha for providing much

helpful advice on large margin GMM training issues. This

work was supported by Taiwan Merit Scholarships (number

NSC-095-SAF-I-564-040-TMS) and by the T-Party Project, a

joint research program between MIT and Quanta Computer

Inc., Taiwan.

5. REFERENCES

[1] A.K. Halberstadt and J.R. Glass, “Heterogeneous acous-

tic measurements for phonetic classification,” Proceed-
ings of Eurospeech, pp. 401–404, 1997.

[2] F. Sha and L.K. Saul, “Large margin gaussian mixture

modeling for phonetic classification and recognition,”

Proceedings of ICASSP, pp. 265–268, 2006.

[3] A. Gunawardana, M. Mahajan, A. Acero, and J.C. Platt,

“Hidden conditional random fields for phone classifica-

tion,” Proceedings of Eurospeech, 2005.

[4] R. Rifkin, K. Schutte, M. Saad, J. Bouvire, and J.R.

Glass, “Noise robust phonetic classification with lin-

ear regularized least squares and second-order features,”

Proceedings of ICASSP, pp. 881–884, 2007.

[5] A.K. Halberstadt and J.R. Glass, “Heterogeneous acous-

tic measurements and multiple classifiers for speech

recognition,” Proceedings of ICSLP, 1998.

[6] F. Sha and L.K. Saul, “Comparison of large margin

training to other discriminative methods for phonetic

recoginition by hidden markov models,” Proceedings
of ICASSP, pp. 313–316, 2007.

[7] B.-H. Juang, W. Chou, and C.-H. Lee, “Minimum clas-

sification error rate methods for speech recognition,”

IEEE Transactions on Audio, Speech, and Language
Processing, vol. 5, no. 3, pp. 257–265, 1997.

[8] K.F. Lee and H.W. Hon, “Speaker-independent phone

recognition using hidden markov models,” IEEE Trans-
actions on Acoustic, Speech, and Signal Processing, vol.

37, no. 11, pp. 1641–1648, 1988.

[9] J.R. Schewchuk, “An introduction to conjugate gradient

method without the agonizing pain,” C.M.U., 1994.

[10] L.Vandenberghe and S.P. Boyd, “Semidefinite program-

ming,” SIAM Review, vol. 38, no. 1, pp. 49–95, March

1996.

[11] T. Shinozaki and M. Ostendorf, “Cross-validation EM

training for robust parameter estimation,” Proceedings
of ICASSP, pp. 437–440, 2007.

[12] L. Gillick and S.J. Cox, “Some statistical issues in the

comparison of speech recognition algorithms,” Proceed-
ings of ICASSP, pp. 532–535, 1989.

[13] John S. Garofolo et al, “TIMIT acoustic-phonetic con-

tinuous speech corpus,” Linguistic Data Consortium,

1993.

[14] X. Li, H. Jiang, and C. Liu, “Large margin HMMs for

speech recognition,” Proceedings of ICASSP, pp. 513–

516, 2005.

[15] D. Yu, L. Deng, X. He, and A. Acero, “Large-margin

minimum classification error training for large-scale

speech recognition tasks,” Proceedings of ICASSP, pp.

1137–1140, 2007.

277


