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ABSTRACT

In this paper, we explore the use of deep belief network
(DBN) posteriorgrams as input to our previously proposed
comparison-based system for detecting word-level mispro-
nunciation. The system works by aligning a nonnative utter-
ance with at least one native utterance and extracting features
that describe the degree of mis-alignment from the aligned
path and the distance matrix. We report system performance
under different DBN training scenarios: pre-training and
fine-tuning with either native data only or both native and
nonnative data. Experimental results have shown that by
substituting the system input from MFCC or Gaussian pos-
teriorgrams obtained in a fully unsupervised manner to DBN
posteriorgrams, the system performance can be improved by
at least 10.4% relatively. Moreover, the system performance
remains steady when only 30% of the annotations being used.

Index Terms— mispronunciation detection, dynamic
time warping, deep belief networks

1. INTRODUCTION
Computer-aided pronunciation training (CAPT) deals with
the problem of detecting pronunciation errors in nonnative
speech. Conventional approaches based on automatic speech
recognition (ASR) technology may lack the ability of gener-
alizing to different target languages, as the process of training
a recognizer for a new language requires a great amount of
human effort to annotate data. Currently there are approxi-
mately 80 languages having ASR capability [1], taking up less
than 2% of the world’s languages [2]. For many languages
that receive less attention and financial support, we seek to
develop a different solution to building a CAPT system.

In our prior work [3], we have demonstrated a comparison-
based, word-level mispronunciation detection system which
works by analyzing the alignment between a student’s ut-
terance and a teacher’s utterance. Dynamic time warping
(DTW) is carried out between the two utterances, and fea-
tures describing the degree of mis-alignment are extracted
from the aligned path and the distance matrix for classifier
training. The speech representations we have explored are
Mel-frequency cepstral coefficients (MFCCs) and Gaussian

posteriorgrams (GPs), decoded from a Gaussian mixture
model (GMM) trained in a fully unsupervised manner [4].
Experimental results have shown that the system that ex-
tracts features from the aligned path and the distance matrix
outperforms the one that considers alignment scores only.

Recent attempts in applying deep belief networks (DBNs)
on speech technology have shown their ability to produce
good classification results [5, 6]. One of the attractive char-
acteristics of DBNs is that the pre-training step does not re-
quire any annotation of the data, while the back-propagation
step allows us to fine-tune the pre-trained generative model
with some labels. In other words, the model can be trained
in a semi-supervised fashion [5, 7]. One of the challenges we
have encountered in our prior work is that some mixtures in
the GMM capture the difference in speakers rather than pho-
netic units, resulting in some parts of the mis-alignment not
necessarily corresponding to mispronunciation. The recent
success of DBNs shows the potential to improve the discrim-
inability of the posteriorgrams on phones with only a small
amount of annotated data.

In this paper, we explore the use of DBN posteriorgrams
as the input to our system. We examine various settings where
only the information from native speech or both from native
and nonnative speech are used. As our goal is to reduce the
required human labor as much as possible, we also investigate
how system performance would vary with respect to different
amount of annotation being used in DBN training.

2. RELATED WORK
Over the past two decades, there has been a great amount
of research on mispronunciation detection in nonnative
speech [8]. Some of the earliest work adopted template-
matching approaches based on vector quantization and DTW.
The scores from alignment between native and nonnative
speech were used for evaluating pronunciation quality [9, 10].
As ASR technology improved, various likelihood probability-
based or posterior probability-based approaches have been
proposed. For example, Franco et. al [11] examined the pos-
terior probabilities from acoustic models trained on different
levels of nativeness, and goodness of pronunciation (GOP)
scores [12] took the ratio between the likelihood scores from
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forced alignment and from recognition into account.
Many of the existing pattern classification techniques

have also been used to detect mispronunciation. Strik et. al [13]
extracted acoustic-phonetic features and applied linear dis-
criminant analysis (LDA), while Wei et. al [14] considered
log-likelihood ratios (LLR) between the canonical phone
model and a set of pronunciation variation models, and used
support vector machine (SVM) for classification. Another di-
rection is to explicitly model the possible mispronunciations
based on linguistic knowledge. Meng et. al [15, 16, 17] pro-
posed an extended lexicon where possible mispronunciation
patterns were predicted based on language transfer rules.

One common challenge in building a CAPT system lies in
the intrinsic difference between the acoustic-phonetic spaces
of native and nonnative speech. As a result, some systems
make use of training data from nonnative speech to improve
system performance [11, 14, 17], although often it is not easy
to get a good amount of well-labeled nonnative data. Most re-
cently, Qian et. al [18] demonstrate one of the first efforts that
adopts DBN on acoustic modeling for nonnative speech for
the task of pronunciation training. Their results have shown
the benefit of using DBN to incorporate the unlabeled nonna-
tive speech from the test speakers.

Our recently proposed comparison-based system [3] is a
combination of template-matching and classifier-based ap-
proaches. As Zhang et. al [7] have reported that using DBN
posteriorgrams greatly improves the performance on the task
of keyword spotting, which is essentially a comparison task,
we would also like to explore the use of DBN posteriorgrams
in our system, with various settings for training.

3. DEEP BELIEF NETWORK (DBN)
A deep belief network (DBN) consists of a stack of Restricted
Boltzmann machines (RBMs). An RBM contains two layers:
a visible layer v and a hidden layer h. Every node is con-
nected to all nodes in the other layer, while there are no con-
nection between nodes within the same layer. Two types of
RBMs are commonly used in speech processing: Bernoulli
RBMs and Gaussian-Bernoulli RBMs. For Bernoulli RBMs,
all visible and hidden units are binary, i. e. v ∈ {0, 1}D and
h ∈ {0, 1}F , where D and F are the number of units in each
layer, while for Gaussian-Bernoulli RBMs, the visible units
take real numbers, i. e. v ∈ RD and h ∈ {0, 1}F .

The joint probability of v and h can be written as:

P (v,h; θ) =
1

Z(θ)
exp(−E(v,h; θ)) (1)

where −E(v,h; θ) is an energy function and Z(θ) is the nor-
malizing term. For Bernoulli RBMs, we have

E(v,h; θ) = −
D∑
i=1

F∑
j=1

Wijvihj −
D∑
i=1

bivi −
F∑

j=1

ajhj (2)

Z(θ) =
∑
v

∑
h

exp(−E(v,h; θ)). (3)

The parameters θ = {W,a,b} include the symmetric inter-
action between the units (Wij) and the bias terms (aj , bi). On
the other hand, for Gaussian-Bernoulli RBMs, we have

E(v,h; θ) =

D∑
i=1

(vi − bi)2

2σ2
i

−
D∑
i=1

F∑
j=1

Wijhj
vi
σi
−

F∑
j=1

ajhj

(4)

Z(θ) =

∫
v

∑
h

exp(−E(v,h; θ)) (5)

with one more parameter σ, which is the standard deviation.
The pre-training step aims at maximizing the log-likelihood

of the data, logP (v; θ). Differentiating the log-likelihood
with respect to the parameters θ results in a form of expec-
tation over the data distribution minus expectation over the
model distribution. Exact computation of the expectation
over the model is intractable, so a contrastive divergence-
based approach [19] was used to efficiently approximate
the gradient of the log-likelihood probability by performing
a one-step Gibbs sampling. A DBN can thus be built by
stacking a number of Bernoulli RBMs on top of one layer of
Gaussian-Bernoulli RBM. The whole structure can be learned
in a layer-by-layer manner by treating the hidden activities of
one RBM as the input data to a higher level RBM [5].

In the back propagation step, a softmax layer is further
added to the top of the pre-trained DBN, and stochastic gra-
dient descent can be carried out if the predicted label (the la-
bel with the highest posterior probability) of a training sam-
ple is not the same as the label given. With this softmax
layer, DBN posteriorgrams can also be decoded. Given the
model parameters θ fine-tuned over a pre-defined label set
V = {l1, l2, · · · , lV }, the DBN posteriorgram for a speech
frame xi can be computed as

DBNpxi
= [P (l1|xi; θ), P (l2|xi; θ), · · · , P (lV |xi; θ)] (6)

where
∑

j P (lj |xi; θ) = 1.

4. THE COMPARISON-BASED SYSTEM
Given a teacher’s utterance T = (ft1 , ft2 , ..., ftn) with n
frames and student’s utterance S = (fs1 , fs2 , ..., fsm) of m
frames, an n × m distance matrix Φts can be built, where
Φts(i, j) = D(fti , fsj ) denotes the distance between two
frames of speech representation fti and fsj . The first stage of
the system runs DTW between the two sequences by search-
ing for the best path on Φts and segments S into words based
on the word timing information on T . The second stage of
the system extracts phone-level and word-level features that
describe the degree of mis-alignment from the shape of the
aligned path and the appearance of the distance matrix. The
whole problem is then treated as a binary classification prob-
lem, and SVM classifiers are trained to detect whether a word
is mispronounced or not. More details of the system and fea-
ture design can be found in [3].
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Speaker set Scripts Duration # words
(# mispronouned)

a CU-CHLOE, SI 2.1 hr 9,989
group A (1,523)

b CU-CHLOE, SX 1.6 hr 6,894
group B (1,406)

c TIMIT, all SI 1.7 hr N/A
d TIMIT, all SX 2.5 hr N/A

Table 1: Division of the native and nonnative copora

The input to the system, T and S, can be in various
speech representations, as long as a proper distance measure
D(fti , fsj ) is defined. In our prior work, we have explored
the use of MFCC and GP. For MFCC, D(fti , fsj ) can be de-
fined as the Euclidean distance, while for GP, D(fti , fsj ) can
be defined as− log(fti · fsj ) [4]. In this paper, we investigate
the use of DBN posteriorgrams, and similarly, the distance
metric can be defined as the inner product distance.

5. CORPORA
The native corpus of the target language (English) comes
from TIMIT, and the nonnative speech comes from the Chi-
nese University Chinese Learners of English (CU-CHLOE)
corpus [15], which is a specially-designed corpus of Can-
tonese speaking English, and a subset of which is based on
TIMIT prompts. There are 100 nonnative speakers (50 males
and 50 females), so we divide them into two disjoint groups
A and B, each with 25 males and 25 females. Word-level
mispronunciation labels are collected through Amazon me-
chanical turk (AMT) [20], where there were three turkers
labeling the words in each utterance, and we only consider
the words that have agreement from all three turkers. Table 1
shows the four subsets of the data we use in experiments.

6. EXPERIMENTS
6.1. Experimental setting
All waveforms are first transformed into 39-dimensional
MFCCs every 10-ms frame, including first and second order
derivatives. Cepstral mean normalization (CMN) is carried
out on a per utterance basis [18].

For SVM training, we use the alignments between set a
and set c as shown in Table 1. For each nonnative utterance
in set a, there is exactly one matching native utterance of the
same gender from set c. Set b serves as the test set, and on
average there are 3.8 matching native utterances of the same
gender from set d. The parameters of the SVMs with RBF
kernels are optimized for different scenarios, respectively.

For DBN training, we set the DBNs to be of 3 hidden lay-
ers, each with 512 hidden units. The softmax layer consists of
61 units, the same size as the phone set in the TIMIT corpus.
Each MFCC frame is padded with 10 neighboring frames, re-
sulting in a 429-dimensional vector for each frame as input to
the DBNs. The samples are first normalized by their global
mean and variance, so we can set σ to 1. We run 100 epochs
of pre-training for each layer and 50 epochs of back propa-
gation, both over a batch size of 256 frames. Three different

Pre-training Back propagation F-score (%)

DBN
native (c+d) native (c+d) 72.2
both (a+c+d) native (c+d) 71.9
both (a+c+d) both (a+c+d) 72.7

MFCC 65.1
GP 63.6

ASR 70.0
Table 2: Experimental results (see Table 1 for the details of
the datasets used in each DBN training scenario)

scenarios are examined: either using only native data or us-
ing both native and nonnative data for pre-training and back
propagation, as shown in the top three rows in Table 2. Since
the subset of the CU-CHLOE corpus we use is without hu-
man phonetic transcription, we run forced alignment to serve
as human transcription.

The system performance is evaluated by using precision,
recall and F-score. Precision is the number of words that
are correctly detected as mispronounced divided by the total
number of mispronunciations in the system output, and recall
is the number of correctly identified mispronounced words
divided by the total number of mispronounced words in the
data. F-score is the harmonic mean of the two.
6.2. Baseline
We consider an ASR-based baseline. A monophone DBN-
HMM recognizer trained on the TIMIT training set is used.
The DBN has 2 hidden layers (2048 × 2048) and a soft-
max layer of 183 units, and takes 39-dimensional MFCCs
stacked with 10 neighboring frames as input. We compute
GOP scores [12] by taking the absolute difference between
the log-likelihood of a phoneme segment from forced align-
ment and the log-likelihood score from the recognition pass
within that segment, normalized by the duration. Since GOP
score is defined for every phone while our application is to
detect word-level mispronunciation, we pick the largest GOP
score within a word, together with average GOP score over
the word, the sum of the log-likelihood scores from forced
alignment over the word normalized by duration, and the min-
imum phone log-likelihood score within the word, to form a
feature vector and train an SVM classifier.

This baseline may not be the state-of-the-art ASR-based
system for mispronunciation detection. However, it provides
us with an idea about how our features extracted from the
alignment can capture the characteristics of mispronuncia-
tion, compared to the information extracted from the likeli-
hood scores. We also include our previous results based on
MFCC and GP alignment for comparison. A 150-mixture
GMM is trained on set c and set d in Table 1 for GP decoding.
6.3. Results
Table 2 shows the system performance under different DBN
training scenarios, together with the results from MFCC and
GP-based alignment and the ASR baseline. The three DBNs
in the table are fine-tuned using all the labels within the cor-
responding sets. Fig. 1 shows the ROC curves.
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Fig. 1: ROC curves of three DBN training settings, MFCC or
GP-based system, and ASR baseline

By changing the system input from MFCC or GP to DBN
posteriorgrams, we can improve the relative performance by
at least 10.4%. This difference can be viewed as the gap be-
tween having zero resource versus full supervision. Also, if
we compare the three DBN training scenarios, we can see
that pre-training and fine-tuning with both native and nonna-
tive data performs the best, while pre-training with both data
but fine-tuning with only native data comes the third. (All
the pairwise differences between the three scenarios are sta-
tistically significant with p < 0.05 by McNemar’s test. This
order is more obvious in the high precision region (see Fig. 1),
which is in fact the favored manipulating region for a CAPT
system, as there is lower chance that the student would be dis-
couraged by a false positive. This order indicates that incor-
porating data from nonnative speech can benefit the model’s
discriminability over the phones in nonnative speech. The
reason why including nonnative data for the pre-training stage
does not help the case where we have native data only is prob-
ably because we normalize the input samples by the global
mean and variance of the training data before decoding the
posteriorgrams. There is still mismatch between the acoustic
spaces even after CMN was carried out.

By feeding the DBN posteriorgram as input to our
comparison-based system, we can obtain better performance
(2.7% absolute) than applying likelihood-based scores as
features. The DBN-HMM-based recognizer was trained on
native speech only, and we did not perform any particular
speaker adaption for the nonnative speech. However, we can
still conclude that at least for word-level mispronunciation
detection, an SVM can learn as much information from the
features extracted based on mis-alignment as what it can learn
from the likelihood scores based on an acoustic model.

We also explored how the system performance would
vary with respect to different degrees of supervision involved
during training. Here we compare only two scenarios: pre-
training with either set c+d or a+c+d and both using set c+d
for back propagation, as they use the same amount of data
for fine-tuning. Fig. 2 shows the result. For the case where
we use none of the annotations, we train a 61-mixture GMM

Fig. 2: System performance with respect to different percent-
age of annotations used for back propagation

first and then assign the labels according to the index of the
mixture with the highest posterior probability [7].

We can see that as the amount of annotations decreases,
for both scenarios, the system performance remains relatively
steady until the point around 30%, which is about 76 minutes
of speech. Also note that our recognizer uses around 3.1 hr
of data for training, which corresponds to about 75% of the
annotations, and the proposed comparison-based system can
achieve the same level of performance with only 10% of the
annotations, which is around 25 minutes of speech. This find-
ing is encouraging, since our motivation for a comparison-
based system was to reduce the human efforts required in
preparing training data. With the help of the DBN, we can
now improve the quality of the posteriorgrams without too
much human labor.

7. CONCLUSION AND FUTURE WORK
In this paper, we have demonstrated the use of DBN posteri-
orgrams as input to our comparison-based mispronunciation
detection system. Compared with an MFCC or GP-based
system, DBN posteriorgrams can improve the relative perfor-
mance by at least 10.4%. We have also shown that incorpo-
rating nonnative data with native data during training would
benefit the system. While this improvement indeed comes
from the trade-off of the human annotations required, exper-
imental results have shown that using only one tenth of the
annotations can produce the same level of performance as an
ASR-based system.

This is just our initial attempt in applying DBNs. The size
of our training data is relatively small, e.g. more than 20 hrs
of nonnative speech was used in [17]. In the future, training
DBNs from a larger dataset would be a possible way to further
improve the system performance, though it would also take
much longer time. Also, so far our system performance is on
the same level as an ASR-based baseline for detecting word-
level mispronunciation, we would also like to investigate if
this kind of comparison-based system can detect subword-
level mispronunciation, and how the performance would be
compared with an ASR-based system.
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