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Abstract
In this paper, we present preliminary results on apply-
ing a comparison-based framework to the task of pro-
nunciation scoring. The comparison-based system works
by aligning a student’s utterance with a teacher’s utter-
ance via dynamic time warping (DTW). Features that de-
scribe the degree of mis-alignment are extracted from
the aligned path and the distance matrix. We focus on
a dataset in Levantine Arabic, a low-resource language
for which there is not enough automatic speech recogni-
tion (ASR) capability available. Three different speech
representations are investigated: MFCCs, Gaussian pos-
teriorgrams, and English phoneme state posteriorgrams
decoded on Levantine data. Experimental results show
that the system can improve both correlation and mean
squared error between machine predicted scores and hu-
man ratings compared to a template-based system.
Index Terms: pronunciation scoring, dynamic time
warping, posteriorgrams

1. Introduction
The use of speech in computer-aided language learn-
ing (CALL) systems has enabled students to not only
acquire vocabulary and grammatical concepts through
reading but also practice pronunciation through speaking.
More specifically, computer-assisted pronunciation train-
ing (CAPT) systems focus on the tasks of individual er-
ror detection and pronunciation assessment in nonnative
speech [1], with the former aimed at detecting word or
subword level pronunciation errors, and the latter targeted
at scoring the overall fluency of an utterance. While these
tasks can be further divided into processing read speech
or spontaneous speech, their basic goal is the same, which
is to compare a student’s speech with that of a reference
model.

In this paper, we focus on the task of pronunciation
scoring on read speech. In early work, the reference mod-
els were stored as templates, and the student’s speech
was scored based on the percentage of the matching bits
with that of templates [2, 3]. Later on, as automatic
speech recognition (ASR) technologies improved, hidden
Markov models (HMMs) were also applied to CAPT sys-
tems to model the reference speech statistically. Many of

the fundamental features were based on HMM likelihood
measures and posterior probability scores [4, 5, 6]. Tim-
ing scores such as phone segment duration, rate of speech
and length of pauses, were also found to be highly corre-
lated with human ratings [7, 8]. Some high-level features
like recognition accuracy, confidence measures [9] and
the ranking order of the correct phonemes [10] were also
investigated. Another approach to model the reference
speech was to build phonetic structures and use the dis-
tortion between two structures to estimate pronunciation
proficiency [11, 12].

While ASR technology has its strengths, the process
of building a recognizer requires a significant amount of
annotated data and expertise. In addition, a new rec-
ognizer has to be built every time we want to build a
CAPT system for a new target language. To address this
issue, in our prior work [13], a comparison-based sys-
tem was proposed for the task of mispronunciation detec-
tion in nonnative English. The system first aligns a stu-
dent’s utterance with a teacher’s utterance via dynamic
time warping (DTW). Features that describe the degree
of mis-alignment are extracted from the aligned path and
the distance matrix, and are then used for classifier train-
ing. The advantage of this framework is that it is lan-
guage independent, and the speech representations that
DTW compares can be obtained either in a fully unsu-
pervised manner, such as Mel-frequency cepstral coeffi-
cients (MFCCs) or Gaussian posteriorgrams (GPs), or in
a semi-supervised or fully supervised manner [14], such
as phoneme posteriorgrams, depending on how much la-
beled data is available.

In this paper, we further explore this comparison-
based framework in three aspects. First, we investigate
the use of alignment-based features on the task of pronun-
ciation scoring by training regressors instead of binary
classifiers. Secondly, as there is no assumption about
the target language for the framework, we turn our fo-
cus from nonnative English to Levantine Arabic, a low-
resource language in which we do not have recognition
capability. Lastly, besides MFCCs and GPs, we also
explore using English phoneme state posteriorgrams de-
coded on Levantine data to examine the possibility of
building a CAPT system for a low-resource language by
taking advantage of a language with extensive resources.
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Figure 1: System diagram. After transforming waveforms
into speech representations, the system aligns the two
utterances via DTW, and then extracts alignment-based
features from the aligned path and the distance matrix. A
support vector regressor is used for predicting an overall
pronunciation score.

2. Corpus
The Levantine Arabic dataset consists of 21 nonnative
speakers (students), including 11 males and 10 females,
and 4 native speakers (teachers), including 2 males and 2
females. All students are native English speakers. Each
speaker was asked to read the same 100 scripts, whose
content varies from common phrases such as “Good
morning” and “Thank you” to longer and more compli-
cated sentences. Students listened to the reference audio
first and then did the recording, and could repeat a record-
ing until they were satisfied with the pronunciation. For
every nonnative utterance, we have one score on a 1-5
scale for its intelligibility as decided by an expert. The
scoring criterion was: 1 = many errors/unintelligible, 2
= heavy accent/difficult to understand, 3 = accented but
mostly intelligible, 4 = slightly accented/intelligible, 5 =
native accent/fully intelligible. There are no other hu-
man annotations on the data. After removing problematic
recordings, we are left with 2064 nonnative utterances.

3. System Design
3.1. Dynamic time warping (DTW)
Fig. 1 illustrates the flowchart of the system. The first
stage of the system aligns the student’s utterance with
a teacher’s utterance through DTW. A DTW algorithm
finds the optimal match between two sequences which
may vary in speed. Given a teacher’s utterance T =
(ft1 , ft2 , ..., ftn) with n frames, and a student’s utterance
S = (fs1 , fs2 , ..., fsm) with m frames, an n×m distance
matrix Φts can be computed as Φts(i, j) = D(fti , fsj ),
where D(·) denotes the distortion measure, or the dis-

(a) student-score 5 (b) student-score 2

(c) (d) (e) teacher

Figure 2: (a) and (b) are the SSMs of two students’ ut-
terances with different scores, together with the spectro-
grams, and (e) is the SSM of a teacher saying the same
sentence. (c) shows the alignment between (a) and the
teacher, and (d) shows the alignment between (b) and the
teacher. The red lines indicate the aligned paths.

tance, between two frames. DTW works by finding the
path starting from Φts(1, 1) and ending at Φts(n,m) with
the minimum accumulated distance.

Note that the input to the DTW algorithm, i.e. ft’s or
fs’s, can be of various speech representations, as long as
an appropriate distortion measure can be defined. In early
work, filter bank output or linear predictive features were
often used [15]. More recently, posterior features have
been successfully applied to facilitate not only speech
recognition but also spoken keyword detection [16, 17].
The definition of a posteriorgram is as follows:

pf = (P (v1|f), P (v2|f), ..., P (vD|f)), (1)

where vi’s are the D possible models that the speech
frame f might be originated from. For example, each
vi can be a single mixture in a D-component Gaussian
mixture model (GMM), in which case pf would be a
Gaussian posteriorgram (GP), or each vi can be a GMM
for one single phoneme, in which case pf would be a
phoneme posteriorgram.

3.2. Alignment-based feature extraction

Fig. 2 illustrates two examples of alignments, one be-
tween a teacher’s utterance and a student’s utterance with
a score of 5, and the other one between the same teacher’s
utterance and a student’s utterance with a score of 2, as
well as the self-similarity matrices (SSMs) of the three
utterances and the corresponding spectrograms. An SSM
can be obtained by aligning a sequence to itself, and thus
it is symmetric on the diagonal.

We can see that a well pronounced utterance and a
badly pronounced utterance have different characteristics
in their alignment with the teacher. For example, for an
utterance with a lower score, the aligned path would tend
to be more off-diagonal, as there would be some high dis-
tortion regions along the diagonal. Also, its SSM would
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be less similar to the SSM of the teacher’s utterance.
These observations are similar to what we had when an-
alyzing the alignment between a reference word and a
correctly pronounced word or a mispronounced word.
Therefore, we can take advantage of the alignment-based
features that we have designed previously. Table 1 pro-
vides an overview of each feature. More details can be
found in [13].

All of the features can be extracted either on an ut-
terance level or on a finer segmental level. In our sys-
tem, we adopt an unsupervised phoneme segmentor to
segment each reference utterance into smaller phoneme-
like units [13]. Each distance matrix can be segmented
into smaller blocks according to the segment boundaries
and the aligned path. Features are extracted within each
smaller unit, and we compute both the average and the
standard deviation of each dimension across all the seg-
ments to form a single feature vector for an aligned pair,
including the features extracted on the utterance-level.

After the alignment-based features are extracted, dif-
ferent regression approaches can be adopted for modeling
the relationship between the features and the human rat-
ings. In our system, we take advantage of a support vec-
tor regressor with an RBF kernel [18]. If there is more
than one reference utterance for a script, we view pairs
of teacher and student alignments as different instances
during training, and take the average of the regressor’s
output for each pair during testing.

4. Experiments
4.1. Input speech representations
We explore the use of three different speech representa-
tions as inputs to our system. The first one is MFCC, for
which the distance measure is defined as the Euclidean
distance between two MFCC frames. The second repre-
sentation is GP decoded from a 50-mixture GMM trained
on all the native data (about 31 mins in total). The dis-
tance measure between two frames of GPs, p and q, can
be defined as − log(p · q) [16, 17].

The last representation is based on a monophone
DBN-HMM English phoneme recognizer trained on the
TIMIT training set to decode a set of English phoneme
state posteriorgrams on the Levantine Arabic data. The
DBN has 2 hidden layers (2048 × 2048) and a softmax
layer of 183 units (3 states for each of the 61 phonemes),
and takes 39-dimensional MFCCs stacked with 10 neigh-
boring frames as input. As a result, each frame of the En-
glish phoneme state posteriorgrams is a 183-dimensional
vector, and the distance measure can be also defined as
the inner product distance.

Note that the first two speech representations can be
obtained in a fully unsupervised manner. Though the
last speech representation requires a carefully transcribed
corpus in English, it does not require any phonetic labels
in Levantine Arabic, a language with relatively few re-
sources available.

Table 1: The alignment-based features

Aligned path & diagonal
acc path accumulated distance along the

aligned path
avg path acc path normalized by path length
std path standard deviation of the distance

along the aligned path
acc diag accumulated distance along the diag-

onal
avg diag acc diag normalized by diagonal

length
std diag standard deviation of the distance

along the diagonal
diff acc p d acc path − acc diag
diff avg p d avg path − avg diag

ratio avg p d avg path / avg diag
max seg ratio the length of the longest horizontal or

vertical segment / path length
Distance matrix (disMat)

avg block average distance within the block
std block standard deviation of the distance

within the block
Duration

dur ratio ratio between the length of the two se-
quences

diff rel dur difference between the length of the
two sequences that are normalized by
the length of each full utterance

ratio rel dur ratio between the length of the two
sequences that are normalized by the
length of each full utterance

Comparison with the reference
diff avg block avg block − the average of the corre-

sponding block in SSMteacher

diff avg p t avg path − the aligned path in the
corresponding block in SSMteacher

diff avg d t avg diag − the aligned path in the
corresponding block in SSMteacher

diff mat t element-wise difference between the
rewarped disMat and SSMteacher

diff s t element-wise difference between
SSMstudent and SSMteacher

hog diff mat t difference between the histograms of
oriented gradients of the rewarped
disMat and SSMteacher [19, 20]

hog diff s t difference between the histograms
of oriented gradients of SSMstudent

and SSMteacher

4.2. Experimental setup

We take advantage of the same English phoneme recog-
nizer to first remove the silences at the beginning and the
end of each utterance. Then, all waveforms are trans-
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formed into 39-dimensional MFCCs every 10-ms, includ-
ing first and second order derivatives, for the following
GPs or phoneme state posteriorgrams decoding.

As there is no phonetic transcription for the data and
thus we do not have recognition capability in Levantine
Arabic, the baseline simulates a template-based system
that scores an utterance based only on acc path, avg path
and std path. For evaluation, we run 100 iterations of
5-fold speaker-level cross validation using data from all
21 speakers. Only alignments between speakers with the
same gender are considered. We compute both Pearson’s
correlation and the mean squared error (MSE) between
the machine predicted scores and the human ratings.

4.3. Results
Experimental results are shown in Table 2. For all three
speech representations, the comparison-based system ob-
tains improvements relative to the template-based base-
line in a range of 4.5% to 11.6% in correlation, and 3.8%
to 15.9% in MSE. These results imply that the shape of
the aligned path or the appearance of the distance ma-
trix can provide more information about the quality of
the pronunciation than alignment scores can do. These
findings also agree with the findings we had in the task of
mispronunciation detection. Using features extracted on
the utterance level produces better results in both correla-
tion and MSE than using features extracted on the phone
level. A possible explanation is that aggregating the er-
rors, i.e. the degree of mis-alignment, is better than aver-
aging them. However, unlike our previous findings, there
is no clear conclusion as to whether combining features
from both levels can really achieve better performance.

Among the three speech representations, English
phoneme state posteriorgrams gives the best result and
also the largest improvement. This improvement most
likely comes from the human supervision involved dur-
ing English recognizer training for decoding posterior-
grams. The discriminative training process helps reduce
mis-alignments from difference between speaker charac-
teristics. Nevertheless, the high performance of the En-
glish phoneme state posteriorgrams suggests that high-
resource language resources can be leveraged for train-
ing recognition on low resource languages in the context
of a comparison-based approach. Because the alignment-
based feature extraction process can be made indepen-
dent from speech representation, a comparison-based ap-
proach can be feasibly integrated with the use of high-
resource languages as training data.

4.4. Discussion
To further investigate how each type of alignment-based
feature contributes to the task of pronunciation scor-
ing, we focus on the English phoneme state posterior-
grams and repeat the 5-fold speaker-level cross valida-
tion by training on one single feature (extracted on both
utterance-level and phone-level) at a time. Fig. 3 shows

Table 2: Correlation and mean squared error between the
machine predicted scores and the human ratings under
different settings

MFCC GP English phoneme
state posteriorgrams

Correlation
Baseline 0.492 0.507 0.510

Utterance-level 0.526 0.536 0.559
Phone-level 0.511 0.526 0.534
Full system 0.523 0.535 0.569

Mean squared error
Baseline 0.543 0.539 0.542

Utterance-level 0.513 0.509 0.491
Phone-level 0.519 0.516 0.508
Full system 0.522 0.507 0.456

the correlation between the system output and human rat-
ings for each feature.

First, note that the overall system performance is bet-
ter than the results from using any single feature alone.
This agrees with the results from several previous stud-
ies [6] which found that combining different scoring fea-
tures can compensate for the weakness of each and pro-
duce a score that better correlates with human ratings.

Among the four different feature categories, the last
one which compares the aligned path or the distance ma-
trix with the self aligned path or the teacher’s SSM ob-
tains the best results on average. This could explain
part of the reason why the comparison-based system can
improve upon template-based approaches. Because the
SSM from the teacher represents an optimal match, com-
paring it against the distance matrix can indicate prox-
imity to a perfect match in a way that is different from
template-based approaches relying only on alignment
scores.

Moreover, a system based on acc path or acc diag
performs better than a system based on avg path or
avg diag. This again indicates that averaging or normal-
izing with respect to length may dampen the effect of high
distortion regions. In line with previous work [7] indicat-
ing that utterance length is highly correlated with human
ratings, the accumulated scores which have such informa-
tion embedded also correlate better with human ratings.
Although there is a chance that students may cheat the
system by reading very quickly, there did not appear to
be students circumventing the system in this way in our
dataset.

5. Conclusion and Future Work
In this paper, we have explored the use of a comparison-
based system in the task of pronunciation scoring. Exper-
imental results have shown that, as in the task of mispro-
nunciation detection, adopting alignment-based features
that are extracted from the aligned path and the distance
matrix can also improve system performance in predict-
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Figure 3: Correlation between system output scores and human ratings based on a single feature

ing pronunciation scores. The comparison-based system
can be viewed as a combination of template-matching
and classifier-based approaches. In fact, many of the
alignment-based features are similar to ASR-based fea-
tures that have been proved useful in pronunciation scor-
ing. For example, comparing the structure of student
and teacher SSMs is in some sense similar to compar-
ing their phonetic structures [11, 12]. Features involving
time comparisons might also reflect underlying durations
of phoneme-like units.

Because the dataset we have collected is an initial at-
tempt at gathering nonnative speech in a low-resource
language, our current experiments are based on a rela-
tively small dataset compared to that of previous work.
As efforts continue to gather more data, we intend to ex-
amine system performance on larger-scale datasets, with
the hope of enhanced performance due to greater amounts
of training data. Running experiments on a dataset whose
size is comparable with those in other studies can also al-
low us to have a fair comparison between absolute system
performance. Future work should explore training the re-
gressor from alignments in one language and testing on
the other language to see whether misalignment patterns
may be universal, and experimenting with speech repre-
sentations that are more robust to different channel char-
acteristics so that we can leverage more data from differ-
ent sources.
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