
Growing a Spoken Language Interface on Amazon Mechanical Turk

Ian McGraw, James Glass, and Stephanie Seneff

MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA
{imcgraw, glass, seneff}@mit.edu

Abstract

Typically data collection, transcription, language model gener-
ation, and deployment are separate phases of creating a spoken
language interface. An unfortunate consequence of this is that
the recognizer usually remains a static element of systems often
deployed in dynamic environments. By providing an API for
human intelligence, Amazon Mechanical Turk changes the way
system developers can construct spoken language systems. In
this work, we describe an architecture that automates and con-
nects these four phases, effectively allowing the developer to
grow a spoken language interface. In particular, we show that
a human-in-the-loop programming paradigm, in which work-
ers transcribe utterances behind the scenes, can alleviate the
need for expert guidance in language model construction. We
demonstrate the utility of these organic language models in a
voice-search interface for photographs.

Index Terms: organic speech systems, language modeling

1. Introduction
Spoken language interface development is subject to a classic
chicken and egg problem: training data are needed to build a
system; however, to collect in-domain training data, one first
needs the system. To combat this reality, researchers are forced
to play a delicate game of seeding the speech recognizer with
aligned speech or adapting language and acoustic models from
one domain to another. It is our contention that crowd-sourcing
platforms such as Amazon Mechanical Turk are poised to fun-
damentally change the development process of such systems by
either eliminating or automating these awkward initial steps of
building spoken language interfaces.

To the casual user Amazon Mechanical Turk (AMT) is a
convenient mechanism for distributing tasks via the web to an
anonymous crowd of non-expert workers who complete them
in exchange for micropayments. Although at times cumber-
some, the web interface is often sufficient for accomplishing
simple text-based tasks. For more complicated work, arbitrary
web pages can be inserted into the AMT interface and command
line tools can be used to manage large quantities of Human In-
telligence Tasks (HITs). With these tools, speech researchers
have begun to crowd-source annotation, transcription and even
elicitation of speech data [1].

The true power of Amazon Mechanical Turk, however,
can only be harnessed by manipulating tasks programmatically
through an API. Only then is it possible to construct and com-
bine tasks on-the-fly, allowing developers to create true human-
in-the-loop algorithms. While the latency of such systems is
certainly a concern, for many tasks it is surprisingly low. In [2],
Bernstein et. al. describe crowd-sourcing fairly complex word-
processing tasks with wait times of less than 20 minutes. La-
tency may also be optimized in domain dependent ways.

This paper describes an architecture that employs human-
in-the-loop programming to facilitate spoken language inter-
face creation using automatically collected and transcribed ut-
terances. In particular, we focus on the task of automatically
growing a language model on-the-fly using in-domain speech
data without expert guidance. For this work, we consider the
relatively unconstrained domain of photo annotation and search.
We show that photo query recall improves dramatically over
the lifetime of a deployed system that builds its vocabulary and
language model from scratch by automatically coordinating a
crowd of AMT workers to provide training data.

2. Previous Work
Since 2006 the term crowd-sourcing has become common-
place in the vernacular of researchers of many data-driven sci-
ences. The natural language processing community was an
early adopter of the technology [3], and its use has propagated
to a variety of fields including speech [4, 5, 6].

The types of crowd-sourcing tasks found in the literature
are also growing in sophistication. An elegant extension of a
basic HIT, is one in which the results are iteratively improved
upon by one or more subsequent HITs. In [7], for instance, Lit-
tle et. al. work with a task that iteratively improves upon the
interpretation of sloppy hand-writing. More generally, feeding
the results of one task into another can be used to construct com-
plex human in-the-loop processes, such as writing a wikipedia
entry [8], or even performing “impossible” database queries
where humans answer otherwise incomputable sub-problems of
the task [9].

In the speech community, companies such as CastingWords
have long made use of Amazon Mechanical Turk for transcrip-
tion. AMT allows CastingWords to offer services with various
quality and turn-around time guarantees, made possible through
AMT’s qualification tests and worker assessment features. Aca-
demic researchers use Amazon Mechanical Turk to create high-
quality data sets, where it becomes necessary to compare or
combine work from multiple workers to assure quality [6]. Con-
versely, for training a recognizer, data verification has been
viewed as an unnecessary and costly step [5].

Moving from speech annotation to elicitation is a daunt-
ing endeavor due to technological hurdles. Incorporating a
speech component into a task is problematic due to the addi-
tional server-side complexity. Tools such as those described
in [10] and [11], both of which have been used to collect read
speech, alleviate some of the impediments to speech elicitation.
Taking this to the next degree, we have begun to use the open
source WAMI Toolkit to build fully interactive multimodal in-
terfaces deployable to Amazon Mechanical Turk [4]. In the fol-
lowing section, we describe this toolkit in detail and explain
how we have extended it to incorporate features which allow us
to create and study dynamic spoken language systems.

Copyright © 2011 ISCA 28-31 August 2011, Florence, Italy

INTERSPEECH 2011

3057



<script
src=http://wami.csail.mit.edu/portal/wami.js />

<script>
var myWamiApp = new Wami.App( ... );

var grammar = {
grammar : "...";
language : "en-us";
type : "jsgf";

};

myWamiApp.setGrammar(grammar);
</script>

Figure 1: A piece of the WAMI Javascript API.

3. WAMI’s Javascript API
In-domain training data are the bread and butter of speech in-
terfaces. The larger the audience of a spoken language sys-
tem, the easier it is to collect these data. Early successes of
the wide deployment of sophisticated spoken language sys-
tems from academia include MIT’s Jupiter [12] conversational
weather information system, and CMU’s Let’s Go [13] trans-
portation information system. Since improvements to these
types of systems are made using the interactions collected, the
ability to tap into a large user-base is essential to their contin-
ued development. It is with this in mind that we have built the
Web-Accessible Multimodel Interfaces (WAMI) Toolkit [10].

WAMI is a complex bundle of server-side and client-side
machinery based on an Apache Tomcat, PostgreSQL stack.
WAMI’s core functionality is to provide all the necessary
plumbing to get audio from the client side, typically a web
browser, to a recognizer running server-side. The recognition
results must also find their way back to the client, of course,
and we also add in logging code to capture events and audio
from user interactions. WAMI scales gracefully with an arbi-
trary number of users, and care was taken in each component to
ensure efficiency and thread-safety.

Unfortunately, implementing these relatively basic features
of WAMI requires a myriad of technologies, presenting a large
barrier-to-entry for anyone wishing to incorporate speech fea-
tures into a website. For this reason we have not only open-
sourced the WAMI project, but we also host a third-party-
accessible version of WAMI1 which exposes the easy-to-use
Javascript API shown in Figure 1. This allows web develop-
ers with no knowledge of speech science to incorporate basic
recognition into their sites in just a few lines of client-side code.
In [14], we describe Quizlet.com, a flashcard website which has
used WAMI to speech-enable two educational games.

Until recently, the only language models (LMs) available to
third-party developers through WAMI were small context-free
grammars based on the Java Speech Grammar Format2 (JSGF).
One advantage of these grammars is that embedded semantic
tags can be parsed and decoded from the recognition results.
Still, a feature commonly requested was the ability to loosen
the language constraints of our recognition service.

In conjunction with the work presented here, we are re-
leasing two new methods for defining WAMI’s language model
through the web interface. Now, a corpus argument is an ac-
cepted type in the grammar object passed through to the rec-
ognizer. The text associated with the grammar is then assumed
to be a set of sentences in the domain. These sentences are

1http://wami.csail.mit.edu
2http://java.sun.com/products/java-media/speech/forDevelopers/JSGF/

Figure 2: In the iterative transcription task above, batches of five
utterances are combined into a 5¢ HIT. The first worker fills in
a blank transcript which subsequent workers correct. A final
worker approves the transcript if there are no more changes to
be made.

then compiled into a trigram language model on-the-fly, which
is then used in the recognizer for that session. Since it is not ad-
visable to pass large amounts of data from the client, a cached
type of grammar has also been implemented. In particular, we
allow a third party developer to upload a corpus once, and pro-
vide them with an ID by which to reference it in their Javascript.

In this work, we extend the trigram compilation framework
to add another language model type, organic language mod-
els, which, are grown via on-the-fly transcripts. Such a lan-
guage model can be defined from multiple transcription sources,
which are abstracted away into a table in the logging database.
Currently, a background thread in WAMI is configured to check
for updates to each language model defined in the database ev-
ery ten minutes. If new transcripts are found they are seam-
lessly sent to the recognizer for LM recompilation. One could
envision an adaptive language model whose complexity (e.g.,
n-gram size) is altered based on the amount of data or even test
set performance. In this work, however, attention is restricted to
the simple case where a set of transcribed utterances is compiled
into a continually updating trigram language model.

While the framework is agnostic to the way in which the
transcripts find their way into the database, Amazon Mechanical
Turk is an obvious choice. Figure 2 shows part of a transcription
HIT which can be deployed to AMT to gather utterances. Re-
lying on a single worker is inadvisable when a certain level of
accuracy is required of the transcripts. For this reason we have
used AMT’s Java API to implement an iterative HIT. The first
worker is given a blank area in which to type the transcript. A
subsequent worker will then determine if there are any changes
to be made. The final worker checks a box indicating that the
transcript is error-free. This continues to a maximum of five
workers per utterance.

4. Photo Search: A Case Study
We decided on photo-annotation and search as the domain in
which to perform our preliminary experiments on our generic
framework for organic language models. In addition to spoken
annotation, we allow the user to draw with the mouse. This
gesture collection, however, is not the focus of this work.

The photo user interface described in the following sub-
sections was written entirely in Javascript and required no
domain-specific server-side code. On the back-end, the SUM-
MIT landmark-based recognizer is configured with a large
hand-crafted lexicon and acoustic models trained on telephone
speech. For words not in the lexicon, a letter to sound module
generates pronunciations on-the-fly.

4.1. Photo Annotation

We devised a web interface where an individual can log into Pi-
casa, Flickr, or Facebook to access their personal photos. For

3058



Figure 3: Photo annotation HIT. For every ten photos annotated
with speech, a photo-search HIT would appear. The relative
position of elements was altered to save space.

those with privacy concerns, we also created a version that uses
random public images from Flickr. In either case, voice anno-
tations are streamed to a recognizer configured from the client
side to use the organic language model.

Since our photo annotation system is new, it has no culti-
vated user base, but we can exploit AMT to create a motivated
user base through monetary award. To this end, we devised the
photo-annotation HIT depicted in Figure 3, which encourages
users to annotate photos for 10¢ a piece. This is relatively gen-
erous as AMT tasks go, but our reasoning was that a certain pri-
vacy barrier must be broken when people talk about their own
photos. A similar task where workers could annotate public
photos was also deployed for 5¢.

An organic language model, initially containing only a sin-
gle word, “nothing”, was grown over the life-time of the HIT by
transcribing the collected speech behind-the-scenes via a sep-
arate but simultaneous iterative transcription HIT. As the lan-
guage model matures, the hypotheses eventually become useful
for photo search.

4.2. Photo Search

To measure the utility of recognition results from photo annota-
tions, we designed a voice search component to our photo user
interface. Since positing a novel speech-based photo-retrieval

# workers # utts. # searches

personal 27 995 105
public 35 1099 117

Figure 4: Statistics for the two deployed photo annotation HITs.

algorithm is beyond the scope of this initial prototype, we took
a simple approach to the search problem. Instead of using the
same recognizer configuration, a special context free grammar
for photo search was constructed and compiled on-the-fly using
code similar to the sample found in Figure 1. The recognition
hypotheses from a set of voice annotations are stored to
generate bags of words for each photo considered in the search:
<photo-i> = (word-1 | word-2 | ... | word-N)*
A few carrier phrases, such as search for and find the,
were added to the grammar leading into these word-loops.
Finally, semantic tags, e.g. [photo=i], were embedded into
each word-loop, to allow us to easily determine the query’s
hypothesized answer.

We inserted our search interface into the aforementioned
annotation HIT in the following manner. After every set of ten
photos, instructions were presented which asked the workers to
think back over the photos that they had just annotated and cre-
ate a voice search. A user might, for instance, say “search for
the photograph of my motorbike in thailand” in hopes that the
computer would display the photo shown in Figure 3. Upon
displaying the hypothesized image, the computer asks the user
to confirm whether this was the photo they were thinking of.
We required the user to make three search queries before con-
tinuing with the annotation of more photos. Thus, provided the
worker does not abandon the task early, each set of ten photo
annotations is accompanied by three search queries.

4.3. Experimental Results

The two versions of our photo annotation HIT, running with ei-
ther public or personal photos, were each deployed to Amazon
Mechanical Turk for two days. We restricted the task to U.S.
workers and required them to have an acceptance rating of over
75%. Still, since each user has their own microphone, speaking
style, and subject matter, we decided to constrain the contribu-
tions of an individual worker over time, limiting each person to
at most six searches an hour. Once a worker went over his or her
limit, a warning appeared telling the user to come back after a
couple hours if they wanted to do more. Lastly, we encouraged
users to keep utterances relatively short, and explicitly warned
them if the recognizer detected over 25 words.

Once we had finished testing our user-interface, we de-
ployed our final HITs and set the organic language model in mo-
tion. Figure 4 displays some statistics regarding the two runs,
each of which lasted 48 hours. It is interesting to see, for in-
stance, that the additional 5¢ was enough to encourage workers
to log into their personal accounts to complete the HIT. It is also
clear that not everyone who starts working on the HIT makes it
far enough to complete a search task.

The search error rate can be approximately determined by
the workers’ feedback on the correctness of the photo returned
from the periodic search queries. While workers are not guar-
anteed to tell the truth, given that we restricted ourselves to the
most trustworthy workers, and that they have no knowledge of
our experimental interests, this assumption seems reasonable.

The average utterance length for the public photo annota-
tion was 7.2 words, whereas for personal photos it was 6.6. The
average delay between an utterance being logged in our system

3059



0 24 48
0

.5

1

Time (Hours)

E
st

im
at

ed
 P

ro
ba

bi
lit

y
of

 S
ea

rc
h 

E
rr

or
Personal Photos
Public Photos

0 24 48
0

3000

6000

Time (Hours)

# 
U

ni
qu

e 
Tr

ig
ra

m
s

Figure 5: The plot on the left shows the probability of a search
error occurring as a function of time as estimated by logistic
regression. On the right, the number of unique trigrams in the
organic language model is shown as it grows.

and a transcription being assigned to it via Amazon Mechanical
Turk was 87 minutes. The high latency is due to a number of
factors. Transcription HITs are bundled into groups of five, and
so the first necessarily awaits the fifth before deployment. Fur-
thermore, the background processes poll at fixed ten-minute in-
tervals. This, along with the iterative nature of the HIT, requires
a single utterance to go through a series of steps before being
fully processed. Fortunately, the delay is still short enough to
support studying system dynamics.

To determine the performance effects of the language
model growth, the search error indicated by the worker is treated
as a binary response variable dependent on time. Logistic re-
gression was used to determine that the slope of the estimated
probability of a search error over time is negative for both the
public and personal photo tasks, with p < .01. We can also
visualize the trend using kernel density estimation, as shown in
Figure 5. The probability of a search error as a function of time
is given by Parzen-Rosenblatt density estimation. On the right
of Figure 5 is plotted the growth of the language model in terms
of the number of unique trigrams. Despite similar growth, the
search error rate trends downward, and is lower for personal
photos. We believe that the personal photos were easier to re-
member, and the search queries were better matched to the an-
notations. Both plots exhibit considerable fluctuation, which we
believe is due to variation across different users.

It is clear from the plots that the organic language mod-
els are operating as expected, improving the system behind
the scenes with no expert input. The difference was dramatic
enough that one worker emailed us with the comment: “I just
wanted to say that I have noticed that your system seems to be
getting better at recalling specific pictures.”

5. Summary and Future Work
In this work, we have shown the feasibility of analyzing a dy-
namic spoken language system deployed on Amazon Mechan-
ical Turk. We have explored growing trigram models using
AMT for a spoken language interface, and shown that improve-
ments can be achieved without expert guidance.

We hope this work opens the door to experimenting with
other, more complex dynamic systems on Amazon Mechanical
Turk. Obvious next steps for our framework include incorpo-
rating acoustic model training and perhaps even pronunciation
learning. Beyond simple retraining, however, we envision sys-
tems that play an active role in their own learning, perhaps by
choosing the data they wish to have transcribed a la [15].

AMT’s API can empower programs to ask arbitrary ques-
tions about the world (e.g. “What is spoken in this audio clip?”).
An important part of building these human-in-the-loop applica-
tions will be ensuring that they ask the right questions to cost-
effectively improve system performance.

6. Acknowledgements
This work was funded in part by the T-party project, a joint re-
search program between MIT and Quanta Computer Inc., Tai-
wan. We would also like to thank Chia-ying Lee for the tran-
scription interface, Scott Cyphers for photo API work, Ming
Zhu and James McGraw for assistance with data analysis, and
all of our Mechanical Turk workers.

7. References
[1] C. Callison-Burch and M. Dredze, “Creating speech and language

data with amazons mechanical turk,” in NAACL 2010 Workshop:
Creating Speech and Language Data With Amazons Mechanical
Turk, 2010.

[2] M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S. Ack-
erman, D. R. Karger, D. Crowell, and K. Panovich, “Soylent: a
word processor with a crowd inside,” in Proceedings of the 23nd
annual ACM symposium on User interface software and technol-
ogy (UIST), 2010.

[3] R. Snow, B. O’Conner, D. Jurafsky, and A. Ng, “Cheap and fast
— but is it good? evaluating non-expert annotations for natural
language tasks,” in Proceedings of EMNLP, 2008.

[4] I. McGraw, C. Lee, L. Hetherington, and J. Glass, “Collecting
voices from the cloud,” in Proceedings of LREC, May 2010.

[5] S. Novotney and C. Callison-Burch, “Cheap, fast and good
enough: Automatic speech recognition with non-expert transcrip-
tion,” in Proceedings of ICASSP, March 2010.

[6] M. Marge, S. Banerjee, and A. Rudnicky, “Using the amazon me-
chanical turk for transcription of spoken language,” in Proceed-
ings of ICASSP, to appear 2010.

[7] G. Little, L. B. Chilton, M. Goldman, and R. C. Miller, “TurKit:
tools for iterative tasks on mechanical turk,” in HCOMP ’09: Pro-
ceedings of the ACM SIGKDD Workshop on Human Computation.
ACM, 2009, pp. 29–30.

[8] A. Kittur, B. Smus, and R. E. Kraut, “CrowdForge: Crowd-
sourcing complex work,” Human-Computer Interaction Institute,
School of Computer Science, Carnegie Mellon University, Tech.
Rep., Feb. 2011.

[9] M. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and
R. Xin, “CrowdDB: Answering Impossible Queries,” in SIG-
MOD. ACM, 2011.

[10] A. Gruenstein, I. McGraw, and I. Badr, “The WAMI toolkit for
developing, deploying, and evaluating web-accessible multimodal
interfaces,” in Proceedings of ICMI, 2008.

[11] I. Lane, A. Waibel, M. Eck, and K. Rottmann, “Tools for collect-
ing speech corpora via Mechanical-Turk,” in NAACL Workshop
on Creating Speech and Language Data With Amazons Mechani-
cal Turk, 2010.

[12] V. Zue, S. Seneff, J. Glass, J. Polifroni, C. Pao, T. Hazen, and
L. Hetherington, “JUPITER: A telephone-based conversational
interface for weather information,” IEEE Transactions on Speech
and Audio Processing, vol. 8(1), 2000.

[13] A. Raux, D. Bohus, B. Langner, A. Black, and M. Eskenazi, “Do-
ing research on a deployed spoken dialogue system: One year of
Let’s Go! experience,” in Proceedings of INTERSPEECH-ICSLP,
2006.

[14] A. Gruenstein, I. McGraw, and A. Sutherland, “A self-transcribing
speech corpus: Collecting continuous speech with an online edu-
cational game,” in Proceedings of the Speech and Language Tech-
nology in Education (SLaTE) Workshop, 2009.

[15] B. Varadarajan, D. Yu, L. Deng, and A. Acero, “Maximizing
global entry reduction for active learning in speech recognition,”
in Proceedings of ICASSP, 2009.

3060


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Ian McGraw
	Also by James Glass
	----------

