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Abstract
In this paper, we propose a novel lower-bound estimate for

dynamic time warping (DTW) methods that use an inner prod-
uct distance on multi-dimensional posterior probability vectors
known as posteriorgrams. Compared to our previous work, the
new lower-bound estimate uses piecewise aggregate approxi-
mation (PAA) to reduce the time required for calculating the
lower-bound estimate. We describe the PAA lower-bound con-
struction process and prove that it can be efficiently used in an
admissible K nearest neighbor (KNN) search. The amount of
computational savings is quantified by a set of unsupervised
spoken keyword spotting experiments. The results show that
the newly proposed PAA lower-bound is able to speed up DTW-
KNN search by 28% without affecting the keyword spotting
performance.

Index Terms: dynamic time warping, lower-bound, posterior-
gram

1. Introduction
Dynamic Time Warping (DTW) is a broadly explored technique
for aligning two time indexed patterns. The key advantage of
DTW is that it assumes no underlying knowledge about the pat-
terns to be aligned, and can provide a quantitative solution for
measuring similarity [1]. In terms of computational complex-
ity for two patterns of length M , a DTW match takes O(M2)
to output the best alignment between these two patterns. How-
ever, given a query pattern, if DTW is used to search similar
patterns in a large speech corpus, the squared time complexity
would become a very large computational burden. For exam-
ple, to find the best match of a given speech pattern of length
M in a large speech corpus with N entries, DTW would take
O(M2 ·N) time where N could be very large.

To address this problem, several lower-bound estimation al-
gorithms have been proposed for DTW-KNN search in large
corpora [2, 3, 4]. There are two basic ideas behind lower-
bounded DTW-KNN search. First, a lower-bound distance that
underestimates the actual DTW distance is computed between
the query pattern and all candidate patterns in the corpus. Sec-
ond, to search for the nearest neighbor of the query pattern, the
algorithm starts from the candidate pattern with the smallest
lower-bound estimate and calculates the actual DTW distance
as the current best match. It is clear that based on the definition
of the lower-bound, any candidate patterns with lower-bound
estimates greater than the current best match can be pruned
away. The nearest neighbor search is complete when all re-
maining candidate patterns have lower-bound estimates greater
than the current best match.

Inspired by the lower-bound DTW-KNN search idea, in our

recent work we proposed a lower-bound estimate for DTW-
KNN search on posteriorgrams using an inner product dis-
tance [5]. For a keyword spotting task on the TIMIT corpus,
we observed that 89% of the DTW calculations can be elimi-
nated without affecting the keyword spotting performance. The
time consumed for the lower-bound estimate is O(M) for a key-
word query with M frames. For a database with N entries how-
ever, calculating the lower-bound estimate for a keyword query
and every candidate speech segment in the database would take
O(MN), which could still be a considerable burden when N is
very large (e.g., N > 107).

To address this disadvantage, in this paper, we propose an
improved lower-bound estimate using piecewise aggregate ap-
proximation (PAA). PAA can be viewed as a down-sampling ap-
proach which can make a short but representative abstraction for
a long time series. When comparing two time series, using their
corresponding PAA representation saves computation time in
exchange for a slightly weaker lower-bound estimate. Prior re-
search with PAA has focused on using the Euclidean distance as
the similarity metric between one dimensional time series [2, 6].
Our recent work has been using DTW on posteriorgrams (a se-
ries of multi-dimensional posterior probability vectors) based
on the inner product distance metric [5, 7]. If we therefore hope
to leverage the PAA concept for reducing lower-bound calcula-
tions, we need to develop a new PAA lower-bound estimate for
posteriorgrams. Therefore, we describe a PAA lower-bound es-
timate approach, and prove that it is admissible for DTW-KNN
search. Using a PAA representation of posteriorgrams might
lead to a weaker lower-bound estimate which would increase
the necessary DTW calculations in a KNN search. In our re-
ported keyword spotting experiments on the TIMIT corpus we
consider the total calculation needed for both the lower-bound
estimate and DTW-KNN search. The results showed that the
proposed PAA lower-bound estimate reduced the computational
requirements for DTW-KNN search by 28% compared with our
previous best lower-bound estimate approach [5].

2. Background
In this section we first briefly review the concept of the Gaussian
posteriorgram representation and the associated lower-bound
estimate for DTW-KNN search.

2.1. Gaussian Posteriorgram

Given speech frames f1, f2, · · · , fn, the Gaussian posterior-
gram for each speech frame fi is a collection of posterior proba-
bilities P (gj |fi). gj ∈ G is a mixture from a Gaussian mixture
model G which is trained on a set of unlabeled speech frames.
If G consists of D mixtures, each speech frames can be rep-
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resented by a D-dimensional vector �pi = {p1
i , p

2
i , · · · , pD

i },

where
P

j pj
i = 1,∀i.

2.2. Lower-Bound Estimate for DTW on Posteriorgram

Consider two Gaussian posteriorgrams for a speech query Q =
{�q1, . . . , �qM} and a speech segment S = {�s1, . . . , �sN}, the lo-
cal distance between �qi and �sj is defined by their inner product
distance as d(�qi, �sj) = − log(�qi ·�sj). Given an alignment warp
φ = (φq, φs) of length Kφ, the corresponding alignment score
Aφ(Q, S) is obtained from the sum of the local distances

Aφ(Q, S) =

KφX
k=1

d(�qφq(k), �sφs(k))

where 1 ≤ φq(k) ≤ M and 1 ≤ φs(k) ≤ N . The overall
best alignment score DTW(Q, S) = minφ Aφ(Q, S). A global
path constraint r is usually applied to ensure that the warp will
be within r frames of each other along the entire alignment.

Given a query posteriorgram, if we wish to find the top
K nearest neighbor matches in a speech corpus, the traditional
DTW search method needs to go through all the candidate seg-
ments and rank the DTW distance between the query posterior-
gram and every candidate segment. However, with the help of
a lower-bound estimate of the DTW distance, the KNN search
can terminate if all the remaining candidates have lower-bound
estimates greater than the Kth best match. The construction of
the lower-bound estimate is as follows. Given two posterior-
grams Q and S, an upper-bound envelope sequence U is calcu-
lated on Q, where U = {�u1, · · · , �uM}, �ui = {u1

i , · · · , uD
i }

and up
i = max(qp

i−r, · · · , qp
i+r). U can be viewed as a sliding-

maximum on Q with window size r [5]. Note that r is the DTW
global path constraint mentioned earlier. The lower-bound esti-
mate of DTW(Q, S) can be defined as

L(Q, S) =
lX

i=1

d(�ui, �si) (1)

where l = min(M, N). The time required for computing
L(Q, S) is only O(l). In [5], we proved that

L(Q, S) ≤ DTW (Q, S)

which guarantees no false dismissals for DTW-KNN search.

3. Piecewise Aggregate Approximation
Although using the lower-bounded DTW-KNN search can save
a considerable amount of DTW calculation, the computation of
the lower-bound estimate itself is still time consuming. To fur-
ther improve the efficiency, inspired by [2, 6], we apply the con-
cept of piecewise aggregate approximation (PAA) to reduce the
length of posteriorgrams into B blocks, and estimate a slightly
weaker lower-bound in exchange for a faster lower-bound cal-
culation.

3.1. Definition

Given two posteriorgrams Q and S, without loss of generality,
we assume they have the same length M = N . Define two

approximation posteriorgrams Û = {Û1, · · · , ÛB} and Ŝ =

{Ŝ1, · · · , ŜB}. Ûi denotes the ith block of the approximated

upper-bound envelope U , and is defined as Ûi = {û1
i , · · · , ûD

i }
where each dimension
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Figure 1: Example of a one-dimensional PAA sequence (3
frames per block) (green), an upper-bound envelope sequence
(red) and an original posteriorgram (blue) for r = 5.

ûp
i = max

“
up

M
B

(i−1)+1
, · · · , up

M
B

i

”
(2)

Ŝi denotes the ith block of the approximated S and can be de-

fined as Ŝi = {ŝ1
i , · · · , ŝD

i } where each dimension

ŝp
i =

B

M

M
B

iX
j= M

B
(i−1)+1

sp
j (3)

Note that if M is not divisible by B, M
B

is floored and the re-
maining frames form an additional block. It is clear that the
PAA block reduction process is similar with a down-sampling
process. For a speech query, for each dimension the maximum
value of the frames within a block is used to represent the block,
while for a speech segment, the average value of the frames
within a block is used. Figure 1 demonstrates an example of

the approximated Q̂ and the upper-bound envelope U on one
dimension of a posteriorgram.

Using Û and Ŝ, the PAA lower-bound estimate for DTW
on posteriorgrams can be defined as

PAA(Q, S) =
BX

i=1

M

B
· d(Ûi, Ŝi) (4)

where d(·) is the inner product function.

3.2. Proof

To prove PAA(Q, S) ≤ L(Q, S), without loss of generality,
we first assume that B = 1 which indicates the entire posteri-
orgram sequence is considered as one block. If under this as-
sumption the inequality holds, it is clear that the same proof can
be applied to each block when B ≥ 1. (Note that if B = M
then PAA(Q, S) = L(Q, S).)

Since B = 1, Eq. 4 can be simplified as

PAA(Q, S) = M ·
 
− log

DX
p=1

ûp
1 · ŝp

1

!

According to the definition of the original lower-bound estimate
in Eq. 1, the inequality becomes
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M ·
 
− log

DX
p=1

ûp
1 · ŝp

1

!
≤ L(Q, S) =

MX
i=1

− log

DX
p=1

up
i · sp

i

After absorbing the summation into the log and negating both
sides, the inequality becomes

log

 
DX

p=1

ûp
1 · ŝp

1

!M

≥ log
MY

i=1

DX
p=1

up
i · sp

i

which is equivalent to prove

 
DX

p=1

ûp
1 · ŝp

1

!M

≥
MY

i=1

DX
p=1

up
i · sp

i (5)

Note that since B = 1, according to the definition of the block
reduction process in Eq. 2 and Eq. 3, it is clear that

ûp
1 = max (up

1, u
p
2, · · · , up

M )

ŝp
1 =

1

M

MX
i=1

sp
i

Therefore, the left hand side of Eq. 5 can be written as

 
DX

p=1

ûp
1 · ŝp

1

!M

=

 
1

M

DX
p=1

MX
i=1

ûp
1 · sp

i

!M

≥
 

1

M

DX
p=1

MX
i=1

up
i · sp

i

!M
(6)

where ûp
1 ≥ up

i , ∀i ∈ [1, M ] based on Eq. 2. Interchanging the
summation in Eq. 6, the inequality we need to prove becomes

 
1

M

MX
i=1

DX
p=1

up
i · sp

i

!M

≥
MY

i=1

DX
p=1

up
i · sp

i (7)

Let ai =
PD

p=1 up
i · sp

i , the inequality becomes

 
1

M

MX
i=1

ai

!M

≥
MY

i=1

ai

Since it is clear that ai ≥ 0, the arithmetic mean is always
greater than or equal to the geometric mean. Combining with
the proof in [5], the following inequality holds

PAA(Q, S) ≤ L(Q, S) ≤ DTW(Q, S) (8)

which indicates the PAA lower-bound estimate is admissible to
DTW-KNN search.

Since the sum of posterior probabilities in a posteriorgram
should be one, in order to avoid trivialness we should prove (as
in [5]) that the approximated posteriorgram has the property that

 
DX

p=1

ûp
1 · ŝp

1

!M

≤ 1

From Eq. 6 and Eq. 7, it is clear that

DX
p=1

ûp
1 · ŝp

1 =
1

M

MX
i=1

DX
p=1

ûp
1 · sp

i

Let ûmax = max(û1
1, û

2
1, · · · , ûD

1 ). We have

1

M

MX
i=1

DX
p=1

ûp
1 · sp

i ≤
ûmax

M
·

MX
i=1

DX
p=1

sp
i =

ûmax

M
·

MX
i=1

·1

=
ûmax

M
·M · 1 = ûmax ≤ 1

where
PD

p=1 sp
i = 1 based on the posteriorgram definition.

4. Evaluation
Since the proposed PAA lower-bound estimate is a direct exten-
sion to our previous work, the evaluation and comparison was
performed on the same task as in [7].

4.1. The Unsupervised Keyword Spotting Experiment

The unsupervised keyword spotting experiment was performed
on the TIMIT corpus, including a training set of 3,696 utter-
ances and a test set of 944 utterances. Each utterance was seg-
mented into a series of 25 ms frames with a 10 ms analysis rate;
each frame was represented by 13 MFCC features. A GMM
with 50 Gaussian components was trained on the frames in the
training set. Then, frames from both the training set and the
test set were decoded by the GMM, producing a 50-dimension
posteriorgram vector for each frame.

Ten keywords were randomly selected and one example of
each keyword was extracted from the training set. A stop list
is applied to prevent frequently used words from being selected
as a keyword. The keyword spotting task was to find the K
best matching utterances from the test set containing each key-
word. In [7], we proposed a DTW-KNN search framework
using lower-bound estimate in Eq. 1. Specifically, the KNN
search terminates when K utterances are found and the lower-
bound estimates of all remaining utterances are greater than the
Kth best DTW score. The same DTW-KNN search framework
was applied except that the lower-bound estimate was replaced
by the newly proposed PAA lower-bound estimate in Eq. 4.

In order to analyze computational costs, one inner product
calculation of two posteriorgrams is viewed as an atomic oper-
ation. For example, if the speech query and the test speech seg-
ment have length M , the original lower-bound estimate would
require M inner products while the proposed PAA lower-bound
estimate requires B inner products, where B ≤ M is the num-
ber of blocks after applying PAA. When searching for a key-
word, the sum of the inner products needed in the lower-bound
estimate and the following DTW calculation is considered to be
the total amount of required computation. Note that the com-
putational overhead needed for the PAA block reduction in Eq.
2 and Eq. 3 is small. Specifically, the approximated upper-
bound envelope is calculated only once for each speech query,
while for speech segments in the database, the average value of
frames within a block can be pre-calculated and stored.

4.2. Experimental Results

Since the PAA lower-bound estimate is admissible (Eq. 8), the
keyword spotting accuracy is the same as the previously re-
ported result which was 14.6% equal error rate (EER) [7].

Figure 2 illustrates why the proposed PAA lower-bound es-
timate can speed up the overall calculation compared to the
original lower-bound method. The green dotted curve (LB) rep-
resents the actual inner product calculations needed for lower-
bound estimate only. Each solid curve (DTW) represents the ac-

1911



1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18
x 107

F : Frames per Block

# 
In

ne
r P

ro
du

ct
 C

al
cu

la
tio

ns

LB
r=1 DTW
r=1 TOL
r=3 DTW
r=3 TOL
r=5 DTW
r=5 TOL
r=7 DTW
r=7 TOL
r=9 DTW
r=9 TOL

Figure 2: Actual inner product calculation against different
number of frames per block.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

K Nearest Neighbors

In
ne

r P
ro

du
ct

 S
av

e 
R

at
io

(%
)

2 frames per block
3 frames per block
5 frames per block
7 frames per block
10 frames per block

Figure 3: Average inner product calculation save ratio against
different K nearest neighbors.

tual inner product calculations needed for the DTW calculation
with different r. r is the global path constraint in DTW. Each
dashed curve (TOL) is the sum of the solid curve (in the same
color) and the green dotted curve, which indicates the total inner
product calculations needed. Note that, as mentioned earlier,
when there is only one frame per block, the PAA lower-bound
estimate degrades to the original lower-bound estimate. For ex-
ample, when F = 1, r = 5, the original approach requires
1.12 × 108 inner product calculations as well as 5.45 × 107

for the DTW calculations. In this case, the time consumed
on the lower-bound estimate is more than the time consumed
on the DTW calculations. However, if we increase the num-
ber of frames per block, the number of inner product calcula-
tions required for the lower-bound estimates decreases. At the
same time, since the lower-bound estimates become weaker, the
number of inner product calculations required for the DTW in-
creases. Considering the total inner product calculations, it can
be seen that a large amount of inner product calculations can
be saved compared with the original approach (F = 1). Since
according to [7], the minimum EER was achieved when r = 5,
the PAA lower-bound estimate for this r value can save 28% of
the inner product calculations when F = 3.

Figure 3 compares the average inner product save ratio

against different K nearest neighborhoods when r = 5. The in-
ner product save ratio is defined as the percentage of total inner
product calculations saved comparing with the original lower-
bound estimate. As seen in the figure, for this task both small
and large values of K achieve greater overall computational
savings compared to values of K between 100 and 450. We
believe the reason for this behavior is because when K is small,
searching K best matches is a highly competitive process. A
slightly weaker lower-bound estimate will increase DTW calcu-
lations dramatically so that the inner product save ratio is dom-
inated by the inner product calculations needed on the DTW
side. As a result, the save ratio is inversely proportional to the
number of frames per block because having more frames in a
block results in a greater underestimation of the lower-bound.
In contrast, for large K the KNN searches almost all speech
segments. The inner product save ratio largely depends on the
number of inner product calculations in the lower-bound esti-
mate. Thus, the PAA lower-bound estimates with large block
sizes achieve greater overall savings.

In terms of computation time, the original lower-bound ap-
proach takes 120 seconds on a single desktop CPU on average,
while the PAA lower-bound method needs 87 seconds. Since
the TIMIT test corpus contains 48 minutes of speech, each
keyword search takes approximately 10 seconds/query/corpus
hour/CPU, compared with 14 seconds/query/corpus hour/CPU
achieved with the original lower-bound estimate.

5. Conclusion
In this paper, we present a novel admissible lower-bound esti-
mate for DTW based on the inner product distance on multi-
dimensional posteriorgrams. The new lower-bound estimate
uses piecewise aggregate approximation (PAA) to reduce the
computational requirements for the estimate. Using PAA leads
to a weaker lower-bound estimate, which in turn increases the
number of DTW calculations required in a KNN search. When
considering the total calculation needed for both lower-bound
estimate and DTW-KNN search, TIMIT keyword spotting ex-
periments indicate that the proposed PAA lower-bound estimate
is able to speed up the overall DTW-KNN search by 28%.

Since the lower bound calculation can be easily paral-
lelized, in future work, we would like to examine other com-
puting architectures such as GPU computing to further speed
up the entire algorithm.
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