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Abstract
Conventional mispronunciation detection systems that have the
capability of providing corrective feedback typically require a
set of common error patterns that are known beforehand, ob-
tained either by consulting with experts, or from a human-
annotated nonnative corpus. In this paper, we propose a mispro-
nunciation detection framework that does not rely on nonnative
training data. We first discover an individual learner’s possi-
ble pronunciation error patterns by analyzing the acoustic sim-
ilarities across their utterances. With the discovered error can-
didates, we iteratively compute forced alignments and decode
learner-specific context-dependent error patterns in a greedy
manner. We evaluate the framework on a Chinese University
of Hong Kong (CUHK) corpus containing both Cantonese and
Mandarin speakers reading English. Experimental results show
that the proposed framework effectively detects mispronuncia-
tions and also has a good ability to prioritize feedback.
Index Terms: Computer-Assisted Pronunciation Training
(CAPT), Gaussian mixture model (GMM), Extended Recogni-
tion Network (ERN)

1. Introduction
With increasing globalization, there has been a rapid growth in
the quantity of people with various native language (L1) back-
grounds learning a second language (L2). Computer-assisted
pronunciation training (CAPT) systems have gained popular-
ity due to the flexibility they provide for empowering students
to practice speaking skills at their own pace. With automatic
speech recognition (ASR) technology, CAPT systems are able
to provide automatic pronunciation assessment and corrective
feedback to the students [1, 2, 3].

Initial research on mispronunciation detection started with
likelihood-based scoring [4, 5]. While computing hidden
Markov model (HMM)-based log-likelihood scores or log-
posterior scores has the advantage of being L1-independent, it
does not have the ability to provide corrective feedback on the
type of errors that were made. To tackle this problem, prior
work focused on specific phone pairs that are known to be prob-
lematic, and extracted acoustic phonetic features for classifier
training [6, 7]. Under the supervised framework, exact pronun-
ciation error types are part of the system output, and thus the
pedagogical value of the system can be enhanced. Other work
took a general approach in which possible error types are incor-
porated into the lexicon during recognition [8, 9, 10, 11]. These
extended recognition networks (ERNs) have the advantage that
the errors and the error types are detected together, and thus can
be used for the system to provide diagnostic feedback.

While the approaches above have the benefit of being able
to identify the error types, there exists the limitation that the
common error patterns for a given L2, or an L1-L2 pair, have

to be known. The pronunciation error patterns that a system
focuses on are typically extracted by either comparing human
transcriptions (surface pronunciations) and canonical pronunci-
ations from a lexicon (underlying pronunciations) [10, 11, 12,
13] or consulting with language teachers [9, 12]. As a result, the
system’s assessment ability is constrained by the training data
or experts’ input. To make matters worse, the data collection
process is costly and has scalability issues, as it is impractical
to collect data for every L1-L2 pair. This makes it hard to tailor
a system to meet every student’s need. In contrast, it is rela-
tively easy for native speakers to identify patterns that deviate
from the norm without being trained on nonnative examples.

Our previous work [14] has shown that the pronunciation
variation of an underlying phoneme on the learner-level is much
lower than that on the corpus-level. Furthermore, more than
99% of the time, an individual learner pronounces an underly-
ing phone in the same way if the triphone contexts remain the
same. These findings indicate that we can effectively constrain
the search space of possible pronunciation errors by focusing on
one single learner and one particular triphone context at a time.

In this work, we propose a novel framework for mispronun-
ciation detection based on our previous findings. The proposed
framework is script-based, which provides texts for learners to
read, and is built with a recognizer that is trained on native
speech. We focus on phonemic pronunciation errors and at-
tempt to discover an individual learner’s common error patterns
by exploiting the acoustic similarities between speech segments
produced by the learner. This procedure reduces the search
space from the size of the whole phoneme inventory to a small
set of error candidates that is learner-specific. In order to impose
the constraint where an individual learner pronounces a triphone
in only one way, instead of running one-pass forced alignment
on each single utterance, we propose to run forced alignment on
all utterances from a learner in an iterative and greedy manner
using ERNs that are built based on the discovered error patterns.

The rest of this paper is organized as follows. The following
section provides background on ERNs. Section 3 describes our
system in detail. In Section 4, experimental results will demon-
strate how the proposed system can effectively detect mispro-
nunciations without requiring nonnative data for training. Sec-
tion 5 concludes with a discussion of potential future work.

2. Extended recognition network (ERN)
In a finite state transducer (FST) based recognizer, the lexicon is
represented as an FST that maps phoneme sequences to words.
Fig. 1(a) shows an example of the FST representation of the
word “north” in the lexicon. To deal with mispronunciations in
nonnative speech, the FST can be enhanced by allowing mul-
tiple arcs corresponding to possible phoneme variations to be
added, and thus form an ERN (see Fig. 1(b)). Running recog-
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(a) An FST of the canonical pronunciation of the word “north”
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(b) An FST representing an ERN of the word “north,” including
one substitution error (n → l) and one deletion error (r → ε)

Figure 1: An example of an ERN of the word “north” (ε denotes
an empty string in FST input/output).

nition or forced alignment with the expanded FST will result
in output phoneme sequences that may be different from the
canonical pronunciations. For instance, if the decoded phoneme
sequence from Fig. 1(b) is /l ao r th/, we can conclude that a
substitution error has occurred (n → l).

3. System Design
Fig. 2 shows the flowchart of the proposed system.

3.1. Selective speaker adaptation
Since the acoustic model of the recognizer is trained on native
data, model adaptation can yield significant recognition accu-
racy improvements on nonnative speech [15, 16]. In our case,
we perform Maximum A Posteriori (MAP) adaptation using the
learner’s input utterances. One problem of adapting with all
available material from the learner is that the model can eas-
ily be over adapted to mispronunciations. As a result, a se-
lective speaker adaptation scheme is proposed. We compute
goodness of pronunciation (GOP) score [4], which is the dura-
tion normalized absolute difference between the log-likelihood
of a phoneme segment from forced alignment and the log-
likelihood score from phoneme recognition within that segment.
The larger the difference is, the more likely that the segment is
mispronounced. Only segments whose GOP score is below a
threshold are used for adaptation. In Section 4, we will show
how adjusting this threshold affects system performance.

3.2. Error candidate selection
Forced alignment with the adapted acoustic model produces
a set of underlying phoneme segments. Assuming that there
are N phonemes in the phoneme inventory, for each underly-
ing phoneme segment, there are O(N) possible pronunciations.
The goal of error candidate selection is to select a subset of
phonemes that represent possible errors for each segment.

We propose to identify phoneme confusion pairs by exploit-
ing the acoustic similarities between speech segments. Intu-
itively, if segments of underlying phoneme α are very close to
segments of underlying phoneme β, it is likely that there are
substitution errors (α → β, β → α, or α → γ and β → γ,
where γ is another phoneme which is close to both), insertion
errors (e.g. α→ α β), or deletion errors (e.g. α→ ε and α has
right or left context of β). We take into account both global dis-
tance between phone classes, as well as local distance between
phone segments to determine the confusion pairs.

3.2.1. Global candidate selection

We approach the problem of finding major error patterns by ex-
amining how close each pair of phoneme classes is. Each un-
derlying phoneme class can be modeled by a Gaussian mixture
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Figure 2: System flowchart. The system gathers a number of
utterances from a single learner. After speaker adaptation, a
two-stage process is carried out to determine possible context-
dependent pronunciation error candidates. With iterations of
forced alignment based on the candidates, the final output error
patterns are selected in a greedy manner.

model (GMM). On the basis of the idea that each component
in a GMM is likely to capture one type of surface pronuncia-
tion [17], the process can be described as follows:

1. Train an Ni-component GMM for each phoneme class
pi using frames of segments with underlying label pi.

2. Compute the global distance between every pair of
phoneme classes. Let gik be the k-th component in the
GMM of class pi. The global distance between phoneme
classes pi and pj can be computed as

DG(i, j) = min
ni={1,2,...,Ni}
nj={1,2,...,Nj}

BD(gini
, gjnj

), (1)

where BD(·) is the Bhattacharyya distance between two
multivariate Gaussian distributions, which has been used
in building phonology structure [18, 19]. In other words,
the distance between two phoneme classes is determined
by their closest components.

At the end of this stage, for every phoneme class pi, there
will be a set of global error candidates, Ci

G = {pj |j �=
i,DG(i, j) ≤ τG}, where τG is a threshold on the distance.

3.2.2. Local candidate selection

The set Ci
G can be viewed as error patterns for each monophone,

i.e. no phoneme context information is considered. Previous
work has demonstrated that modeling context-dependent error
patterns achieves better performance than modeling context-
independent error patterns [10]. In this stage, we further com-
pute distance between every pair of phoneme segments to refine
Ci

G into a set of local error candidates that is triphone-specific.
We average the normalized MFCCs at three regions within each
phoneme segment: 0%-30%(start), 30%-70%(middle), 70%-
100%(end), and concatenate the three averaged MFCCs to form
a single vector for each segment. The Euclidean distance is then
computed between every pair of vectors.

The local error candidates of a segment come from the in-
tersection of the global error candidate set and the underlying
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pronunciations of its nearest neighbors (segments whose dis-
tance to it is ≤ τL, where τL is another threshold). We compute
distances across all utterances, gather local candidates of seg-
ments under the same triphone context, and form a set of error
candidates for every triphone pattern.

3.3. Greedy pronunciation error detection

With the set of error candidates for each triphone pattern, a can-
didate list consisting of substitution, insertion and deletion er-
ror patterns with respect to each triphone can be generated. For
example, if a triphone pattern α β γ has δ as an error candi-
date, we consider the possibility of β being substituted with δ
under the triphone context, and δ being inserted next to β (either
before or after). Deletion error is considered for every triphone.

ERNs can be built by incorporating error patterns in the
candidate list. In order to enforce the constraint that only one
pronunciation rule for a triphone should be selected from the
candidate list, we propose to run forced alignment iteratively
to decode surface pronunciations and select error patterns in a
greedy manner. Given the candidate list as input, the algorithm
works as follows:

0. Initialize error list as an empty list. Start iterating with
the current best score set as the likelihood score from
forced alignment with a canonical lexicon.

1. In each iteration, run multiple forced alignments. At
each alignment, incorporate only one error pattern from
the candidate list, together with those already in the er-
ror list, into the lexicon to build the ERN.

2. Pick the error pattern from the candidate list that pro-
duces the maximum likelihood score in decoding.

3. If the score improves upon the current best score, move
the pattern to the error list and update the current best
score. For the rest of the error patterns, those with scores
worse than the current best score are removed from the
candidate list.

4. If the score is worse than the current best score, or the
candidate list becomes empty after updating, the process
is completed.

In the end, the algorithm outputs the error list, an ordered list of
learner-specific context-dependent error patterns, which is also
the final output of the system.

4. Experiments
4.1. Corpus

The Chinese University Chinese Learners of English (CU-
CHLOE) corpus consists of two parts: 100 Cantonese speakers,
including 50 males and 50 females, and 111 Mandarin speak-
ers, including 61 males and 50 females, both reading a set of
specially-designed English scripts [9]. The scripts range from
minimal pairs, confusable words, phonemic sounds, and TIMIT
scripts to the story “the north wind and the sun.” In this work,
we focus on the scripts from the story, and all the utterances are
fully transcribed by an expert.

4.2. Experimental setting
Table 1 shows the division of the corpus for our experiments.
All waveforms are transformed into 39-dimensional MFCCs ev-
ery 10-ms, including first and second order derivatives. Cep-
stral mean normalization (CMN) is done on a per speaker ba-
sis. The GMM-HMM-based recognizer for forced alignment

Table 1: Division of the corpus for experiments
L1 Speakers # instances

Training (for baselines)

Cantonese 25 males, 25 females 19,218

Mandarin 25 males, 25 females 19,173

Testing

Cantonese 25 males, 25 females 19,227

Mandarin 36 males, 25 females 23,361

has a monophone acoustic model trained on the TIMIT training
set [20] using the Kaldi toolkit [21].

Two settings of the proposed framework are tested. The first
setting runs the full system (error candidates + greedy), while
the second setting skips the error candidate selection step and
runs greedy pronunciation error detection through the whole
phoneme inventory space (greedy). All the GMMs trained in
error candidate selection have one shared diagonal covariance
per phoneme class, with at most three components, depending
on the number of frames of the phone class. As the GMMs are
randomly initialized, we repeat the candidate selection process
10 times and take the intersection of the results as the final can-
didate set. The thresholds τG and τL are empirically chosen so
that on average each triphone pattern has five candidates.

Both unsupervised and supervised baselines are imple-
mented. For the unsupervised baseline, we run phoneme recog-
nition, compare the output with the lexicon, and detect mispro-
nunciation when there is mismatch between the two (phone-
rec). It is unsupervised since no nonnative training data is re-
quired. In the supervised baseline, we compile error patterns
from the training data of the same L1, build an ERN, and run
one-pass forced alignment. Both context dependent (supervised
(c-d)) and context independent (supervised (c-ind)) error pat-
terns are considered. We evaluate the performance on both
phoneme-level and word-level. Different thresholds on GOP
scores for selective speaker adaptation are examined. It is ad-
justed so that in each scenario, 0%, 30%, 50%, 80%, 90% or
100% of the frames are used for adaptation, respectively.

4.3. Phoneme-level evaluation
For phoneme-level evaluation, three metrics are computed:
i) false rejection rate (FRR): the ratio between the number
of correct phonemes that are misidentified as being mispro-
nounced and the total number of correct phonemes, ii) false
acceptance rate (FAR): the ratio between the number of incor-
rect segments that are accepted by the system as correct and the
number of all the incorrect phonemes, and iii) diagnostic error
rate (DER): the percentage of the correctly detected pronuncia-
tion errors that have incorrect diagnostic feedback. Fig. 3 shows
the results of FRR and FAR, and Fig. 4 shows the results of DER
on the Cantonese and Mandarin test sets, respectively. In gen-
eral, using more frames for adaptation makes the acoustic model
fit better to the learner’s speech, including correct and incorrect
pronunciations, and thus results in lower FRR and higher FAR.

Running the full system performs better than running
greedy decoding only. The slight improvement in FRR and
FAR and the average 8.7% absolute improvement in DER in-
dicates that the error candidate selection process removes lots
of noise and produces a reasonable candidate set for decoding.
In fact, the error candidate selection process reduces the search
space by more than 80%, which greatly decreases the system’s
running time. However, running only error candidate selection
with one-pass forced alignment deteriorates the performance.

On the Cantonese test set, the proposed full system has
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Figure 3: False rejection rate (FRR) and false acceptance rate
(FAR) of three settings of the proposed framework, one unsuper-
vised baseline from phoneme recognition, and two supervised
baselines described in Sec. 4.2.
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Figure 4: Diagnostic error rate (DER) of different test scenarios
with respect to various degrees of speaker adaptation. Refer to
Sec. 4.2 for the explanation of each system setting and baseline.

an average 3.5% absolute improvement on FRR under the
same FAR, and 9.9% absolute improvement on DER over the
phoneme recognition baseline. On the Mandarin test set, while
the performance in FRR and FAR are similar, there is 12.5%
absolute improvement in DER. These improvements come from
the greedy decoding process. Forcing phonemes under the same
triphone context to have the same surface pronunciation has the
effect of voting, which performs better than making decisions
individually due to the characteristics of L2 speech.

To analyze the gap between the performance of the pro-
posed framework and the context-dependent supervised base-
line, we run greedy pronunciation error detection using the er-
ror patterns compiled from training data. The result has small
improvement in FRR and FAR over the supervised system. This
indicates that the gap is due to the quality of the candidate set.
We examine the coverage of the candidate set and find that
67.2% of the ground truth pronunciation error patterns are cov-
ered in the supervised system, while on average 49.5% of the
error patterns are covered in the error candidate set. While in-
creasing τG and τL can increase the coverage, the benefit from
the candidate selection process will gradually disappear. To im-
prove the process, analysis on a finer level can be incorporated
in distance computation, e.g. alignment-based features from
frame-wise dynamic time warping [22].

4.4. Word-level evaluation

In terms of pedagogical value, CAPT systems need not return
all the errors at once, which may discourage a learner [23, 24].
Instead, the system should be able to prioritize its feedback, and
the precision of the feedback is crucial. We believe word-level
feedback is a good unit for learners to start focusing on prac-
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Figure 5: Precision @ n (n = 1 to 20) of the word-level feed-
backs provided by each test scenario. Refer to Sec. 4.2 for the
explanation of each system setting and baseline.

ticing. As a result, we examine a system’s ability to prioritize
its word-level feedback by computing precision at n, which is
the precision of the top n results in a ranked list. For the base-
lines, words with more phoneme errors and errors with higher
GOP scores have higher priority, while the rank in the proposed
framework is based on the order in the error list.

Due to space constraints, only results from using 50% and
80% of frames for speaker adaptation are shown in Fig. 5. The
relative order in performance is similar across all adaptation
scenarios. Phoneme recognition performs the worst because of
its high FRR. The proposed framework consistently performs
better than a context-independent supervised system. As the
degree of adaptation increases, the gap between the proposed
system and the context-dependent supervised system decreases.

One advantage of the proposed framework is that the er-
ror list is an ordered list of error patterns. To generate n words
for feedback, it does not have to run until the candidate list be-
comes empty. Since the pattern chosen in each iteration maxi-
mizes the improvement in overall likelihood score, it is usually
related to phonemes with longer duration or more frequent oc-
currences. Therefore, the feedback provided by the system are
not only precise, but also reflect more substantial errors.

5. Conclusion and future work
In this paper, we have presented a mispronunciation detection
framework that does not require expert input, or nonnative train-
ing data. The proposed framework exploits acoustic similarities
between segments from an individual learner’s utterances to dis-
cover possible pronunciation error candidates, and imposes tri-
phone context constraints to decode mispronunciations. Treat-
ing each learner individually not only has the benefit of remov-
ing speaker variations in speech, but also echoes the concept of
personalization in CAPT. Experimental results have shown that
the proposed system outperforms a phoneme recognition frame-
work, which also does not require any nonnative training data,
while there is indeed room for improvement compared with a
context-dependent supervised system.

In theory, the proposed framework is L1-independent and
can be portable to any L2 as long as there is a speech recog-
nizer available. In the future, we would like to run experiments
on a larger variety of L1-L2 pairs. Also, we plan to design an
interface for user studies.
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