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Abstract
This paper presents a new speaker verification system based on
i-vector modeling as a feature extractor. In this modeling, we
explore the distance constraints between i-vector pairs from the
same speaker and different speakers. With an approximation
of the distance metric as a weighted covariance matrix of the
top eigenvectors from the data covariance matrix, variational
inference is used to estimate a posterior distribution for the dis-
tance metric. Given speaker labels, we select different-speaker
data pairs with the highest cosine scores to form a different-
speaker constraint set. This set captures the most discriminative
between-speaker variability in the training data. This Bayesian
distance metric learning approach achieves better performance
than state-of-the-art method. Furthermore, this approach is in-
sensitive to score normalization, as compared to cosine scoring.
Without the requirement of the number of labeled examples,
this approach performs very well in the context of limited train-
ing data.
Index Terms: i-vector, score normalization, distance metric
learning, channel compensation, limited training utterances

1. Introduction
Recently, many speaker verification systems based on the i-
vector [1][2] have achieved significant improvements in perfor-
mance. The i-vector is a compact, low-dimensional representa-
tion of any speech segment. We can generally treat an i-vector
as input to common classifiers such as Support Vector Machines
(SVM), or cosine distance classifiers. [1] shows cosine distance
scoring to achieve state-of-the-art performance. In the i-vector
training and score verification process, speaker labels are not
used explicitly, suggesting that the full use of speaker labels
may lead to better performance. Since the i-vector contains both
speaker- and channel-variability, we’d like to carry out channel
compensation before verification. Linear Discriminant Analy-
sis (LDA) is widely used to remove the session variability.

The basic speaker recognition task seeks to determine
whether the test utterance and the target utterance are from the
same speaker. In other words, our goal is to determine the
proximity between the test utterance and the target utterance
are close enough or not. Thus we can view the speaker ver-
ification system as a distance metric learning problem: given
speaker labels of training utterances, we aim to find a good dis-
tance metric that brings “similar” data points (belonging to the
same speaker) close together while separating “dissimilar” data
points (belonging to different speakers) [3]. There are a number
of algorithms developed for supervised distance metric learn-
ing to optimize different objective functions. Most of the al-
gorithms return a point estimation of the distance metric [4],
which is sensitive to the selection of training samples. In [5],
Yang and Jin introduce a Bayesian framework for distance met-

ric learning, which aims to estimate a posterior distribution for
the distance metric. The algorithm has achieved high classifica-
tion accuracy in image classification. In addition, this approach
is insensitive to the number of labeled examples for each class,
as compared to most algorithms requiring a large number of la-
beled examples [5]. This advantage is particularly important for
realistic speaker verification systems, in which it can be diffi-
cult to collect a sufficiently large number of samples from every
speaker, even though it may be possible to collect samples from
a large number of different speakers. In this paper, we present a
speaker verification system based on the Bayesian distance met-
ric learning framework.

The rest of this paper is organized as follows. Section 2
provides a background review of speaker verification based on
the cosine similarity of i-vectors and channel compensation via
LDA. In Section 3, we propose the speaker verification algo-
rithm based on Bayesian distance metric learning. Some results
on 2008 NIST SRE task are analyzed and explained in Section 4
to show the superior performance of the algorithm over cosine
scoring, and Section 5 concludes with a discussion of future
work.

2. Related work
2.1. i-vector representation

The i-vector representation, also known as total variability
modeling, aims to model the utterance variability in a low-
dimensional space. Total variability originates from joint factor
analysis [8] but doesn’t distinguish between speaker variability
and channel variability [9]. Given an utterance, the speaker- and
channel-dependent Gaussian Mixture Model (GMM) supervec-
tor M can be represented as

M = m+ Tw

where m is the speaker- and channel-independent supervector
(which can be taken to be the Universal Background Model
(UBM) supervector), T is a rectangular matrix of low rank
and w is a random vector having standard normal distribution
N(0, I). T defines the new total variability space, and the re-
maining variabilities not captured by T are accounted for in a
diagonal covariance matrix Σ. In this modeling, all the high-
dimensional supervectors lie around m in a relatively lower-
dimensional subspace. w is the speaker- and channel-dependent
factor in the total variability space. The mean of the posterior
distribution of w corresponds to the i-vector, which can be seen
as a new speaker verification feature with a relatively low di-
mension.

The training of parameters is based on the EM algorithm
[1]. Note that all utterances from one speaker are regarded as
having been produced by different speakers. Since we do not
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need any speaker labels to get i-vectors, it is essentially an un-
supervised training method.

For the task of speaker verification, we use a simple cosine
distance classifier on the i-vectors of the target user utterance
and the test utterance:

score(wtarget, wtest) =
(wttarget)wtest

‖wtarget‖ · ‖wtest‖
R θ

where θ is the decision threshold.

2.2. Score normalization

Although cosine distance scoring is fast and robust, it suffers
from the additional computation necessary for score normaliza-
tion. A better generative model would simulate speech data per-
fectly and produce a score without normalization or calibration
[10].

Z-norm and t-norm are typically used to get a calibrated
score [11]. In [12], Dehak proposed a new cosine similarity
scoring. It can be treated as the combination of z-norm and t-
norm score normalization.

Assuming w
′

is a length-normalized i-vector, the score
for a length-normalized target i-vector w

′
target and a length-

normalized test i-vector w
′
test can be computed as below:

score(w
′
target, w

′
test) =

(w
′
target − w′)t(w

′
test − w′)

‖ C · w′
target ‖‖ C · w

′
test ‖

where w′ is the mean of imposter i-vectors, and C is a diagonal
matrix which contains the square root of the diagonal imposter’s
covariance matrix, Σ = E[(w

′
− w′)(w

′
− w′)t].

2.3. Intersession compensation

In the total variability representation, there is no explicit com-
pensation for inter-session variability. However, the low-
dimensional representation enables us to carry out compensa-
tion techniques in the new space, with the benefit of less expen-
sive computation. We use Linear Discriminant Analysis (LDA)
for session compensation. Viewing one speaker as one class,
LDA attempts to define new axes that minimize the intra-class
variance caused by session/channel effects, and maximize the
variance between classes.

The LDA optimization problem can be defined to find the
direction q that maximizes the fisher criteria

J(q) =
qtSbq

qtSwq

where Sb and Sw are between-class and within-class covariance
matrices:

Sb =

S∑
s=1

(ws − w)(ws − w)t

Sw =

S∑
s=1

1

ns

ns∑
i=1

(wsi − ws)(wsi − ws)t

and ws = (1/ns)
∑ns
i=1 w

s
i is the mean of i-vectors for each

speaker, ns is the number of utterances for each speaker s, w is
the speaker population mean vector, S is the number of speak-
ers.

The maximization is achieved to define a projection ma-
trix Q composed by the top eigenvectors of the general matrix
S−1
w Sb.

3. Distance metric learning
With i-vectors as low-dimensional representations of speech ut-
terances, the cosine distance classifier is to measure the cosine
distance of the target user utterance and the test utterance. How
to define the distance between vectors, which aims to find a
good distance metric in feature space, is a crucial problem in
classification. There has been considerable research on distance
metric learning over the last few years [6]. We explore two su-
pervised distance metric learning methods in this paper. From
now on, we use an i-vector wi to represent an utterance.

3.1. Neighborhood component analysis

Neighborhood component analysis (NCA) [4] learns a distance
metric to minimize the average leave-one-out k nearest neigh-
bor classification error under a stochastic selection rule. With
a transformation matrix B, each i-vector wi selects another i-
vector wj as its neighbor with some probability pij , which is
defined over Euclidean distances in the transformed space:

pij =
exp(− ‖ Bwi −Bwj ‖2)∑
k 6=i exp(− ‖ Bwi −Bwk ‖2)

, pii = 0

The probability for the i-vector wi selecting neighbors from the
same speaker is pi =

∑
j∈Ci

pij , where Ci is the set of i-
vectors from the same speaker with i. The projection matrix
B is to maximize the expected number of i-vectors selecting
neighbors from the same speaker:

B = argmaxBf(B) =
∑
i

∑
j∈Ci

pij =
∑
i

pi

A conjugate gradient method is used to obtain the optimal B.

3.2. Bayesian distance metric learning framework

NCA provides a point estimation of the distance metric and can
be unreliable when the number of training examples is small.
[5] presents a Bayesian framework to estimate a posterior dis-
tribution for the distance metric.

Given the speaker-labels of each utterance, we can form
two sets of same-speaker and different-speaker constraints S
and D. The probability of two utterances wi and wj belong-
ing to the same speaker or different speakers is defined under a
given distance matrix A:

Pr(yij |wi, wj , A, µ) =
1

1 + exp (yij(||wi − wj ||2A − µ))

where yij =

{
+1 (wi, wj) ∈ S
−1 (wi, wj) ∈ D

The parameter µ is the threshold to differentiate same-
speaker utterances and different-speaker utterances. Two
utterances are more likely to be identified from the same
speaker only when their distance with respect to the distance
matrix A is less than µ.

To simplify the computation, [5] models the distance metric
A as a parametric form of the top eigenvectors of observed data
points. Let X = (w1, w2, . . . , wn) denote all the available
utterances, and vl, l = 1, . . . ,K be the top K eigenvectors
of XXT . Assume A =

∑K
l=1 γlvlv

T
l , where γl ≥ 0, l =

1, 2, . . . ,K, then the likelihood can be rewritten as:

Pr(yij |wi, wj , A, µ) =
1

1 + exp
(
yij(

∑K
l=1 γlw

l
i,j − µ)

)
= σ(−yijγtwi,j)
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where
wli,j = [(wi − wj)tvl]2

wi,j = (−1, w1
i,j , . . . , w

K
i,j)

γ = (µ, γ1, . . . , γK)

σ(z) = 1/(1 + exp(−z))
Applying Gaussian prior distributions on the parameters γ =
(µ, γ1, . . . , γK), the evidence function is computed as:

Pr(S,D) =

∫
Pr(S,D|γ)Pr(γ)dγ

=

∫ ∏
(i,j)∈S

σ(−γtwi,j)
∏

(i,j)∈D

σ(γtwi,j)

N(γ; γ01K+1, δ
−1IK+1)dγ

The transformation of the likelihood to a logistic function
makes it possible to get a lower bound of the evidence, thus a
variational method [16] is employed to estimate the posterior
distribution for γ. The details of the algorithm can be found in
[5].

After getting the posterior distribution φ(γ) ∼
N(γ;µγ ,Σγ), we can compute the conditional probabil-
ity Pr(±|wi, wj) as follows:

Pr(±|wi, wj) =

∫
N(γ;µγ ,Σγ)

1 + exp(±γTwi,j)
dγ

∝
∫

exp(−l±i,j(γ))dγ

where l±i,j(γ) = log(1 + exp(±γTwi,j)) + 1
2
(γ −

µγ)TΣ−1
γ (γ − µγ).

We first approximate the optimal solution γ±i,j by expanding
l±i,j(γ) in the neighborhood of µγ , then l±i,j(γ) by its Taylor
expansion around the optimal solution γ±i,j , and compute the
integral using this approximation. Thus the final estimation of
the probability takes into account the full distribution of γ. The
probability of identifying the target and test utterance from the
same speaker Pr(+|wtarget, wtest) is the output score.

We use NCA as a preprocessing technique to project the
i-vectors into a space in which the nearest neighbor of each i-
vector shares the same speaker label with a high probability.
The Bayesian distance metric learning approach can model the
distances between i-vectors better and more reliably in the new
space. Our experimental results demonstrated the benefits of
this approach.

4. Experiments
4.1. Experimental set-up

Experiments are performed on the female part of the short2-
short3 condition of the 2008 NIST SRE dataset [17]. The train-
ing and test data are telephone conversational excerpt of ap-
proximately five minutes duration. The set for i-vector train-
ing contains 1,830 speakers and 21,382 utterances. It is also
used for LDA and NCA training, and as the imposter set in the
score normalization step. The evaluation set contains 1,678 tar-
get speakers and 24,128 test trials. A 600-dimension i-vector
is extracted from each utterance. The Equal Error Rate (EER)
and the minimum Detection Cost Function (minDCF) are used
as metrics for evaluation.

Table 1: Comparison of results between the cosine score and
Bayes dml w/o score normalization

EER minDCF
LDA200+Cosine Score 2.54% 0.0144

LDA200+Cosine Score combined norm 1.791% 0.0098
LDA200+Bayes dml 2.163% 0.0108

LDA200+Bayes dml+znorm 2.163% 0.0108
LDA200+Bayes dml+tnorm 2.163% 0.0108
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Figure 1: Comparison of score histograms from Cosine Score
blue: non-target scores, red: target scores
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Figure 2: Comparison of score histograms from Bayes dml
blue: non-target scores, red: target scores

4.2. Results

The Bayesian distance metric learning algorithm is referred to
as Bayes dml, and cosine score after the score normalization
described in Section 2.2 as Cosine Score combined norm.
The comparison of the results of cosine score and Bayes dml
is shown in Table 1. Given the speaker labels for training
utterances, we construct the similar- and different-speaker set
as follows: all possible i-vector pairs from the same speaker
form the constraint S; cosine scoring is applied to all possible
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Table 2: Comparison of results between Cosine
Score combined norm and Bayes dml with different

preprocessing techniques

Cosine Score combined norm EER minDCF
LDA200 1.791% 0.0098

LDA200+NCA200 2.539% 0.0139
LDA200+NCA200+LDA200 1.780% 0.0097
LDA200+NCA200+LDA100 2.018% 0.0099

Bayes dml EER minDCF
LDA200 2.163% 0.0108

LDA200+NCA200 3.032% 0.0178
LDA200+NCA200+LDA200 1.815% 0.0101
LDA200+NCA200+LDA100 1.777% 0.0096

i-vector pairs from different speakers, and those with the
highest scores are selected to form the constraint D since these
pairs are the most discriminative ones for a distance metric to
distinguish.

We can see that Cosine Score combined norm with
LDA200 achieves the best result. However, Bayes dml per-
forms better than Cosine Score, i.e. cosine score without score
normalization. Compared with the state-of-the-art performance
from Cosine Score combined norm, the gap of Bayes dml is
already quite small. Furthermore, there is almost no benefit to
be derived from score normalization in Bayes dml.

We can find the differences from the histograms of target
scores and non-target scores from Cosine Score and Bayes dml
shown in Figure 1 and Figure 2, respectively. The target scores
represent the scores of test utterances from the target speaker,
and the non-target scores represent the score of test utterances
not from the target speaker. The score distributions from
Bayes dml are much more concentrated than those from cosine
score, and the target scores and non-target scores are better
separated as well. This comparison can explain why Bayes dml
outperforms Cosine Score in table 1. As a result, there is no
need to do score normalization in Bayes dml, which makes it a
more ideal model.

With a basic understanding of the difference between Co-
sine Score combined norm and Bayes dml, we compare their
performances with different combinations of preprocessing
techniques. The preprocessing techniques include LDA and
NCA, which are applied before the scoring models. The results
are shown in Table 2.

The best performance for Cosine Score combined
norm is achieved with LDA200+NCA200+LDA200, and
the best performance for Bayes dml is achieved with
LDA200+NCA200+LDA100. Bayes dml outperforms Cosine
Score combined norm, and is also the best reported result on
the short2-short3 condition of the 2008 NIST SRE female
data. If we only do NCA projection, the results get worse.
This is because the NCA matrix is obtained under the best
nearest neighbor classification criterion, without taking into
consideration the clustering of i-vectors from the same speaker
and the separation of i-vectors from different speakers. While
LDA can achieve this goal by optimizing the Fisher criteria,
generally NCA followed by LDA can project the data into a
space in which i-vectors from the same speaker are close, and
i-vectors from different speakers are well separated.

Table 3: Comparison of results between Cosine
Score combined norm and Bayes dml on limited training data

(the number of training utterances for each speaker is 3)

Cosine Score combined norm EER minDCF
LDA200 4.181% 0.0210

LDA200+NCA200+LDA200 3.930% 0.0210
LDA200+NCA200+LDA100 4.664% 0.0260

Bayes dml EER minDCF
LDA200 4.514% 0.0237

LDA200+NCA200+LDA200 4.190% 0.0261
LDA200+NCA200+LDA100 3.751% 0.0208

4.3. Results on limited training data

In this part, we show the advantage of Bayes dml when the
training utterances of each speaker is very limited. We select
a small number (3) of utterances from each training speaker to
build a made-up training set. The test set is the same as before.
The best preprocessing techniques from Section 4.2 and LDA
are evaluated, with the results shown in Table 3.

We can see that Bayes dml generally achieves a better EER,
which means that a lower false alarm and a lower miss prob-
ability can be achieved at the same time in Bayes dml. The
best performance of Bayes dml is better than that of Cosine
Score combined norm. Even with only 3 utterances from each
speaker, we can still get rich information from same-speaker
and different-speaker i-vector pairs, whereas data sparsity can
cause LDA to not fully capture the speaker variability.

5. Conclusion
In this paper, we propose a novel speaker verification frame-
work based on the Bayesian distance metric learning algorithm.
We use total variability modeling as a feature extractor. Each
utterance is represented by a low-dimensional i-vector. Previ-
ous approaches try to find a class model for each speaker [9]
[10], which performs poorly when the training utterances for
each speaker is limited. Inspired by the successful application
of distance metric learning in other areas of statistical classifi-
cation [5], we explore the distance constraints between i-vector
data pairs and solve this problem in a new way. The same- and
different-speaker constraint sets are constructed from training
data and the distance metric is learned via a Bayesian approach.
NCA is used as a preprocessing technique to improve the per-
formance combined with LDA.

Since cosine distance measure has a very competitive per-
formance and distance metric learning uses Euclidean distance
in the space projected byA

1
2 , future work should explore incor-

porating cosine distance measurement into the distance metic
learning framework. The performance of speaker verification
in arbitrary durations has become a critical issue in the NIST
evaluation protocol since 2012. It will be worth to see how the
framework in this paper works for shorter duration utterances.
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