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ABSTRACT

In this paper we present a spoken query detection method

based on posteriorgrams generated from Deep Boltzmann

Machines (DBMs). The proposed method can be deployed

in both semi-supervised and unsupervised training scenarios.

The DBM-based posteriorgrams were evaluated on a series

of keyword spotting tasks using the TIMIT speech corpus.

In unsupervised training conditions, the DBM-approach im-

proved upon our previous best unsupervised keyword detec-

tion performance using Gaussian mixture model-based pos-

teriorgrams by over 10%. When limited amounts of labeled

data were incorporated into training, the DBM-approach re-

quired less than one third of the annotated data in order to

achieve a comparable performance of a system that used all

of the annotated data for training.

Index Terms— spoken query detection, posteriorgram,

Deep Boltzmann Machines

1. INTRODUCTION

Spoken query detection can be viewed as a pattern matching

problem. If both the spoken query and speech documents

use the same representation, finding a query match is equiv-

alent to searching for similar patterns in the documents. A

straightforward way of representing both the query and the

documents is to convert the speech to text via automatic

speech recognition. Detection then becomes a text based

search (potentially with confusion networks [1], etc). One

of the disadvantages of this approach, however, is poor gen-

eralization to arbitrary languages, (or more general audio),

since it typically requires a trained speech recognizer. Thus,

for under-resourced languages, there is a time/cost issue to

obtain enough annotated data to build a recognizer with ac-

ceptable recognition performance [2, 3].

In our prior work [4], we have demonstrated an ability to

perform spoken query detection without using a speech recog-

nizer. By converting both queries and documents to a poste-

rior probability-based representation called a Gaussian poste-

riorgram, an efficient lower-bounded Dynamic Time Warping

(DTW) algorithm [5] can be used to locate matches in speech

documents. The Gaussian posteriorgram is a series of proba-

bility vectors computed on frame-based speech features such

as MFCCs. Specifically, for each speech frame, a posterior-

gram vector is generated by calculating the posterior proba-

bility of the MFCCs being generated by each component in a

Gaussian mixture model (GMM). The GMM is trained on all

MFCCs without requiring any labels.

Although GMM-based posteriorgram produced encourag-

ing results on spoken query detection tasks, we are interested

in reducing the performance gap between supervised and un-

supervised methods for training posteriorgrams. In this paper

we investigate an alternative method for training a posteri-

orgram representation that is based on Deep Boltzmann Ma-

chines (DBMs). We also investigate training the DBM in both

unsupervised, and semi-supervised scenarios where a fraction

of the training data has been labeled. The DBM is attractive as

it has recently been shown to produce good classification re-

sults in a variety of domains, including computer vision and

information retrieval [6]. The DBM also has the appealing

property that it can be trained in a semi-supervised setting.

In this paper we describe the DBM-based posteriorgram

representation which we have incorporated into our DTW-

based spoken query detection framework. We report the re-

sults on several spoken query detection experiments using the

TIMIT corpus. In the semi-supervised setting, we observed

that 30% of the labeled data are enough to obtain a detec-

tion performance that is comparable to the case in which all

labeled data are used. In the unsupervised training scenario,

we found that a GMM seeded DBM posteriorgram resulted

in a 10% relative improvement in equal error rate detection

performance over the GMM-posteriorgram baseline.

2. DEEP BOLTZMANN MACHINES

In recent years, deep learning models have been used for

phonetic classification and recognition on a variety of speech

tasks and showed promising results [7, 8]. A Deep Boltzmann

Machine is a network of symmetrically coupled stochastic bi-

nary units [6, 9]. It contains a set of visible units �v ∈ {0, 1}D
and a sequence of layers of hidden units �h1 ∈ {0, 1}F1 ,
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�h2 ∈ {0, 1}F2 ,...,�hL ∈ {0, 1}FL . There are undirected con-

nections only between hidden units in adjacent layers, as well

as between the visible units and the hidden units in the first

hidden layer (with no within layer connections).

Consider learning a Deep Boltzmann Machine with two

hidden layers (i.e. L = 2), the energy of the joint configuration

{�v,�h1,�h2} is defined as:

E(�v,�h1,�h2; θ) = −�vTW1
�h1 − �hT

1 W2
�h2 (1)

where θ = {W1,W2} are the model parameters, representing

visible-to-hidden and hidden-to-hidden symmetric interaction

terms. (We omit the bias terms for clarity of presentation).

The probability of an input vector �v is given by

P (�v; θ) =
1

Z(θ)

∑

�h1,�h2

exp(−E(�v,�h1,�h2; θ)) (2)

where Z(θ) is the normalization term defined as

Z(θ) =
∑

�v

∑

�h1,�h2

exp(−E(�v,�h1,�h2; θ)) (3)

Exact maximum likelihood learning in this model is in-

tractable, but efficient approximate learning of DBMs can be

carried out by using a mean-field inference together with an

MCMC based stochastic approximation procedure. Further-

more, the entire model can be efficiently pre-trained one layer

at a time using a stack of modified Restricted Boltzmann ma-

chines. When modeling real-valued data, we use Gaussian-

Bernoulli DBMs. The learning procedure is very similar to

the standard binary-binary DBMs (for more details see [6]).

An important property of a DBM is that parameter learn-

ing does not require any supervised information. Hierarchi-

cal structural information can be automatically extracted as

an unsupervised density model to maximize the data likeli-

hood. If any amount of labelling information is given, a stan-

dard back-propagation algorithm [10] for multi-layer neural

network can be applied to fine-tune the model discrimina-

tively [6]. Furthermore, the back-propagation can be imple-

mented in an online update scheme, hence any future addi-

tional labels could be used in online fine-tuning.

3. POSTERIORGRAM GENERATION

In this section, we first review the unsupervised Gaussian pos-

teriorgram generation and then move to semi-supervised and

unsupervised DBM based posteriorgram generation.

3.1. Gaussian Posteriorgram
The unsupervised Gaussian posteriorgram is a feature repre-

sentation of speech frames generated from a GMM. Given a

set of N speech frames, let �x1, . . . , �xN represent MFCCs for

each speech frame. A D-mixture GMM G is trained on all N

frames without using any labels. Then, for each speech frame

�xi, a posterior probability, pji = P (gj |�xi), can be calculated

where gj denotes j-th Gaussian component in GMM G. Col-

lecting D posterior probabilities, each speech frame �xi is then

represented by a probability vector �pi = {p1i , . . . , pDi }, where∑
j p

j
i = 1 ∀i.

3.2. Semi-supervised DBM Posteriorgram
Like the phonetic posteriorgrams used in [11, 12], a super-

vised or semi-supervised DBM posteriorgram is a probability

vector representing the posterior probabilities of a set of la-

beled phonetic units for a speech frame. Formally, if we de-

notes N speech frames as �x1, . . . , �xN and their corresponding

phonetic labels ph1, . . . , phN , a posterior probability, pji =
P (phj |�xi; θ), can then be calculated for any speech frame,

�xi, for each phonetic label phj , given DBM model parame-

ters θ and using softmax activation function. If there are V
phonetic labels, a speech frame �xi can then be represented

by a V -dimensional probability vector, �pi = {p1i , . . . , pVi },

where
∑

j p
j
i = 1 ∀i.

Compared with the Gaussian posteriorgrams which can

be generated by a GMM trained without any supervised infor-

mation, DBM posteriorgrams require some annotated data for

training. In the semi-supervised training procedure we use in

this work, we first train the DBM model using all data without

labels (i.e., unsupervised), followed by the fine-tuning step

that requires some amount of labeled data.

3.3. Unsupervised DBM Posteriorgram
In machine learning, a weak classifier can be used to initial-

ize a strong classifier to accelerate the training process. For

example, in conventional Expectation-Maximization (EM)

training of a GMM, K-means clustering is often used to ini-

tialize the target GMM. Inspired by this idea, we investigate

a fully unsupervised DBM posteriorgram by training a DBM

from labels generated from an unsupervised GMM. Given

a set of N speech frames with an MFCC representation,

�x1, . . . , �xN , a D-mixture GMM G is trained on all frames

without using any labels. For each frame �xi, we provide a

labeler function L as

L(�xi) = argmax
j

P (gj |�xi) (4)

where gj is the j-th Gaussian component in G. In other

words, each speech frame is labeled by the index of Gaus-

sian component which maximizes the posterior probability

given �xi. Then a DBM is trained on those “artificial” labels.

This DBM posteriorgram generation is similar to the semi-

supervised case except that the human produced phonetic

label phj for each frame is replaced by the GMM produced

“artificial” label j. Through this two-stage training process,

we leverage the DBM’s rich model structure to produce bet-

ter posteriorgrams than a GMM, while still keeping the entire

training framework compatible with the unsupervised setting.
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4. SPOKEN QUERY DETECTION

After representing spoken queries and speech documents us-

ing posteriorgrams, an efficient DTW algorithm is used to de-

tect possible matches of the query in the documents. The

similarity between the keyword query posteriorgram Q =
{�q1, . . . , �qM} with M frames and a speech segment poste-

riorgram S = {�s1, . . . , �sN} with N frames is defined by the

best warping distortion score as

DTW(Q,S) = min
φ

Aφ(Q,S) (5)

where φ denotes a particular point-to-point alignment warp

and A is the alignment scoring function. The local distance

metric used between two frames is an inner product. To ac-

celerate the search efficiency, we developed two lower-bound

estimates to help the DTW search [5].

5. EVALUATION

We performed three different evaluations of the DBM-based

posteriorgram representation. In the first evaluation, we in-

vestigated how different layer configurations of the DBM

would affect the quality of the generated posteriorgram as

well as the query detection performance. The DBM for this

experiment was trained in a fully supervised setting. In the

second evaluation, we examined how query detection perfor-

mance is affected when using partially labeled data for DBM

training. In the third evaluation, we compared the query

detection performance of the fully unsupervised DBM poste-

riorgram with our previous Gaussian posteriorgram baseline.

5.1. Spoken Query Detection Task

The spoken query detection task was based on the 630 speaker

TIMIT corpus which includes a training set of 3,696 utter-

ances and a test set of 944 utterances. As in [4, 5], 10 query

keywords were randomly selected and 10 examples of each

keyword were extracted from the training set. For each key-

word example, the query detection task was to rank all 944

utterances from the test set based on the utterance’s possibil-

ity of containing that keyword. Performance was measured by

the average equal error rate (EER): the average rate at which

the false acceptance rate is equal to the false rejection rate.

5.2. Supervised Results

In the supervised experiments, we used all labeled data (3,696

utterances) in order to maximize the performance while

changing different DBM layer configurations. For DBM

training, each training utterance was segmented into a series

of 25ms windowed frames with a 10ms shift (i.e., centisecond

analysis). Each frame was represented by 39 MFCCs stacked

with the neighboring 10 frames (5 on each side). In total, the

feature dimension for each frame is 429 (39 x 11). All 61

Table 1. Different DBM configurations.

DBMs Avg. EER

500 10.6%

300x300 10.3%

500x500 9.8%

1000x1000 10.4%

500x500x500 10.1%

phonetic labels were used for training. After training, each

frame in the training and test set was decoded by the DBM,

producing a posteriorgram vector of 61 dimensions. Query

detection was done by comparing the keyword example pos-

teriorgrams with the test set posteriorgrams using the DTW

method described in Section 4.

Table 1 presents the results for different DBM configu-

rations and their resulting average EER. In the first column,

500 indicates a DBM that has one layer with 500 hidden units,

while 500x500 denotes a DBM with two layers each of which

has 500 hidden units. The forward layer training in each con-

figuration was set to stop at the 100th iteration, while the fine-

tuning using back-propagation was set to stop at the 50th iter-

ation. The results indicate that detection performance was not

overly sensitive to DBMs with different layer settings. This

implies that we need not be overly concerned about the DBM

layer configurations in subsequent experiments.

5.3. Semi-supervised Results

In the second experiment, we used a two-layer DBM with 500

hidden units for each layer. We first trained our model on all

3,696 unlabeled utterances, followed by the fine-tuning stage

that only used partially labeled data. Figure 1 demonstrates

the results. On the x-axis, a training ratio of 0.1 indicates

that only 10% of the labeled data were used in the fine-tuning

stage, while a training ratio of 1.0 means all labeled data were

used. It can be observed that the average EER curve drops

dramatically from 0.01 to 0.2 and becomes steady between

0.3 to 0.8. This is an interesting result because in scenarios

where fully labeled data are not cost effective to obtain, 20%

to 30% of labeled data are enough to produce a system that is

only slightly worse than the system trained on all labeled data.

Moreover, since in the fine-tuning step, the back-propagation

algorithm has to go through each data point for each iteration,

using a smaller portion of labeled data also saves a significant

amount of computing time.

5.4. Unsupervised Results

In the unsupervised training experiment, a 500x500 DBM

was trained by using labels generated from a GMM with 61

Gaussian mixtures. Specifically, a GMM was first trained on

frame-based MFCCs without using any labels. To be consis-

tent with our prior work, only 13 MFCCs per frame were used

to train the GMM. Once the unsupervised GMM had been
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Fig. 1. Average EER against different training ratios

Table 2. Comparison of Gaussian and DBM posteriorgram

Posteriorgram Avg. EER

Gaussian 16.4%

DBM 14.7%

DBM (1%) 13.3%

created, each frame was subsequently labeled by the most

likely GMM component (Eq. 4). A DBM was then trained

on 429 MFCCs per frame using the GMM-generated labels.

We then compared the unsupervised posteriorgram detection

performance between the GMM and the DBM-based poste-

riorgrams, as shown in Table 2. As we have reported pre-

viously [4], the Gaussian posteriorgrams produced an aver-

age EER of 16.4%. The unsupervised DBM-based posterior-

grams improved upon this result by over 10% to achieve an

average EER of 14.7%. We believe the improvement is due to

the DBM’s explicit hierarchical model structure that provides

a finer-grained posterior representation of potential phonetic

units than those that can be obtained by the Gaussian posteri-

orgram. Note that in an attempt to make a comparison using

the same larger feature set, we also trained an unsupervised

GMM using the 429 dimensional MFCC vectors that were

used to train the DBM. In this case, however, the average EER

degraded to over 60%, which we attribute to a weaker ability

of the GMM to cope with higher dimensional spaces.

The third row in Table 2, highlights one final advantage

of the DBM framework in that it is able to incorporate par-

tially labeled data. When we included only 1% of labeled

data, we see that the average EER is further reduced to 13.3%

(as also shown in the first data point in Figure 1). This reduc-

tion corresponds to another 9.5% performance gain over the

unsupervised case.

6. CONCLUSION AND FUTURE WORK

In this paper we presented a spoken query detection method

based on posteriorgrams generated from Deep Boltzmann

Machines (DBMs). The proposed representation can be eas-

ily adapted to work in both semi-supervised and unsupervised

training conditions. Spoken query detection experiments on

the TIMIT corpus showed a 10.3% relative improvement

compared to our previous Gaussian posteriorgram framework

in the unsupervised condition. In the semi-supervised setting,

the detection performance using the DBM posteriorgram

can achieve a comparable performance to fully supervised

training when using only 30% of the labeled data.

In future work we plan to perform keyword detection ex-

periments on larger spoken query tasks, and with languages

other than English, since the unsupervised DBM posterior-

gram DTW framework is language independent.
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