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Abstract
A Computer-Assisted Pronunciation Training (CAPT) system
can provide greater benefit to language learners if it provides
not only scoring but also corrective feedback. However, the pro-
cess of deriving pronunciation error patterns usually requires
linguistic knowledge, or large quantities of expensive, anno-
tated, corpora from nonnative speakers. In this paper we explore
the possibility of deriving context-dependent error patterns with
limited human annotations. A two-stage labeling mechanism
is proposed, which first selects a set of templates for human
annotation, and then propagates the labels. To deal with the
imbalanced number of correct and incorrect phone-level pro-
nunciations in nonnative speech, pronunciation patterns on an
individual learner-level are first summarized, and then corpus-
level clustering is done for template selection. The concept of
contextual similarity based on a phonemic broad class definition
is also proposed for label propagation. For evaluation, we view
the task as an information retrieval task, and take advantage of
metrics that consider both the importance and the ranking of
an error type. Experimental results on a Chinese University of
Hong Kong (CUHK) nonnative corpus show that the proposed
framework can effectively discover prominent error patterns.

Index Terms: Computer-Assisted Language Learning, unsu-
pervised clustering, graph-based label propagation

1. Introduction
Computer-Assisted Language Learning (CALL) systems have
enabled students to learn and practice a second language at
their own pace. While learning a new language involves as-
pects ranging from reading, writing, and speaking, Computer-
Assisted Pronunciation Training (CAPT) focuses on the prob-
lem of detecting mispronunciation in students’ speech.

Over the past two decades, there has been a great amount of
research on detecting mispronunciation in nonnative speech [1,
2]. Likelihood-based scoring, e.g. HMM-based log-likelihood
scores, or HMM-based log posterior scores [3, 4, 5], have been
shown to correlate well with human assessment. However, in
light of pedagogical value, a CAPT system can provide greater
benefit to students if it can produce scores and also provide
feedback on how to adjust pronunciations. Classifiers for com-
mon problematic phoneme pairs are built for this purpose [6, 7].
In a more general framework, possible error patterns can be in-
corporated into a lexicon for recognition [8, 9, 10]. These ap-
proaches have been shown to outperform likelihood-based scor-
ing, but possible error types have to be known beforehand.

Identifying possible error patterns can be done in a
knowledge-driven manner either by consulting with experi-
enced language teachers, or by carrying out cross-language
phonological comparisons between the students’ mother tongue
(L1) and the target language (L2) [9, 11]. Another way would

be to use data-driven approaches that discover error patterns by
aligning a human-transcribed L2 dataset with canonical pronun-
ciations from a dictionary [10, 11, 12]. The approaches above
however would require either linguistic expertise in L1-L2
pairs, or a fully transcribed L2 corpus, which is expensive, and
time-consuming to collect. Recently, Wang and Lee [13] pre-
sented results on unsupervised discovery of mispronunciation
patterns by clustering universal phoneme posteriorgrams. Note
that in this preliminary study, correctly pronounced phones are
excluded to avoid a data imbalance problem.

In this paper, we explore the problem of pronunciation er-
ror pattern discovery in a more realistic scenario. Given an un-
labeled nonnative corpus, assume that there are limited human
resources available from whom we can ask for annotations. To
deal with the issue that the number of correct and incorrect seg-
ments may be highly imbalanced, a two-stage labeling mecha-
nism is proposed. In the first stage, pronunciation patterns on an
individual learner-level are first summarized, and then a number
of corpus-level pronunciation templates are selected based on
the number of human annotations available. In the second stage,
the phone labels are propagated on the corpus-level and then on
the learner-level in a context-aware manner. In the end, with
limited human inputs, the system can not only discover context-
indpendent error patterns, e.g. phone substitutions (α → β),
but also generate a list of context-dependent error patterns, e.g.
phone substitutions under contexts γ and δ (α → β / γ δ).
Another issue that we discuss is the importance of each error
pattern. Some mistakes are more frequent, and thus should be
emphasized more in a CAPT system. As a result, in evaluation,
we view the task of error patterns discovery as an information
retrieval task, and employ metrics that take the ranking and the
relevance of each error type into consideration.

2. Corpus
2.1. Chinese University Chinese Learners of English corpus
The Chinese University Chinese Learners of English (CU-
CHLOE) corpus [9] is a specially-designed corpus of native
Cantonese speakers learning English. There are 100 speakers
(50 males, 50 females) in total, who are all university students.

In this paper, we focus on the minimal pair set, where all
learners read 50 scripts, including 128 pairs of words. The set
is fully transcribed by human experts. The human transcription
annotates the mispronunciations that the learners have made,
and is called the “surface pronunciation”. On the other hand,
the canonical pronunciation from a lexicon is called the “under-
lying pronunciation”. Fig. 1 shows the distribution of underly-
ing phones in the scripts. Only phones that appear more than 10
times are considered in the experiments.

2.2. Contexts, learners, and pronunciation patterns
By aligning the human transcription with underlying pronun-
ciations, we can detect phone-level pronunciation discrepan-
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Figure 1: Number of instances per underlying phone of the 50
scripts in the minimal pair set of the CU-CHLOE corpus
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Figure 2: Error rate and number of unique surface phones for
each underlying phone category

cies (errors) including insertions, substitutions, and deletions.
Fig. 2a shows the error rate of each underlying phone group
from the entire dataset. Fig. 2b shows the number of unique
surface realizations that were produced per underlying phone
across the dataset. Note that only surface phones that appear
more than 3 times are included in the figure, as oftentimes er-
rors with rare occurrences were caused by misreading. From
the two figures, we can see that the distributions of sounds vary
a lot from phone to phone. While most of the time the error
rate is low (< 20%), suggesting a highly imbalanced ratio be-
tween correct and incorrect segments, the few mispronounced
segments are distributed into a large number of error types.

Although it seems that a phone may have many error types,
if we examine the number of unique pronunciations that an indi-
vidual learner produces, this number is much lower. As shown
in Fig. 3, we can see that on average an individual learner would
pronounce a phone in 1 to 3 ways, with a standard deviation
less than 1. This indicates that when a learner mispronounces
a sound, he/she would tend to repeat the error, rather than pro-
ducing new types of errors in the future.

Moreover, if the contexts are taken into consideration, the
number of unique realizations that an individual learner makes
is further reduced. Fig. 4 plots the histogram of number of
unique realizations per underlying context-dependent triphone,
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Figure 3: Average number of unique surface phones for each
underlying phone category from individual learners
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Figure 4: Histogram of number of unique surface pronunciation
per underlying context-dependent triphone from each learner
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Figure 5: System flowchart. For all instances in an underlying
phone group, downsampling is first done on a single learner
basis, and then templates are selected on corpus-level. After
obtaining human annotations, the system propagates the labels
on corpus-level first, and then on each learner-level.

accumulated from 100 speakers. Again only phone and context
combinations that appear more than 3 times in the scripts are
considered here. The figure shows that more than 99% of the
time, an individual learner would keep pronouncing an under-
lying phone in the same way if the context remains the same.

On the basis of the above analysis, in the next section, we
design a two-stage framework that takes advantage of learner
identity and contextual information to discover pronunciation
error patterns with limited human annotations.

3. System Design
Fig. 5 shows the flowchart of our system. After collecting a
set of nonnative read speech, and running forced alignment, we
categorize all phone segments into groups, based on the under-
lying pronunciation. For each group, a two-stage labeling is per-
formed. In the first stage, the goal is to select templates that can
cover as many of the pronunciation patterns as possible, given
the constraint of the number human annotations available. In
the second stage, the obtained human annotations are used to
annotate the unlabeled phone segments. After the entire dataset
is labeled, the system produces a list of context-dependent error
patterns. Below we describe each stage in detail.

3.1. Pronunciation template selection
Unsupervised clustering techniques are often applied in dictio-
nary learning for aiding the subsequent supervised learning pro-
cess. However, algorithms such as k-means tend to produce
clusters of relatively uniform size, which is called the “uniform
effect” [14]. To deal with the highly skewed distribution in our
case, we carry out a two-level template selection process.

As pointed in Section 2.2, the number of pronunciation pat-
terns that an individual learner produces per phone group is rel-
atively limited, compared to the number from the entire corpus.
Ideally, a small set of samples would be enough to represent a
learner’s pronunciations. As a result, clustering-based down-
sampling is first carried out on the individual learner level. As-
sume an underlying phone group, p, of the ith learner contains
the set of segments P i = {pi1, pi2, · · · , pi|P i|}. After applying

an n-class clustering, the original set P i can then be downsam-
pled to a set of n segments P i

d = {pid1 , pid2 , · · · , pidn}, where

pidj ’s are selected based on the criterion that segments with the
smallest sum-of-distance to all the other segments in the same
cluster are chosen as the samples.

The downsampling process can also be viewed as a kind of
summarization of each learner’s pronunciation patterns. After
learner-level downsampling, correctly pronounced segments are
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still in the majority for most phone groups, but the skewness
of the overall phone pronunciation distribution at the corpus-
level will be decreased. Given the constraint that only k human
annotations are available for each phone group, another k-class
clustering can be done on the downsampled sets, and the final
corpus-level templates are selected using the same criterion.

In this two-level template selection process, any unsuper-
vised clustering algorithm can be applied on the two levels. In
Section 4.2, we will present experimental results, and discuss
the pros and cons of using different clustering algorithms.

3.2. Context-aware graph-based label propagation
After the surface annotations of the templates are obtained,
in the second stage, we adopt a graph-based label propaga-
tion algorithm to annotate the unlabeled segments. Consider
each phone segment as a node vi in an undirected graph G =
{V,E}. The weights wij on the edge connecting vi and vj can
be viewed as the similarity between nodes, and is defined as

wij = exp(−d2(vi, vj)

σ2
) = exp(−d2ij

σ2
). (1)

If the distance d(·) is defined on a speech representation, e.g.
MFCCs or phoneme posteriorgrams, we call it an acoustic dis-
tance, denoted as daij , and thus wij represents the acoustic sim-
ilarity between two segments, denoted as wa

ij .

In addition to an acoustic similarity, we also propose a con-
cept of “contextual similarity” . While each phonetic unit has
its own characteristics, a broad class [15], e.g. “Front Vowel”
or “Voiced Stop”, captures some common aspect of a subset of
phonetic units, such as manner, or place of articulation. Let B
be a set of broad classes. Given a segment vi and its left and
right contexts li and ri, a binary vector bi of length 2|B| can
be decoded, where the first |B| elements indicate whether li be-
longs to a broad class or not, and the next |B| elements indicate
ri. The contextual distance dcij can thus be computed between
bi and bj , and the corresponding wc

ij is called the contextual
similarity. Table 1 lists all the broad classes that we use. The
detailed definition and phoneme examples can be found in [16].

Given a graph, Zhu and Ghahramani [17] proposed an it-
erative algorithm that propagates a node’s labels to all nodes
according to their proximity. Let T be a |V | × |V | probabilistic
transition matrix where Tij = P (j → i) =

wij
∑|V |

k=1
wkj

, and Y

be a |V | ×C matrix, where C is the total number of labels, and
Yij represents the probability that node vi has the jth label. The
algorithm works as follows:

1. All nodes propagate labels for one step: Y ← TY

2. Row-normalize Y so that each row sums to 1.

3. Clamp the labeled data to Yic = δ(vi, c). Repeat from
step 1 until Y converges.

On the basis of this algorithm, we first perform corpus-level
label propagation on the graph whose nodes are the union of
P i
d from all learners and weights are based on wa’s. Once the

elements in P i
d’s are labeled according to the maximum prob-

abilities in Y , learner-level propagation is done on the graphs
whose nodes are the set P i, and weights are an interpolation of
wa and wc, for each individual learner, respectively. In the end,

Table 1: Broad classes used in computing contextual similarity

Manner
Low Vowel, High Vowel, Retroflex, Lateral,
Nasal, Weak Fric, Strong Fric, Closures,
Voiced Stop, Unvoiced Stop, Silence

Place of Labial, Alveolar, Palatal, Velar, Front,
articulation Back, Mid, Semi Vowel
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Figure 6: Recall rate of 4 two-level clustering methods (learner-
level+corpus-level) and 2 one-level clustering methods for pro-
nunciation template selection

the system can output a list of context-dependent pronunciation
error patterns ranked by their number of occurrences.

4. Experiments
4.1. Experimental setting
We split the data into 80 speakers (40 males and 40 females) as
a test set, including 57,182 phone segments and 26 phone cat-
egories, with the remaining 20 speakers used as a development
set for parameter tuning. All waveforms are transformed into
39-dimensional MFCCs every 10ms. Forced alignment is done
by using a DNN-HMM-based SUMMIT recognizer [18] trained
on the TIMIT training set [19]. Within each phone segment, we
average the MFCCs at the three regions: 0%-30%(start), 30%-
70%(middle), 70%-100%(end), and concatenate the three av-
eraged MFCCs, resulting in a 117-dimensional vector for each
phone segment. A Euclidean distance metric is used to compute
both the acoustic distance and the contextual distance.

4.2. Pronunciation template selection
Two unsupervised clustering algorithms, k-means and hier-
archical clustering, are tested on both the learner-level and
corpus-level. The number of groups, n, in the learner-level
clustering is tuned using the development set. The number of
groups, k, in the corpus-level clustering is a given constraint.
The recall rate, which is the number of unique surface anno-
tations obtained, divided by total number of unique surface
phones in the dataset, is used for evaluation. Only surface pro-
nunciations that appear more than 10 times are considered, re-
sulting in 91 unique labels.

Fig. 6 illustrates the performance with respect to k. The
baselines are k-means and hierarchical clustering done on the
corpus-level, i.e. no learner-level downsampling. The results
indicate that doing hierarchical clustering on the corpus-level
can consistently discover more pronunciation patterns than k-
means can. This is because of hierarchical clustering’s ability
to detect outliers. When the class distribution is less balanced,
small clusters can be viewed as a kind of outlier, and hierarchi-
cal clustering is better able to separate them from the majority.

Doing k-means on the learner-level, and hierarchical clus-
tering on the corpus-level gives the best performance. With 50
annotations per phone category, which is equivalent to 2.3% of
the total number of phone segments, the framework can dis-
cover 90% of the context-independent pronunciation error pat-
terns. Although it appears that with more annotations, one-level
hierarchical clustering can discover nearly the same amount of
pronunciation patterns as a two-level framework, we will show
that a two-level design outperforms a one-level framework in
discovering context-dependent error patterns.

4.3. Context-dependent error pattern discovery
A CAPT system can provide greater benefit to learners if it can
prioritize the learning process. If some errors are more fre-
quent, they should be emphasized more by the system. Fig. 7
sorts the context-dependent error types in the dataset by their
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Figure 7: Context-dependent error patterns ranked by number
of occurrences.

frequency of occurrence according to ground truth human an-
notations. The long tail implies that only a very small portion
of the error types are prominent. Therefore, when evaluating a
list of automatically discovered error patterns, it is important to
take the prominence of each error type into consideration.

Discounted cumulative gain (DCG) [20], a metric that takes
both relevance score and ranking into account, and is com-
monly used in evaluating information retrieval tasks, can meet
our need. Given a ranked list of n retrieved results, DCG can
be computed as DCGn = rel1 +

∑n
i=2

reli
log2 i

, where reli is

the relevance score of the ith result. Therefore, if the retrieved
results put entities with greater relevance at a higher ranking, its
DCG score will be larger. In our case, we treat the number of
occurrences as the relevance score for each error type.

After carrying out k-means on the learner-level, and hier-
archical clustering on corpus-level for template selection, we
then perform label propagation. In addition to graph-based la-
bel propagation, we also examine cluster-based label propaga-
tion, which assigns the obtained annotations to all other unla-
beled segments in the same cluster. Fig. 8 shows the results
from 6 combinations of the two-level label propagation meth-
ods, together with 3 one-level label propagation based on the
templates selected by corpus-level hierarchical clustering only.
Two metrics are used: DCG of the output, normalized by DCG
of the ground-truth ranking, and precision at n. The former can
be viewed as a kind of recall rate weighted by relevance scores
and rankings, and the latter is the precision of top n results.

For different two-level label propagation methods, in the
higher rank region, carrying out graph-based label propaga-
tion on the corpus-level achieves the same level of precision as
cluster-based label propagation, but with a much higher DCG
score. This is because hierarchical clustering tends to form a
few small clusters with one big cluster. Though it helps in
discovering unique pronunciation patterns, cluster-based label
propagation misses many mispronounced segments, and thus
the output is less capable of reflecting the true ranking of error
patterns. A two-level framework with graph-based label propa-
gation on the corpus-level also outperforms a one-level frame-
work, due to the learner and contextual information incorpo-
rated in it. When the number of human annotations increases
from 30 to 50, the performance of the two-level frameworks all
improve, while the performance of the one-level frameworks
all decrease. This may suggest that a two-level design can also
better utilize additional information provided by humans.

For different learner-level label propagation methods,
graph-based label propagation based on both acoustic and con-
textual similarity achieves same level of precisions as other
methods, while it achieves the highest DCG scores. With con-
textual similarity, the labels of phone segments with the same
context are more identical, and thus the ranking of the discov-
ered error patterns are closer to the ground truth. Table 2 lists
the top 10 results of ground truth error patterns and the results
from the best two-level framework with 50 human annotations
per phone group. If we view the results from a broad class per-
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Figure 8: Performance of context-dependent error pattern dis-
covery of 6 two-level (corpus-level+learner-level) and 3 one-
level propagation methods. (cluster: cluster-based label prop-
agation, labprop: graph-based label propagation, a: graph
weights wa, c: graph weights wc)

Table 2: Top 10 context-dependent error patterns from ground
truth and the proposed framework (*: deletion)

Ground truth Proposed framework (k = 50)

r→ * / aa t r→ * / aa t
r→ * / aa # r→ * / aa #
er→ ax / t # r→ * / ao #
r→ ax / eh # er→ ax / t #

er→ ax / aw # l→ * / ey #
r→ ax / ay # l→ * / ay #
er→ ax / p # er→ ax / ay #
r→ ax / ao # er→ * / eh #
l→ * / ao # er→ ax / eh #
ey→ eh / t l l→ * / ao #

spective, they successfully reveal the dominant error types and
the contexts that errors often occur, e.g. retroflexion and semi-
vowels in the context of back vowels and word endings.

5. Conclusion and Future Work
In this paper, we have presented a framework for discovering
context-dependent pronunciation error patterns given limited
human annotations. We first presented a data analysis indicat-
ing learner identity and context provide valuable information
for reducing the space of possible pronunciation errors. This
also suggests the concept of personalization in CAPT, as differ-
ent learners have different issues in pronunciation. By apply-
ing two-level clustering, and graph-based label propagation, the
proposed framework is capable of discovering 90% of context-
independent pronunciation patterns, as well as the prominent
context-dependent error patterns. Given an unannotated non-
native corpus, the prominent error patterns discovered by the
framework can serve as a starting point for building a CAPT
system, and help learners to start working from their common
error types. If additional human annotations become available,
the CAPT system can then be incrementally improved.

For future work, as we are focusing on evaluating the qual-
ity of the list of discovered patterns now, the next step would
be to incorporate the output into a real ASR system to carry
out mispronunciation detection. Also, it would be interesting
to see if the proposed framework can also discover prominent
pronunciation error patterns in different L1-L2 pairs.
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