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One long-standing challenge in robotics is the realization of mobile autonomous robots able to operate safely
in human workplaces, and be accepted by the human occupants. We describe the development of a multiton
robotic forklift intended to operate alongside people and vehicles, handling palletized materials within existing,
active outdoor storage facilities. The system has four novel characteristics. The first is a multimodal interface that
allows users to efficiently convey task-level commands to the robot using a combination of pen-based gestures
and natural language speech. These tasks include the manipulation, transport, and placement of palletized cargo
within dynamic, human-occupied warehouses. The second is the robot’s ability to learn the visual identity of an
object from a single user-provided example and use the learned model to reliably and persistently detect objects
despite significant spatial and temporal excursions. The third is a reliance on local sensing that allows the robot
to handle variable palletized cargo and navigate within dynamic, minimally prepared environments without
a global positioning system. The fourth concerns the robot’s operation in close proximity to people, including
its human supervisor, pedestrians who may cross or block its path, moving vehicles, and forklift operators
who may climb inside the robot and operate it manually. This is made possible by interaction mechanisms
that facilitate safe, effective operation around people. This paper provides a comprehensive description of the
system’s architecture and implementation, indicating how real-world operational requirements motivated key
design choices. We offer qualitative and quantitative analyses of the robot operating in real settings and discuss
the lessons learned from our effort. C© 2014 Wiley Periodicals, Inc.

1. INTRODUCTION

Robots are increasingly being seen not only as machines
used in isolation for factory automation, but as aides that
work with and alongside people, be it in hospitals, long-
term care facilities, manufacturing centers, or our homes.
Logistics is one such area in which there are significant ben-
efits to having robots capable of working alongside people.
Among the advantages is improved safety by reducing the
risks faced by people operating heavy machinery. This is
particularly true in disaster relief scenarios and for mili-
tary applications, the latter of which motivates the work
presented in this paper. It is not uncommon for soldiers
operating forklifts on forward operating bases (FOBs) or
elsewhere in theater to come under fire. Automating the
material handling promises to take soldiers out of harm’s
way. More generally, robots that can autonomously load,
unload, and transport cargo for extended periods of time
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offer benefits including increased efficiency and through-
put, which extend beyond applications in military logistics.

The military domain raises two primary challenges for
material handling that are common to more general ma-
nipulation scenarios. Firstly, the domain provides limited
structure with dynamic, minimally prepared environments
in which people are free to move about and the objects to be
manipulated and interacted with vary significantly and are
unknown a priori. Secondly, any solution must afford effec-
tive command and control mechanisms and must operate
in a manner that is safe and predictable, so as to be usable
and accepted by existing personnel within their facilities.
Indeed, a long-standing challenge to realizing robots that
serve as our partners is developing interfaces that allow
people to efficiently and reliably command these robots as
well as interaction mechanisms that are both safe and ac-
cepted by humans.

Motivated by a desire for increased automation of logis-
tics operations, we have developed a voice-commandable
autonomous forklift (Figure 1) capable of executing a set
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Figure 1. The mobile manipulation platform is designed to safely coexist with people within unstructured environments while
performing material handling under the direction of humans.

of commands to approach, engage, transport, and place
palletized cargo in minimally structured outdoor settings.
Rather than carefully preparing the environment to make
it amenable to robot operation, we designed and inte-
grated capabilities that allow the robot to operate effec-
tively alongside people within existing unstructured en-
vironments, such as military supply support activities
(outdoor warehouses). The robot has to operate safely out-
doors on uneven terrain, without specially placed fiducial
markers, guidewires, or other localization infrastructure,
alongside people on foot, human-driven vehicles, and even-
tually other robotic vehicles, and amidst palletized cargo
stored and distributed according to existing conventions.
The robot also has to be commandable by military person-
nel without burdensome training. Additionally, the robot
needs to operate in a way that is acceptable to existing mili-
tary personnel and consistent with their current operational
practices and culture. There are several novel characteristics
of our system that enable the robot to operate safely and ef-
fectively despite challenging operational requirements, and
that differentiate our work from existing logistic automation
approaches. These include:

� Autonomous operation in dynamic, minimally prepared,
real-world environments, outdoors on uneven terrain
without reliance on a precision global positioning sys-
tem (GPS), and in close proximity to people;

� Speech understanding in noisy environments;
� Indication of robot state and imminent actions to by-

standers;
� Persistent visual memories of objects in the environment;
� Multimodal interaction that includes natural language

speech and pen-based gestures grounded in a world
model common to humans and the robot;

� Robust, closed-loop pallet manipulation using only local
sensing.

This paper presents a comprehensive review of the de-
sign and integration of our overall system in light of the
requirements of automating material handling for military
logistics. We present each of the different components of

the system in detail and describe their integration onto our
prototype platform. We focus in particular on the capabili-
ties that are fundamental to our design approach and that
we feel generalize to a broader class of problems concern-
ing human-commandable mobile manipulation within un-
structured environments. We evaluate the performance of
these individual components and summarize the results of
end-to-end tests of our platform within model and active
military supply facilities. Some of the capabilities that we
detail were originally presented within existing publica-
tions (Correa, Walter, Fletcher, Glass, Teller, & Davis, 2010;
Karaman, Walter, Perez, Frazzoli, & Teller, 2011; Teller et al.,
2010; Tellex et al., 2011; Walter, Friedman, Antone, & Teller,
2012; Walter, Karaman, & Teller, 2010). The contribution of
this paper is to provide a comprehensive, unified descrip-
tion of our overall system design, including its successful
implementation within the target domain, together with an
in-depth discussion of the lessons learned from our three
year effort.

The remainder of the paper is organized out as fol-
lows. Section 2 describes existing work related to the gen-
eral problem of material handling and the specific research
areas that are fundamental to our approach. Section 3 dis-
cusses the requirements of automating military logistics and
their influence on our design approach. Section 4 introduces
the prototype forklift platform, including its sensing, actu-
ation, and computing infrastructure. Section 5 describes in
detail the different capabilities that comprise our solution
and their integration into the overall system. Section 6 ana-
lyzes the performance of the key components of the system
and summarizes the results of end-to-end deployments of
the platform. Section 7 reflects on open problems that we
feel are fundamental to realizing robots capable of effec-
tively working alongside people in the material handling
domain. Section 8 offers concluding remarks.

2. RELATED WORK

There has been significant interest in automating material
handling for mining (Nebot, 2005), heavy industries (Tews,
Pradalier, & Roberts, 2007), and logistics (Durrant-Whyte,
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Pagac, Rogers, & Nelmes, 2007; Hilton, 2013; Wurman,
D’Andrea, & Mountz, 2008). The state-of-the-art in com-
mercial warehouse automation (Hilton, 2013; Wurman,
D’Andrea, & Mountz, 2008) is comprised of systems de-
signed for permanent storage and distribution facilities.
These indoor environments are highly prepared with flat
floors that include fiducials for localization, substantial
prior knowledge of the geometry and placement of objects
to be manipulated, and clear separation between people and
the robots’ workspace. The structured nature of the facilities
allows multiagent solutions that involve an impressively
large number of robots operating simultaneously, backed
by centralized resource allocation. In contrast, the military
and disaster relief groups operate storage and distribution
centers outdoors on uneven terrain, often for no more than
a few months at a time. The facilities offer little prepara-
tion, precluding the use of guidewires, fiducials, or other
localization aides. The objects in the environment are not
standardized and the robot must manipulate and interact
with different pallets and trucks whose geometry, location,
and appearance are not known a priori. Furthermore, peo-
ple are free to move unconstrained throughout the robot’s
workspace on foot, in trucks, or in other manually driven
forklifts.

More closely related to our approach are solutions to
automating forklifts and other autonomous ground vehi-
cles that emphasize the use of vision (Cucchiara, Piccardi,
& Prati, 2000; Kelly, Nagy, Stager, & Unnikrishnan, 2007;
Pradalier, Tews, & Roberts, 2010; Seelinger & Yoder, 2006)
and LIDAR (Bostelman, Hong, & Chang, 2006; Lecking,
Wulf, & Wagner, 2006) to mitigate the lack of structure. Of
particular note is the work by Kelly et al., who proposed
vision-based solutions for localization, part rack detection,
and manipulation that allow material handling vehicles to
function autonomously within indoor environments with
little to no additional structure (Kelly et al., 2007). Our sys-
tem similarly emphasizes local sensing over external infras-
tructure, using vision for object recognition and LIDARs to
estimate pallet and truck geometry and to detect people,
obstacles, and terrain hazards. Whereas Kelly et al. have
known computer-aided design (CAD) models of the ob-
jects to be manipulated, we assume only a rough geometric
prior, namely that the pallets have slots and the height of
the truck beds is within a common range. Unlike Kelly et al.,
whose system is capable of stacking part racks with the aid
of fiducials and unloading enclosed tractor trailers, we only
consider loading pallets from and to the ground and flatbed
trailers, albeit in less structured outdoor environments.

The most notable distinction between our system and
the existing state-of-the-art is that our method is intended
to work with and alongside people. Toward that end, we
developed methods that allow users to command the robot
using pen-based gestures and speech, and we designed the
system so that its actions are both safe and predictable, so
as to be acceptable by military personnel. In the remainder

of this section, we place in context our work in vision-based
object detection, multimodal interface design, and human-
robot interaction that enable the robot to work alongside
people. For a description of work related to other aspects of
design, we refer the reader to our earlier work (Teller et al.,
2010; Walter, Karaman, & Teller, 2010).

2.1. Persistent Visual Memories

We endowed the robot with the ability to reliably and per-
sistently recognize objects contained in its operating envi-
ronment using vision. As we demonstrate, this capability
enables people to command the robot to interact with cargo
and trucks simply by referring to them by name. A key chal-
lenge is to develop an algorithm that can recognize objects
across variations in scale, viewpoint, and lighting that result
from operations in unstructured, outdoor environments.

Visual object recognition has received a great deal of
attention over the past decade. Much of the literature de-
scribes techniques that are robust to the challenges of view-
point variation, occlusions, scene clutter, and illumination.
Generalized algorithms are typically trained to identify ab-
stract object categories and delineate instances in new im-
ages using a set of exemplars that span the most common
dimensions of variation. Training samples are further diver-
sified through variations in the instances themselves, such
as shape, size, articulation, and color. The current state-of-
the-art (Hoiem, Rother, & Winn, 2007; Liebelt, Schmid, &
Schertler, 2008; Savarese & Fei-Fei, 2007) involves learning
relationships among constituent object parts represented
using view-invariant descriptors. Rather than recognition of
generic categories, however, the goal of our work is the
reacquisition of specific previously observed objects. We still
require invariance to camera pose and lighting variations,
but not to intrinsic within-class variability, which allows us
to build models from significantly fewer examples.

Some of the more effective solutions to object instance
recognition (Collet, Berenson, Srinivasa, & Ferguson, 2009;
Gordon & Lowe, 2006; Lowe, 2001) learn three-dimensional
(3D) models of the object from different views that they then
use for recognition. Building upon their earlier effort (Lowe,
2001), Gordon & Lowe (2006) perform bundle adjustment
on scale-invariant feature transform (SIFT) features (Lowe,
2004) from multiple uncalibrated camera views to first build
a 3D object model. Given the model, they employ SIFT
matching, Random Sample and Consensus (RANSAC) (Fis-
chler & Bolles, 1981), and Levenberg-Marquardt optimiza-
tion to detect the presence of the object and estimate its pose.
Collet et al. take a similar approach, using the mean-shift
algorithm in combination with RANSAC to achieve more
accurate pose estimates that they then use for robot ma-
nipulation (Collet et al., 2009). These solutions rely upon an
extensive offline training phase in which they build each ob-
ject’s representation in a “brute-force” manner by explicitly
acquiring images from the broad range of different viewing
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angles necessary for bundle adjustment. In contrast, our
one-shot algorithm learns the object’s 2D appearance rather
than its 3D structure and does so online by opportunistically
acquiring views while the robot operates.

With respect to detecting the presence of specific ob-
jects within a series of images, our reacquisition capability
shares similar goals with those of visual tracking. In visual
tracking, an object is manually designated or automatically
detected and its state is subsequently tracked over time
using visual and kinematic cues (Yilmaz, Javed, & Shah,
2006). General tracking approaches assume small tempo-
ral separation with limited occlusions or visibility loss, and
therefore slow visual variation, between consecutive obser-
vations (Comaniciu, Ramesh, & Meer, 2003). These trackers
tend to perform well over short time periods but are prone
to failure when an object’s appearance changes or it dis-
appears from the camera’s field-of-view. To address these
limitations, “tracking-by-detection” algorithms adaptively
model variations in appearance online based upon positive
detections (Collins, Liu, & Leordeanu, 2005; Lim, Ross, Lin,
& Yang, 2004). These self-learning methods extend the track-
ing duration, but tend to “drift” as they adapt to incorpo-
rate the appearance of occluding objects or the background.
This drift can be alleviated using self-supervised learning
to train the model online using individual unlabeled im-
ages (Grabner, Leistner, & Bischof, 2008; Kalal, Matas, &
Mikolajczyk, 2010) or multiple instances (Babenko, Yang, &
Belongie, 2009). These algorithms improve robustness and
thereby allow an object to be tracked over longer periods
of time despite partial occlusions and frame cuts. However,
they are still limited to relatively short, contiguous video
sequences. Although we use video sequences as input, our
approach does not rely on a temporal sequence and is there-
fore not truly an object “tracker”; instead, its goal is to iden-
tify designated objects over potentially disparate views.

More closely related to our reacquisition strategy
is the recent work by Kalal et al., which combines an
adaptive tracker with an online detector in an effort to
improve robustness to appearance variation and frame
cuts (Kalal, Matas, & Mikolajczyk, 2009). Given a single
user-provided segmentation of each object, their tracking-
modeling-detection algorithm utilizes the output of a short-
term tracker to build an appearance model of each object
that consists of image patch features. They employ this
model to learn an online detector that provides an alter-
native hypothesis for an object’s position, which is used to
detect and reinitialize tracking failures. The algorithm main-
tains the model by adding and removing feature trajectories
based upon the output of the tracker. This allows the method
to adapt to appearance variations while removing features
that may otherwise result in drift. While we do not rely
upon a tracker, we take a similar approach of learning an
object detector based upon a single supervised example by
building an image-space appearance model online. Unlike
Kalal et al.’s solution, however, we impose geometric con-

straints to validate additions to the model, which reduces
the need to prune the model of erroneous features.

2.2. Multimodal User Interface

A significant contribution of our solution is the interface
through which humans convey task-level commands to the
robot using a combination of natural language speech and
pen-based gestures. Earlier efforts to develop user inter-
faces for mobile robots differ with regard to the sharing of
the robot’s situational awareness with the user, the level
of autonomy given to the robot, and the variety of input
mechanisms available to the user.

The PdaDriver system (Fong, Thorpe, & Glass, 2003)
allows users to teleoperate a ground robot through a vir-
tual joystick and to specify a desired trajectory by click-
ing waypoints. The interface provides images from a
user-selectable camera for situational awareness. Other in-
terfaces (Kaymaz-Keskinpala, Adams, & Kawamura, 2003)
additionally project LIDAR and sonar returns onto im-
ages and allow the user to switch to a synthesized over-
head view of the robot, which has been shown to facilitate
teleoperation when images alone may not provide suffi-
cient situational awareness (Ferland, Pomerleau, Le Dinh,
& Michaud, 2009). Similarly, our interface incorporates the
robot’s knowledge of its surroundings to improve the user’s
situational awareness. Our approach is different in that
we render contextual knowledge at the object level (e.g.,
pedestrian detections) as opposed to rendering raw sensor
data, which subsequent user studies (Kaymaz-Keskinpala
& Adams, 2004) have shown to add to the user’s workload
during teleoperation. A fundamental difference, however,
is that our approach explicitly avoids teleoperation in favor
of a task-level interface; in principle, this enables a single
human supervisor to command multiple robots simultane-
ously.

Skubic et al. provide a higher level of abstraction with
a framework in which the user assigns a path and goal po-
sitions to a team of robots within a coarse user-sketched
map (Skubic, Anderson, Blisard, Perzanowski, & Schultz,
2007). Unlike our system, the interface is exclusive to navi-
gation and supports only pen-based gesture input. Existing
research related to multimodal robot interaction (Holzapfel,
Nickel, & Stiefelhagen, 2004; Perzanowski, Schultz, Adams,
Marsh, & Bugajska, 2001) exploits a combination of vision
and speech as input. Perzanowski et al. introduce a mul-
timodal interface that, in addition to pen-based gestures,
accommodates a limited subset of speech and hand ges-
tures to issue navigation-related commands (Perzanowski
et al., 2001). Our approach is analogous as it combines the
supervisor’s visual system (for interpretation of the robot’s
surroundings) with speech (Glass, 2003) and sketch (Davis,
2002) capabilities. However, we chose to design a multi-
modal interface that uses speech and sketch complementar-
ily, rather than as mutually disambiguating modes.
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Our interface accompanies pen-based gestural interac-
tions with the ability to follow commands spoken in nat-
ural language. The fundamental challenge to interpreting
natural language speech is to correctly associate the poten-
tially diverse linguistic elements with the robot’s model of
its state and action space. The general problem of map-
ping language to corresponding elements in the exter-
nal world is known as the symbol grounding problem
(Harnad, 1990). Recent efforts propose promising solutions
to solving this problem in the context of robotics for the
purpose of interpreting natural language utterances (Dz-
ifcak, Scheutz, Baral, & Schermerhorn, 2009; Kollar, Tellex,
Roy, & Roy, 2010; MacMahon, Stankiewicz, & Kuipers, 2006;
Matuszek, FitzGerald, Zettlemoyer, Bo, & Fox, 2012; Ma-
tuszek, Fox, & Koscher, 2010; Skubic et al., 2004; Tellex et al.,
2011; Tellex, Thaker, Deits, Kollar, and Roy, 2012). Skubic
et al. present a method that associates spoken references
to spatial properties of the environment with the robot’s
metric map of its surroundings (Skubic et al., 2004). The ca-
pability allows users to command the robot’s mobility based
upon previous spoken descriptions of the scene. That work,
like others (Dzifcak et al., 2009; MacMahon, Stankiewicz,
& Kuipers, 2006), models the mapping between the natural
language command and the resulting plan as deterministic.
In contrast, our method learns a distribution over the space
of groundings and plans by formulating a conditional ran-
dom field (CRF) based upon the structure of the natural
language command. This enables us to learn the meanings
of words and to reason over the likelihood of inferred plans
(e.g., an indication of potential ambiguity), and it provides a
basis for performing human-robot dialog (Tellex et al., 2012).
In a similar fashion, other work has given rise to discrim-
inative and generative models that explicitly account for
uncertainty in the language and the robot’s world model
in the context of following route directions given in natu-
ral language (Kollar et al., 2010; Matuszek, Fox, & Koscher,
2010).

2.3. Predictable Interaction with People

Our robot is designed to operate in populated environments
where people move throughout, both on foot and in other
vehicles. It is important not only that the robot’s actions be
safe, which is not inconsequential for a 2,700 kg vehicle, but
that they be predictable. There is an extensive body of liter-
ature that considers the problem of conveying knowledge
and intent for robots that have humanlike forms. Relatively
little work exists for nonanthropomorphic robots, for which
making intent transparent is particularly challenging. The
most common approach is to furnish the robots with ad-
ditional hardware that provide visual cues regarding the
robot’s indented actions. These include a virtual eye that
can be used to indicate the direction in which the robot in-
tends to move, or a projector that draws its anticipated path
on the ground (Matsumaru, Iwase, Akiyama, Kusada, & Ito,

2005). We similarly use several visual means to convey the
current state of the robot and to indicate its immediate ac-
tions. Additionally, we endow the robot with the ability to
verbally announce its planned activities.

In addition to conveying the robot’s intent, an
important factor in people’s willingness to accept its
presence is that its actions be easily predictable (Klein,
Woods, Bradshaw, Hoffman, & Feltovich, 2004). Several re-
searchers (Alami, Clodic, Montreuil, Sisbot, & R., 2006; Dra-
gan & Srinivasa, 2013; Takayama, Dooley, & Ju, 2011) have
addressed the problem of generating motions that help to
make a robot’s intent apparent to its human partners. In par-
ticular, Takayama et al. show how techniques from anima-
tion can be used to facilitate a user’s ability to understand a
robot’s current actions and to predict future actions. Dragan
and Srinivasa describe a method that uses functional gradi-
ent optimization to plan trajectories for robot manipulators
that deliberately stray from expected motions to make it
easier for humans to infer the end effector’s goal (Dragan &
Srinivasa, 2013). In our case, we use the same visual and au-
dible mechanisms that convey the robot’s state to also indi-
cate its actions and goals to any people in its surround. Hav-
ing indicated the goal, the challenge is to generate motion
trajectories that are consistent with paths that bystanders
would anticipate the vehicle to follow. This is important not
only for predictability, but for safety as well. We make the as-
sumption that paths that are optimal in terms of distance are
also predictable, and we use our anytime optimal sample-
based motion planner to solve for suitable trajectories. A
growing body of literature exists related to optimal sample-
based motion planning (Jeon, Karaman, & Frazzoli, 2011;
Karaman & Frazzoli, 2010a, b, 2011; Marble & Bekris, 2011),
and we refer the reader to the work of Karaman and Fraz-
zoli for a detailed description of the state-of-the-art in this
area.

3. DESIGN CONSIDERATIONS

In this section, we outline the fundamental characteristics
of our system design in light of the demands of automating
material handling for military logistics. The process of iden-
tifying these requirements involved extensive interaction
with military personnel. We made repeated visits to several
active military warehouses, where we interviewed person-
nel ranking from forklift operators to supervisors, and ob-
served and recorded their operations to better understand
their practices. Military and civilian logisticians also made
several visits to MIT early and throughout the project, where
they operated and commented on our system. These inter-
actions led us to identify requirements that are not specific
to this application, but are instead general to mobile ma-
nipulation within dynamic, unstructured, human-occupied
environments. In particular, the system must do the follow-
ing:
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� depend minimally on GPS or other metric global local-
ization and instead emphasize local sensing;

� operate outdoors on uneven terrain, with little prepara-
tion;

� manipulate variable, unknown palletized cargo from ar-
bitrary locations;

� load and unload flatbed trucks of unknown geometry;
� afford efficient command and control with minimal

training;
� operate in a manner that is predictable and adheres to

current practices so as to be accepted by existing person-
nel;

� be subservient to people, relinquishing command or ask-
ing for help in lieu of catastrophic failure;

� operate safely in close proximity to bystanders and other
moving vehicles.

The military has a strong interest in reducing the re-
liance of their robotic platforms on GPS for localization.
This stems from a number of factors, including the threat
of signal jamming faced by systems that are deployed in
theater. Additionally, achieving highly accurate position-
ing typically requires GPS/INS systems with price points
greater than the cost of the base platform. An alternative
would be to employ simultaneous localization and map-
ping (SLAM) techniques, localizing against a map of the
environment, however the warehouse is constantly chang-
ing as cargo is added and removed by other vehicles. In-
stead, we chose a framework that used intermittent, low-
accuracy GPS for coarse, topological localization. In lieu of
accurate observations of the robot’s global pose, we em-
ploy a state estimation methodology that emphasizes local
sensing and dead-reckoning for both manipulation and mo-
bility. We also developed the robot’s ability to automatically
formulate maps of the environment that encode topological
and semantic properties of the facility based upon a nar-
rated tour provided by humans, thereby allowing people
with minimal training to generate these maps.

The forklift must function within existing facilities with
little or no special preparation. As such, the robot must be
capable of operating outdoors, on packed earth and gravel
while carrying loads of which the mass may vary by several
thousand kilograms. Thus, we chose to adopt a nonplanar
terrain representation and a full 6-DOF model of chassis
dynamics. We use laser scans of the terrain to detect and
avoid hazards, and we combine these scans with readings
from an inertial measurement unit (IMU) to predict and
modulate the maximum vehicle speed based upon terrain
roughness.

The forklift must be capable of detecting and manip-
ulating cargo of which the location, geometry, appearance,
and mass are not known a priori. We use an IMU to char-
acterize the response of the forklift to acceleration, braking,
and turning along paths of varying curvature when un-
loaded and loaded with various masses, in order to ensure

safe operation. We designed a vision-based algorithm that
enables the robot to robustly detect specific objects in the
environment based upon a single segmentation hint from a
user. The method’s effectiveness lies in the ability to recog-
nize objects over extended spatial and temporal excursions
within challenging environments based upon a single train-
ing example. Given these visual detections, we propose a
coupled perception and control algorithm that enables the
forklift to subsequently engage and place unknown cargo
to and from the ground and truck beds. This algorithm is ca-
pable of detecting and estimating the geometry of arbitrary
pallets and truck beds from single laser scans of cluttered
environments, and it uses these estimates to servo the forks
during engagement and disengagement.

The robot must operate in dynamic, cluttered environ-
ments in which people, trucks, and other forklifts (manually
driven or autonomous) move unencumbered. Hence, the
forklift requires full-surround sensing for obstacle avoid-
ance. We chose to base the forklift’s perception on LIDAR
sensors, due to their robustness and high refresh rate. We
added cameras to provide situational awareness to a (possi-
bly remote) human supervisor, and to enable vision-based
object recognition. We developed an automatic multisensor
calibration method to bring all LIDAR and camera data into
a common coordinate frame.

Additionally, existing personnel must be able to effec-
tively command the robot with minimal training, both re-
motely over resource-constrained networks and from po-
sitions nearby the robot. This bandwidth and time-delay
requirements of controlling a multiton manipulator pre-
clude teleoperation. Additionally, the military is interested
in a decentralized, scalable solution with a duty cycle that
allows one person to command multiple vehicles, which is
not possible with teleoperation. Instead, we chose to de-
velop a multimodal interface that allows the user to control
the robot using a combination of speech and simple pen-
based gestures made on a hand-held tablet computer.

There has been tremendous progress in developing a
robot’s ability to interpret completely free-form natural lan-
guage speech. However, we feel that the challenge of un-
derstanding commands of arbitrary generality within noisy,
outdoor environments is beyond the scope of current speech
recognition, sensing, and planning systems. As a result, we
chose to impose on the human supervisor the burden of
breaking down high-level commands into simpler subtasks.
For example, rather than command the robot to “unload the
truck,” the user would give the specific directives to “take
the pallet of tires on the truck and place them in storage
alpha,” “remove the pallet of pipes and put them in storage
bravo,” etc. until the truck was unloaded. In this manner,
the atomic user commands include a combination of sum-
moning the forklift to a specific area, picking up cargo and
placing it at a specified location. We refer to this task break-
down as “hierarchical task-level autonomy.” Our goal is to
reduce the burden placed on the user over time by making
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Figure 2. The platform is based upon (left) a stock 2,700 kg Toyota lift truck. We modified the vehicle to be drive-by-wire and
equipped it with LIDARs, cameras, encoders, an IMU, and directional microphones for perception; and LED signage, lights, and
speakers for annunciation. The compartment on the roof houses three laptop computers, a network switch, and power distribution
hardware.

the robot capable of carrying out directives at ever-higher
levels (e.g., completely unloading a truck pursuant to a sin-
gle directive).

We recognize that an early deployment of the robot
would not match the capability of an expert human opera-
tor. Our mental model for the robot is as a “rookie operator”
that behaves cautiously and asks for help with difficult ma-
neuvers. Thus, whenever the robot recognizes that it can-
not make progress at the current task, it can signal that it is
“stuck” and request supervisor assistance. When the robot is
stuck, the human supervisor can either use the remote inter-
face to provide further information or abandon the current
task, or any nearby human can climb into the robot’s cabin
and guide it through the difficulty via ordinary manned op-
eration. The technical challenges here include recognizing
when the robot is unable to make progress, designing the
drive-by-wire system to seamlessly transition between un-
manned and manned operation, and designing the planner
to handle mixed-initiative operation.

Humans have a lifetime of prior experience with one
another, and have built up powerful predictive models of
how other humans will behave in almost any ordinary sit-
uation (Mutlu, Yamaoka, Kanda, Ishiguro, & Hagita, 2009).
We have no such prior models for robots, which in our
view is part of the reason why humans are uncomfortable
around robots: we do not have a good idea of what they will
do next. However, the ability for robots to convey their un-
derstanding of the environment and to execute actions that
make their intent transparent has often been cited as critical
to effective human-robot collaboration (Klein et al., 2004).
A significant design priority is thus the development of
subsystems to support cultural acceptance of the robot. We
added an annunciation subsystem that uses visible and au-

dible cues to announce the near-term intention of the robot
to any human bystanders. The robot also uses this system
to convey its own internal state, such as the perceived num-
ber and location of bystanders. Similarly, people in military
warehouse settings expect human forklift operators to stop
whenever a warning is shouted. We have incorporated a
continuously running shouted warning detector into the fork-
lift, which pauses operation whenever a shouted stop com-
mand is detected, and stays paused until given an explicit
go-ahead to continue.

4. MOBILE MANIPULATION PLATFORM

We built our robot based upon a stock Toyota 8FGU-15
manned forklift (Figure 2), a rear wheel-steered, liquid-
propane fueled lift truck with a gross vehicle weight of
2,700 kg and a lift capacity of 1,350 kg. The degrees of free-
dom of the mast assembly include tilt, lift, and sideshift
(lateral motion). We chose the Toyota vehicle for its rela-
tively compact size and the presence of electronic control of
some of the vehicle’s mobility and mast degrees of freedom,
which facilitated our drive-by-wire modifications.

4.1. Drive-by-Wire Actuation

We devised a set of electrically actuated mechanisms involv-
ing servomotors to bring the steering column, brake pedal,
and parking brake under computer control. A solenoid
serves to activate the release latch to disengage the parking
brake. Putting the parking brake under computer control
is essential, since OSHA regulations (United States Depart-
ment of Labor Occupational Safety & Health Administra-
tion, 1969) dictate that the parking brake be engaged when-
ever the operator exits the cabin; in our setting, the robot
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sets the parking brake whenever it relinquishes control to a
human operator. We interposed digital circuity into the ex-
isting forklift wiring system in order to control the throttle,
mast, carriage, and tine degrees of freedom. Importantly,
we integrated the digital acquisition devices in a manner
that allows the robot to detect any control actions made by
a human operator, which we use to seamlessly relinquish
control.

4.2. Sensor Allocation

Fundamental to our design approach is the system’s reliance
on local sensing in lieu of assuming accurate global navi-
gation. As such, we configured the forklift with a heteroge-
neous suite of proprioceptive and exteroceptive sensors that
include cameras, laser rangefinders, encoders, an IMU, and
a two-antenna GPS for periodic absolute position and head-
ing fixes. We selected the sensor type and their placement
based upon the requirements of the different tasks required
of the vehicle.

For the sake of obstacle and pedestrian detection, we
mounted five Sick LMS-291 planar LIDARs roughly at waist
height to the side of the forklift, two at the front facing
forward-left and -right, and three at the rear facing left,
right, and rearward (Figure 2). We positioned each LIDAR
in a skirt configuration, but we pitched them slightly down-
ward such that the absence of a ground return would be
meaningful. We oriented each sensor such that its field-of-
view overlaps with at least one other LIDAR. Additionally,
we mounted a Hokuyo UTM-30LX at axle height under
the carriage looking forward in order to perceive obsta-
cles when the forklift is carrying cargo that occludes the
forward-facing skirts.

The robot operates on uneven terrain and must be able
to detect and avoid hazards as well as to regulate its velocity
based upon the roughness of the terrain. For this purpose,
we positioned four Sick LIDARs on the roof facing front-
left and -right, and rear-left and -right. We mounted them
in a pushbroom configuration with a significant downward
canter (Figure 2). As with the skirt LIDARs, we oriented the
sensors such that their fields-of-view overlap with at least
one other.

Our approach to engaging palletized cargo and placing
it on and picking it up from truck beds relies upon laser
rangefinders to detect and estimate the geometry of the
palletized cargo and trucks. To servo the lift truck into the
pallet slots, we placed one Hokuyo UTM-30LX LIDAR in
a horizontal configuration on each of the two fork tines,
scanning a half-disk parallel to and slightly above the tine
(in practice, we used only one sensor). Additionally, we
mounted two UTM-30LX LIDARs on the outside of the
carriage, one on each side with a vertical scanning plane,
to detect and estimate the geometry of truck beds.

We mounted four Point Grey Dragonfly2 color cameras
on the roof of the vehicle facing forward, rearward, left, and

right, offering a 360◦ view around the forklift (Figure 2).
We utilize the camera images to perform object recognition.
The system also transmits images at a reduced rate and
resolution to the hand-held tablet to provide the supervisor
with a view of the robot’s surround.

Finally, we equipped the forklift with four beam-
forming microphones facing forward, rearward, left, and
right (Figure 2). The robot utilizes the microphones to con-
tinuously listen for spoken commands and for shouted
warnings.

Our reliance on local sensing and our emphasis on mul-
tisensor fusion requires that we have accurate estimates for
the body-relative pose of the many sensors on the robot. For
each LIDAR and camera, we estimate the 6-DOF rigid-body
transformation that relates the sensor’s reference frame to
the robot’s body frame (i.e., “extrinsic calibration”) through
a chain of transformations that include all intervening ac-
tuatable degrees of freedom. For each LIDAR and camera
mounted on the forklift body, this chain contains exactly one
transformation; for LIDARs mounted on the mast, carriage,
or tines, the chain has as many as four transformations. For
example, the chain for the tine-mounted Hokuyo involves
changing transformations for the tine separation, carriage
sideshift, carriage lift, and mast tilt degrees of freedom.
We employ several different techniques to estimate each
of these transformations, including bundle adjustment-like
optimization (Leonard et al., 2008) for LIDAR-to-body cal-
ibration and multiview, covisibility constraint optimiza-
tion (Zhang & Pless, 2004) to estimate the camera-to-LIDAR
calibration.

4.3. Annunciation

To facilitate a bystander’s ability to predict the robot’s ac-
tions, we endowed it with multiple means by which to make
its world model and intent transparent. Among these, we
mounted four speakers to the roof, facing forward, rear-
ward, left, and right (Figure 2). The forklift uses these speak-
ers to announce ensuing actions (e.g., “I am picking up the
tire pallet”). To account for environment noise and to pro-
vide for less intrusive notification, we affixed four LED signs
to the roof of the forklift. The signs display the robot’s cur-
rent operational state (e.g., “Active” or “Manual”) as well
as its immediate actions. We also ran LED lights around the
body of the forklift, which we use to indicate the robot’s
state (i.e., by color), as well as a reflective display to indicate
its knowledge of people in its surround.

4.4. Computing Infrastructure

The software architecture includes several dozen processes
that implement obstacle tracking, object detection, motion
planning, control, and sensor drivers. The processes are dis-
tributed across four quad-core 2.53 GHz laptops running
GNU/Linux, three located in the equipment cabinet on the
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Figure 3. High-level system architecture.

roof and one affixed to the carriage (Figure 2). An addi-
tional laptop located near the seat serves as a development
interface. We employed a publish-subscribe model for in-
terprocess communication (Huang, Olson, & Moore, 2010)
over a local Ethernet network. A commercial off-the-shelf
802.11g wireless access point provides network connectivity
with the human supervisor’s hand-held tablet. The rooftop
cabinet also houses a network switch, power supplies and
relays, as well as digital acquisition (DAQ) hardware for
drive-by-wire control.

The supervisor’s tablet, a Nokia N810 hand-held com-
puter, constitutes a distinct computational resource. In ad-
dition to providing a visual interface through which the
user interacts with the robot, the tablet performs pen-based
gesture recognition and rudimentary speech recognition
onboard. The tablet offloads more demanding natural lan-
guage understanding to the robot.

4.5. Power Consumption

The power to each of the systems onboard the forklift is
supplied by an after-market alternator capable of supplying
1920 W. Devices requiring ac input, including the laptops,
LED signs and lights, and network hardware, are powered
by a 600 W inverter. The remaining dc hardware is driven
directly from the alternator via step-up and step-down regu-
lators. The primary consumers of power are the five laptops
(165 W continuous), the LED signs and lights (140 W), the
speaker amplifier (100 W continuous), the three drive-by-
wire motors (145 W continuous), and the Sick LIDARs (180
W continuous). In total, the continuous power consump-
tion is approximately 1,050 W. While the alternator is more
than sufficient to drive the system under continuous load,
it nears maximum capacity when the three drive-by-wire
motors are at peak draw.

5. SYSTEM ARCHITECTURE

In this section, we outline a number of the components
of our system that are critical to the robot’s effective opera-
tion within unstructured environments. In similar fashion to
our bottom-up design strategy, we start with the low-level,
safety-critical capabilities and proceed to describe more ad-
vanced functionality.

5.1. Software

Our codebase is built upon middleware that we initially
developed as part of MIT’s participation in the DARPA
Urban Challenge competition (Leonard et al., 2008). This
includes the lightweight communications and marshalling
(LCM) utility (Huang, Olson, & Moore, 2010), a low-level
message passing and data marshalling library that provides
publish-subscribe interprocess communication among sen-
sor handlers, perception modules, task and motion plan-
ners, controllers, interface handlers, and system monitoring
and diagnostic modules (Figure 3). As part of the project, we
developed and make heavy use of the Libbot suite (Huang,
Bachrach, & Walter, 2014), a set of libraries and applica-
tions whose functionality includes 3D data visualization,
sensor drivers, process management, and parameter serv-
ing, among others.

5.2. Robot System Integrity

The architecture of the forklift is based on a hierarchy of in-
creasingly complex and capable layers. At the lowest level,
kill-switch wiring disables ignition on command, allowing
the robot or a user to safely stop the vehicle when nec-
essary. Next, a programmable logic controller (PLC) uses a
simple relay ladder program to enable the drive-by-wire cir-
cuitry and the actuator motor controllers from their default
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(braking) state. The PLC requires a regular heartbeat signal
from the higher-level software and matching signals from
the actuator modules to enable drive-by-wire control.

Higher still, the software architecture is a set of pro-
cesses distributed across four of the networked comput-
ers and is composed of simpler device drivers and more
complex application modules. At this level, there are many
potential failure modes to anticipate, ranging from issues
related to PC hardware, network connectivity, operating
systems, sensor failures, up to algorithmic and application
logic errors. Many of these failure modes, however, are mit-
igated by a software design methodology that emphasizes
redundancy and multiple safety checks. This stems from
our use of LCM message passing for interprocess commu-
nication, which is UDP-based and therefore contains no
guarantees regarding message delivery. The consequence
is that the application programmer is forced to deal with
the possibility of message loss. What seems onerous actu-
ally has the significant benefit that many failure modes re-
duce to a common outcome of message loss. By gracefully
handling the single case of message loss, the software be-
comes tolerant to a diverse range of failure types. As such,
the software architecture is designed with redundant safety
checks distributed across each networked computer that,
upon detecting a fault, cause the robot to enter a paused
state. These safety checks include a number of interpro-
cess heartbeat messages that report the status of each of the
sensors, communication bandwidth and latency, and clock
times, among others. Higher-level algorithmic and logic er-
rors are less obvious, particularly as their number and com-
plexity compound as the system grows. We identify and
detect the majority of these failures based upon designer
input and extensive unit and system-wide testing.

A single process manages the robot’s run-state, which
takes the form of a finite state machine that may be active
(i.e., autonomous), manual (i.e., override), or paused, and
publishes the state at 50 Hz. If this process receives a fault
message from any source, it immediately changes the state
of the robot into the quiescent paused state. All processes
involved in robot actuation listen to the run-state message.
If any actuator process fails to receive this message for a
suitably small duration of time, the process will raise a fault
condition and go into the paused state. Similarly, the motion
planning process will raise faults if timely sensor data are
not received. Under this configuration, failures that arise as
a result of causes such as the run-state process terminating,
network communications loss, or one of the other sources
identified above induce the robot into a safe state.

The only logic errors that this system does not address
are those for which the robot appears to be operating cor-
rectly yet has an undetected error. Sanity checks by different
software modules can help mitigate the effect of such errors,
but by definition some of these failures may go undetected.
As far as we are aware, only branch, subsystem, and system-
level testing can combat these kinds of failures. In an effort

to better model potential failure modes, we developed and
make extensive use of introspective and unit testing tools, in
addition to field trials. The unit tests involve environment,
sensor, and dynamic vehicle simulators that publish data
of the same type and rate as their physical counterparts.
Additionally, we log all interprocess messages during field
and simulation-based tests. In the event of a failure, this al-
lows us to more easily isolate the modules involved and to
validate changes to these subsystems. While testing helps
to significantly reduce the number of undetectable failures,
we are not able to guarantee system integrity and instead
rely upon user-level control to stop the vehicle in the event
of catastrophic failure.

5.3. Local and Global State Estimation

The forklift operates in outdoor environments with mini-
mal physical preparation. Specifically, we assume only that
the warehouse consists of adjoining regions that we notion-
ally model as delivery (“receiving”) and pickup (“issuing”)
areas, as well as a “storage” area with bays labeled using a
phonetic alphabet (e.g., “alpha bravo”). The robot performs
state estimation and navigation within the environment us-
ing a novel coupling of two 6-DOF reference frames that are
amenable to simultaneously integrating locally and glob-
ally derived data (Moore et al., 2009). The first is the global
frame with respect to which we maintain coarse, infrequent
(on the order of 1 Hz) estimates of the robot’s absolute pose
within the environment. In our system, these estimates fol-
low from periodic GPS fixes, though they may also be the
result of a SLAM implementation.

The second and most widely used is the local frame, a
smoothly varying Euclidean reference frame with arbitrary
initial pose about which we maintain high-resolution, high-
rate pose estimates. The local frame is defined to be the ref-
erence frame relative to which the vehicle’s dead-reckoned
pose is assumed to be correct (i.e., not prone to drift). The
local frame offers the advantage that, by definition, the ve-
hicle pose is guaranteed to move smoothly over time rather
than exhibiting the abrupt jumps that commonly occur with
GPS. State estimates that are maintained relative to the lo-
cal frame are accurate for short periods of time but tend
to exhibit drift in absolute pose over extended durations.
The majority of the robot’s subsystems favor high-accuracy,
high-rate estimates of the robot’s local pose over short time
scales and easily tolerate inaccurate absolute position esti-
mates. For that reason, we use the local frame to fuse sensor
data for obstacle detection, pallet estimation and manipu-
lation, and to plan the robot’s immediate motion (i.e., up-
wards of a minute into the future). Some tasks (e.g., sum-
moning to “receiving”), however, require coarse knowledge
of the robot’s absolute position in its environment. For that
purpose, we maintain an estimate of the coordinate trans-
formation between the local and global frames that allows
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Figure 4. Renderings of (a) a notional military warehouse and (b) the topological map for a particular facility, each with storage,
receiving, and issuing areas that are connected by lanes of travel (arrows).

the system to project georeferenced data into the local frame
(e.g., waypoints, as Section 5.5 describes).

We model the robot’s environment as a topol-
ogy (Leonard et al., 2008) with nodes corresponding to key
locations in the warehouse (e.g., the location of “receiv-
ing”) and edges that offer the ability to place preferences on
the robot’s mobility [Figure 4(b)]. For example, we employ
edges to model lanes in the warehouse [Figure 4(a)] within
which we can control the robot’s direction of travel. With
the exception of these lanes, however, the robot is free to
move within the boundary of the facility. To make it easier
for soldiers to introduce the robot to new facilities, we al-
low the forklift to learn the topological map during a guided
tour. The operator drives the forklift through the warehouse
while speaking the military designation (e.g., “receiving,”
“storage,” and “issuing”) of each region, and the system
binds these labels with the recording of their GPS posi-
tions and boundaries. We then associate locations relevant
to pallet engagement with a pair of “summoning points”
that specify a rough location and orientation from which
the robot may engage pallets (e.g., those in storage bays).
The topological map of these GPS locations along with the
GPS waypoints that compose the simple road network are
maintained in the global frame and projected into the local
frame as needed. Note that the specified GPS locations need
not be precise; their purpose is only to provide rough goal
locations for the robot to adopt in response to summoning
commands, as a consequence of our navigation method-
ology. Subsequent manipulation commands are executed
using only local sensing, and thus they have no reliance on
GPS.

5.4. Obstacle and Hazard Detection

Critical to ensuring that the robot operates safely is that it
is able to detect and avoid people, other moving vehicles,
and any stationary objects in its surround. For that purpose,

the system includes modules for detecting and tracking ob-
stacles and hazards (e.g., nontraversable terrain) in the en-
vironment, which are based upon our efforts developing
similar capabilities for MIT’s entry in the DARPA Urban
Challenge (Leonard et al., 2008). The obstacle and hazard
detection processes (within the “Object detection” block of
Figure 3) take as input range and bearing returns from the
five planar skirt LIDARs positioned around the vehicle. The
processes output the position and spatial extent of static ob-
stacles detected within the environment, the location and
extent of ground hazards, and the position, size, and esti-
mated linear velocity of moving objects (e.g., people and
other vehicles). We refer to the latter as tracks.

In order to improve the reliability of the detector, we
intentionally tilted each LIDAR down by 5◦, so that they
will generate range returns from the ground when no object
is present. The existence of “infinite” range data enables the
detector to infer environmental properties from failed re-
turns (e.g., from absorptive material). The downward pitch
reduces the maximum range to approximately 15 m, but
it still provides almost 8 s of sensing horizon for collision
avoidance, since the vehicle’s speed does not exceed 2 m/s.

The range and bearing returns from each LIDAR are
first transformed into the smoothly varying local coordinate
frame based upon the learned calibration of each sensor
relative to a fixed body frame. The system then proceeds
to classify the returns as being either ground, obstacles, or
outliers. The ground classification stems, in part, from the
fact that it is difficult to differentiate between laser returns
that emanate from actual obstacles and those that result
from upward-sloping yet traversable terrain. It is possible
to distinguish between the two by using multiple LIDARs
with scanning planes that are (approximately) parallel and
vertically offset (Leonard et al., 2008). However, the five
skirt LIDARs on the forklift are configured in a manner that
does not provide complete overlap in their fields-of-view.
Instead, we assume an upper bound on the ground slope
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Figure 5. Obstacle detection operates by taking (a) the current set of LIDAR returns and first spatially clustering them into
(b) chunks. These chunks are then grouped over space and time to form (c) groups to which we associate a location, size, and velocity
estimate.

and classify as obstacles any returns whose height is
inconsistent with this bound. The one exception is for
regions of sensor overlap when a second LIDAR with a
higher scan plane does not get returns from the same (x, y)
position.

Given a set of local frame returns from each of the five
skirt LIDARs [Figure 5(a)], we first perform preliminary
spatiotemporal clustering on all returns classified as being
non-ground, as a preprocessing step that helps to eliminate
false positives. To do so, we maintain a 100 m × 100 m
grid with 0.25 m cells that is centered at the vehicle. We
add each return along with its associated time stamp and
LIDAR identifier to a linked list that we maintain for each
cell. Each time we update a cell, we remove existing returns
that are older than a maximum age (we use 33 ms, which
corresponds to 2.5 scans from a Sick LMS-291). We classify
cells with returns from different LIDARs or different scan
times as candidate obstacles and pass the returns on to the
obstacle clustering step.

Next, obstacle clustering groups these candidate re-
turns into chunks, collections of spatially close range and
bearing returns [Figure 5(b)]. Each chunk is characterized
by its center position in the local frame along with its (x, y)
extent, which is restricted to be no larger than 0.25 m in any
direction to keep chunks small. This bound is intentionally
smaller than the size of most obstacles in the environment.
Given a return filtered using the preprocessing step, we
find the closest existing chunk. If there is a match whose
new size will not exceed the 0.25 m bound, we add the
return to the chunk and update its position and size ac-
cordingly. Otherwise, we instantiate a new chunk centered
at the return. After incorporating each of the new returns,
we remove chunks for which a sufficiently long period of
time has passed since they were last observed. We have
empirically found 400 ms to be suitable given the speed at
which the forklift travels. The next task is then to cluster
together chunks corresponding to the same physical object
into groups. We do so through a simple process of associat-

ing chunks whose center positions are within 0.3 m apart.
Figure 5(c) demonstrates the resulting groups.

Next, we cluster groups over time in order to estimate
the velocity of moving objects. At each time step, we at-
tempt to associate the current set of groups with those
from the previous time step. To do so, we utilize the persis-
tence of chunks over time (subject to the 400 ms update re-
quirement). As chunks may be assigned to different groups
with each clustering step, we employ voting whereby each
chunk in the current group nominates its association with
the group from the previous time step. We then compare
the spatial extents of the winning group pair between sub-
sequent time steps to get a (noisy) estimate of the object’s
velocity. We use these velocity estimates as observations in a
Kalman filter to estimate the velocity of each of the group’s
member chunks. These estimates yield a velocity “track”
for moving obstacles. For a more detailed description of the
spatiotemporal clustering process, we refer the reader to
our earlier work (Leonard et al., 2008).

We integrate obstacle detections and estimated vehicle
tracks into a drivability map that indicates the feasibility of
positioning the robot at different points in its surround. The
drivability map takes the form of a 100 m × 100 m, 0.20 m
resolution grid map centered at a position 30 m in front of
the vehicle that we maintain in the local frame. Each cell in
the map expresses a 0–255 cost of the vehicle being at that
location. The map encodes three different types of regions:
those that are deemed infeasible, those that are restricted, and
those that are high-cost. Infeasible regions denote areas in
which the vehicle cannot drive, most often resulting from
the detection of obstacles. Areas classified as restricted are
those for which there is a strong preference for the robot
to avoid, but that the robot can drive in if necessary. For
example, open areas that lie outside the virtual boundary of
the warehouse environment are deemed restricted, since the
robot can physically drive there, although we prefer that it
does not. High-cost regions, meanwhile, denote areas where
there is an increased risk of collision and follow from a
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Figure 6. Drivability maps that model the costs associated with driving (left) near stationary and dynamic obstacles, and outside
the robot’s current operating region, as well as (right) in the vicinity of pedestrians.

spatial dilation of obstacle detections. We use these regions
to account for uncertainties that exist in the LIDAR data, our
obstacle detection capability, and the robot’s trajectory con-
troller. Individually, these uncertainties are typically small,
but they can compound and lead to a greater risk of colli-
sion. The high-risk regions allow for us to add a level of risk
aversion to the robot’s motion.

We populate the drivability map as follows. We start
with a map in which each cell is labeled as restricted. We
then “carve out” the map by assigning zero cost to any cell
that lies within the robot’s footprint or within the zone in
the topological map [e.g., “Receiving,” Figure 4(b)] in which
it is located. Next, we update the map to reflect the location
of each stationary and moving obstacle group by assign-
ing maximum cost to any cell that even partially overlaps
with an obstacle’s footprint. In the case of moving obstacles,
we additionally use its velocity track to label as restricted
each cell that the obstacle’s footprint is predicted to over-
lap over the next 2.0 s. We chose 2.0 s due to the relatively
slow speed at which our forklift operates and because other
vehicles change their speed and direction of travel fairly
frequently, which would otherwise invalidate our constant-
velocity model. Next, we dilate cells that are nearby obsta-
cles by assigning them a cost that scales inversely with their
distance from the obstacle, resulting in the high-cost label-
ing. Figure 6 presents an example of a drivability map and
a sampled motion plan. The drivability map is rendered in
this manner at a frequency of 10 Hz or immediately upon
request by another process (e.g., the motion planner), based
upon the most recently published obstacle information.

Pedestrian safety is central to our design. Though
LIDAR-based people detectors exist (Arras, Mozos, & Bur-
gard, 2007; Cui, Zha, Zhao, & Shibasaki, 2007; Hahnel,
Schulz, & Burgard, 2003), we opt to avoid the risk of misclas-
sification by treating all objects of suitable size as potential
humans. The system applies a larger dilation to obstacles
that are classified as being pedestrians. For pedestrians that

are stationary, this results in a greater reduction of the ve-
hicle’s speed when in their vicinity. For pedestrians that
are moving, we employ a greater look-ahead time when
assigning cost to areas that they are predicted to occupy.
When pedestrians cross narrow areas such as the lanes be-
tween regions, they become restricted and the robot will
stop and wait for the person to pass before proceeding
(Figure 6). Pedestrians who approach too closely cause the
robot to pause.

5.5. Planning and Control

The most basic mobility requirement for the robot is to
move safely from a starting pose to its destination pose.
The path planning subsystem (Figure 3) consists of two
distinct components: a navigator that identifies high-level
routes through the map topology and a lower-level kinody-
namic motion planner. Adapted from MIT’s DARPA Urban
Challenge system (Leonard et al., 2008), the navigator is
responsible for identifying the shortest sequence of way-
points through the warehouse route network (maintained
in the global frame) and for tracking and planning around
blockages in this network. It is the job of the navigator to
respect mobility constraints encoded in the map topology,
such as those that model the preference for using travel
lanes to move between warehouse regions. Given a desired
goal location in the topology, the navigator performs A∗

search (Hart, Nilsson, & Raphael, 1968) to identify the low-
est cost (shortest time) route to the goal while respecting
known blockages in the topology. The navigator maintains
the sequence of (global frame) waypoints and publishes the
local frame position of the next waypoint in the list for the
local kinodynamic planner.

Given the next waypoint in the local frame, the goal of
the motion planner is to quickly find a cost-efficient path
that respects the dynamics of the vehicle and avoids obsta-
cles as indicated by the drivability map. The challenge is
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that any motion planning method meant for practical de-
ployment on a robot must be capable of operating within
limited real-time computational resources. It also must tol-
erate imperfect or incomplete knowledge of the robot’s op-
erating environment. In the context of the forklift, the robot
spends no more than a few seconds to plan a path (e.g., while
changing gears) before driving toward the goal, which may
take several minutes. In this setting, it would be useful if
the robot were able to utilize available computation time as
it moves along its trajectory to improve the quality of the
remaining portion of the planned path. Furthermore, as the
robot executes the plan, its model of the environment will
change as vehicles and people move and new parts of the
surround come into view. The estimate of the robot’s state
will also change, e.g., due to the unobservable variability of
the terrain (e.g., wheel slip).

To address these challenges, we developed a motion
planner that exhibits two key characteristics. First, the al-
gorithm operates in an anytime manner: it quickly identi-
fies feasible, though not necessarily optimal, motion plans
and then takes advantage of available execution time to
incrementally improve the plan over time toward optimal-
ity. Secondly, the algorithm repeatedly replans, whereby
it incorporates new knowledge of the robot state and the
environment (i.e., the drivability map) and reevaluates its
existing set of plans for feasibility.

Our anytime motion planner (Figure 3) was originally
presented in our earlier paper (Karaman et al., 2011) and
is based upon the RRT* (Karaman & Frazzoli, 2010a), a
sample-based algorithm that exhibits the anytime optimal-
ity property, i.e., almost-sure convergence to an optimal so-
lution with guarantees on probabilistic completeness. The
RRT* is well-suited to anytime robot motion planning. Like
the RRT, it quickly identifies an initial feasible solution. Un-
like the RRT, however, the RRT* utilizes any additional com-
putation time to improve the plan toward the optimal solu-
tion. We leverage this quality by proposing modifications to
the RRT* that improve its effectiveness for real-time motion
planning.

5.5.1. The RRT* Algorithm

We first describe a modified implementation of the RRT*
and then present extensions for online robot motion plan-
ning. Let us denote the dynamics of the forklift in the general
form ẋ(t) = f (x(t), u(t)), where the state x(t) ∈ X is the posi-
tion (x, y) and orientation θ , and u(t) ∈ U is the forward ve-
locity and steering input. Let Xobs denote the obstacle region,
and Xfree = X \ Xobs define the obstacle-free space. Finally, let
Xgoal ⊂ X be the goal region that contains the local frame
position and heading that constitute the desired waypoint.

The RRT* algorithm solves the optimal motion plan-
ning problem by building and maintaining a treeT = (V,E)
comprised of a vertex set V of states from Xfree connected by
directed edges E ⊆ V × V . The manner in which the RRT*

generates this tree closely resembles that of the standard
RRT, with the addition of a few key steps that achieve opti-
mality. The RRT* algorithm uses a set of basic procedures,
which we describe in the context of kinodynamic motion
planning.

Sampling: The Sample function uniformly samples a
state xrand ∈ Xfree from the obstacle-free region of the state
space. We verify that the sample is obstacle-free by query-
ing the drivability map and using a threshold to determine
whether the sample is collision-free.

Nearest Neighbor: Given a state x ∈ X and the tree T =
(V,E), the v = Nearest(T , x) function returns the nearest
node in the tree in terms of Euclidean distance.

Near Vertices: The Near(V, x) procedure returns the set
of all poses in V that lie within a ball of volume O[(log n)/n]
centered at x, where n := |V |.

Steering: Given two poses x, x ′ ∈ X, the Steer(x, x ′)
procedure returns a path σ : [0, 1] → X that connects x

and x ′, i.e., σ (0) = x and σ (1) = x ′. Assuming a Dubins
model (Dubins, 1957) for the vehicle kinematics, we use a
steering function that generates curvature-constrained tra-
jectories. The dynamics take the form

ẋD = vD cos(θD),

ẏD = vD sin(θD),

θ̇D = uD, |uD| ≤ vD

ρ
,

where (xD, yD) and θD specify the position and orientation,
uD is the steering input, vD is the velocity, and ρ is the min-
imum turning radius. Six types of paths characterize the
optimal trajectory between two states for a Dubins vehi-
cle, each specified by a sequence of left, straight, or right
steering inputs (Dubins, 1957). We use four path classes for
the forklift and choose the steering between two states that
minimizes cost.

Collision Check: The CollisionFree(σ ) procedure veri-
fies that a specific path σ does not come in collision with ob-
stacles in the environment, i.e., σ (τ ) ∈ Xfree for all τ ∈ [0, 1].
We evaluate collisions through computationally efficient
queries of the drivability map that determine the collision
cost of traversing a particular path with the forklift foot-
print. Because the drivability map values are not binary, we
impose a threshold to determine the presence of a collision.

Lists and Sorting: We employ a list L of triplets (ci, xi, σi),
sorted in ascending order according to cost.

Cost Functional: Given a vertex x of the tree, we let
Cost(x) be the cost of the unique path that starts from the
root vertex xinit and reaches x along the tree. With a slight
abuse of notation, we denote the cost of a path σ : [0, 1] → X

as Cost(σ ) for notational simplicity.
The RRT* follows the general structure shown in Algo-

rithm 1 using the above functions. The algorithm iteratively
maintains a search tree through four key steps. In the first
phase, the RRT∗ algorithm samples a new robot pose xnew
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Algorithm 1: The RRT∗ Algorithm

1 V ← {xinit}; E ← ∅; T ← (V,E);
2 for i = 1 to N do
3 xnew ← Sample(i);
4 Xnear ← Near(V, xnew);
5 if Xnear = ∅ then
6 Xnear ← Nearest(V, xnew);

7 Lnear ← PopulateSortedList(Xnear, xnew);
8 xparent ← FindBestParent(Lnear, xnew);
9 if xparent 
= NULL then

10 V.add(xnew);
11 E.add( (xparent, xnew) );
12 E ← RewireVertices(E, Lnear, xnew);

13 return T = (V,E).

Algorithm 2: PopulateSortedList(Xnear, xnew)

1 Lnear ← ∅;
2 for xnear ∈ Xnear do
3 σnear ← Steer(xnear, xnew);
4 cnear ← Cost(xnear) + Cost(σnear);
5 Lnear.add( (cnear, xnear, σnear) );

6 Lnear.sort();
7 return Lnear;

Algorithm 3: FindBestParent(Lnear, xnew)

1 for (cnear, xnear, σnear) ∈ L do
2 if CollisionFree(σnear) then
3 return xnear;

4 return NULL

Algorithm 4: RewireVertices(E, Lnear, xnew)

1 for (cnear, xnear, σnear) ∈ L do
2 if Cost(xnew) + c(σnear) < Cost(xnear) then
3 if CollisionFree(σnear) then
4 xoldparent ← Parent(E, xnear);
5 E.remove( (xoldparent, xnear) );
6 E.add( (xnew, xnear) );

7 return E

from Xfree (line 3), and computes the set Xnear of all ver-
tices that are close to xnew (line 4). If Xnear is an empty set,
then Xnear is updated to include the vertex in the tree that is
closest to xnew (lines 5 and 6).

In the second phase, the algorithm calls the
PopulateSortedList(Xnear, xnew) procedure (line 7). This
procedure, given in Algorithm 2, returns a list of sorted
triplets of the form (cnear, xnear, σnear) for all xnear ∈ Xnear,

where (i) σnear is the lowest cost path that connects xnear

and xnew, and (ii) cnear is the cost of reaching xnew by follow-
ing the unique path in the tree that reaches xnear and then
following σnear (see line 4 of Algorithm 2). The triplets of the
returned list are sorted according to ascending cost. Note
that at this stage, the paths σnear are not guaranteed to be
collision-free.

In the third phase, the RRT∗ algorithm calls the
FindBestParent procedure, given in Algorithm 3, to de-
termine the minimum-cost collision-free path that reaches
xnew through one of the vertices in Xnear. With the vertices
presented in the order of increasing cost (to reach xnear),
Algorithm 3 iterates over this list and returns the first ver-
tex xnear that can be connected to xnew with a collision-free
path. If no such vertex is found, the algorithm returns NULL.

If the FindBestParent procedure returns a non-NULL
vertex xparent, the final phase of the algorithm inserts
xnew into the tree as a child of xparent, and calls the
RewireVertices procedure to perform the “rewiring” step
of the RRT∗. In this step, the RewireVertices procedure,
given in Algorithm 4, iterates over the list Lnear of triplets
of the form (cnear, xnear, σnear). If the cost of the unique path
that reaches xnear along the vertices of the tree is higher than
reaching it through the new node xnew, then xnew is assigned
as the new parent of xnear.

5.5.2. Extensions to Achieve Anytime Motion Planning

The RRT* is an anytime algorithm in the sense that it returns
a feasible solution to the motion planning problem quickly,
and given more time it provably improves this solution
toward the optimal one. Next, we describe extensions that
significantly improve the path quality during execution.

The first extension is to have the planner commit to an
initial portion of the trajectory while allowing the planner to
improve the remaining portion of the tree. Upon receiving
the goal region, the algorithm starts an initial planning phase,
in which the RRT* runs until the robot must start moving
toward its goal. This time is on the order of a few seconds,
which corresponds to the time required to put the fork-
lift in gear. Once the initial planning phase is completed,
the online algorithm goes into an iterative planning phase
in which the robot starts to execute the initial portion of
the best trajectory in the RRT* tree. In the process, the al-
gorithm focuses on improving the remaining part of the
trajectory. Once the robot reaches the end of the portion that
it is executing, the iterative phase is restarted by picking
the current best path in the tree and executing its initial
portion.

More precisely, the iterative planning phase occurs as
follows. Given a motion plan σ : [0, T ] → Xfree generated
by the RRT* algorithm, the robot starts to execute an initial
portion σ : [0, tcom] until a given commit time tcom. We
refer to this initial path as the committed trajectory. Once
the robot starts executing the committed trajectory, the
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algorithm deletes each of its branches from the committed
trajectory and makes the end x(tcom) the new tree root.
This effectively shields the committed trajectory from any
further modification. As the robot follows the committed
trajectory, the algorithm continues to improve the motion
plan within the new (i.e., uncommitted) tree of trajectories.
Once the robot reaches the end of the committed trajectory,
the procedure restarts, using the initial portion of what is
currently the best path in the RRT* tree to define a new
committed trajectory. The iterative phase repeats until the
robot reaches the desired waypoint region.

5.5.3. Branch-and-bound and the Cost-to-go Measure

We additionally include a branch-and-bound mechanism
to more efficiently build the tree. The basic idea behind the
branch-and-bound heuristic is that the cost of any feasible
solution to the minimum-cost trajectory problem provides
an upper bound on the optimal cost, and the lowest of these
upper bounds can be used to prune certain parts of the
search tree.

For an arbitrary state x ∈ Xfree, let c∗
x be the cost of the

optimal path that starts at x and reaches the goal region.
A cost-to-go function CostToGo(x) associates a real number
between 0 and c∗

x with each x ∈ Xfree that provides a lower
bound on the optimal cost to reach the goal. We use the
minimum execution time as the cost-to-go function, i.e., the
Euclidean distance between x and Xgoal (neglecting obsta-
cles) divided by the robot’s maximum speed.

The branch-and-bound algorithm works as follows.
Let Cost(x) denote the cost of the unique path that starts
from the root node and reaches x through the edges of T .
Let xmin ∈ Xgoal be the node currently in the tree with the
lowest-cost trajectory to the goal. The cost of its unique
trajectory from the root gives an upper bound on cost.
Let V ′ denote the set of nodes for which the cost to get
to x plus the lower bound on the optimal cost-to-go is
more than the upper bound Cost(xmin), i.e., V ′ = {x ∈
V | Cost(x) + CostToGo(x) ≥ Cost(xmin)}. The branch-and-
bound algorithm keeps track of all such nodes and peri-
odically deletes them from the tree.

In addition to the anytime characteristic, an important
property of the algorithm is its use of replanning to accom-
modate uncertain, dynamic environments. With each itera-
tion, the current committed trajectory is checked for colli-
sions by evaluating the most recent drivability map, which
is updated as new sensor information becomes available.
If the committed plan is found to be in collision, the robot
will come to a stop. The algorithm then reinitializes the tree
from the robot’s current location. Additionally, since it is
computationally infeasible to check the entire tree, we per-
form lazy checks of what is currently the best path to the goal,
and prune it (beyond the end of the committed trajectory)
when it is found to be in collision.

5.6. Closed-loop Pallet Manipulation

A fundamental capability of our system is the ability to
engage pallets, both from truck beds and from the ground.
Pallet manipulation is initiated with a local frame volume of
interest containing the pallet or truck. As we discuss shortly,
this volume of interest can come from a user-provided im-
age segmentation or an autonomous vision-based detection.
In either case, image segmentation together with known
camera calibration results in a prior over the pallet or truck’s
location.

The challenge to picking up palletized cargo is to ac-
curately control the dynamics of the nonholonomic forklift
moving on uneven terrain while inserting the tines into the
slots of the pallet. Further, the pallet and truck geometry
(e.g., height, width) vary, as do their cargo. To operate safely,
the forklift must maintain accurate estimates of their geom-
etry using limited onboard sensing. However, the physical
structure of the pallet is sparse, which results in few LIDAR
returns from the pallet itself and most from the (unknown)
load and the pallet’s supporting surface. The surfaces of
the truck bed similarly provide few returns. Further com-
plicating the estimation problem is the fact that, while the
carriage and tines to which the LIDARs are mounted are
rigid, they are not rigidly attached to the forklift, making
extrinsic calibration difficult.

Unlike many approaches to small-object manipulation,
it is not possible to exploit the compliance of the manipu-
lator or to use feedback control strategies to ease insertion.
At 2,700 kg, the forklift can easily exert significant force. At-
tempting to insert the tines incorrectly can damage the cargo
before there is an opportunity to detect and correct for the
error. Further, the tines are rigid and cannot be instrumented
with tactile sensors necessary to enable feedback control.

Walter et al. originally presented our pallet estima-
tion and manipulation capabilities, which address these
challenges through a coupled perception and control strat-
egy (Walter, Karaman, & Teller, 2010). At the core of our per-
ception capability is a general technique for pattern recogni-
tion that quickly identifies linear structure within noisy 2D
LIDAR scans. We use this algorithm to build a classifier that
identifies pallets and trucks among clutter. The system feeds
positive detections to a set of filters that maintain estimates
for the pallet and truck poses throughout the process of en-
gagement. We use these estimates in a steering controller
that servos the pose of the vehicle and tines.

5.6.1. Fast Closest Edge Fitting for Pallet and Truck
Detection

Most pallets and trucks have distinctive features, namely
linear segments forming the sides and two slots of the pal-
let and the flat horizontal and vertical faces of the truck
bed. Our strategy is to identify these features in individ-
ual scans from the tine- and carriage-mounted LIDARs
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Figure 7. The robot detects the presence of the truck bed and pallet and maintains estimates of their geometry throughout
engagement using LIDARs mounted to the tines and carriage.

ρ
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a
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Figure 8. A graphical representation of the closest edge de-
tection problem for 2D laser returns from a pallet face (e.g.,
Figure 9). The three gray points are outliers with respect to the
line (a, ρ).

and classify them as corresponding to a pallet, truck, or
as outliers. The challenge is to detect these edges despite
the noise present in the laser rangefinder data. Inspired
by kernel-based solutions to similar problems in machine
learning (Schölkopf & Smola, 2002), we formulate the prob-
lem as a linear program for which the dual form can be
solved in O(n min{log n, ν}) time, where n is the number
of points and ν is a problem-specific parameter. This is
particularly advantageous for real-time applications when
compared with the O(n3.5) worst-case cost of the standard
interior point solution (Boyd & Vandenberghe, 2004).

LetX = {xi}i∈I , where I = {1, 2, . . . , n}, be the set of 2D
points from the current scan (Figure 8). Without loss of gen-
erality, assume that the sensor lies at the origin and denote
the orientation by the normal vector a ∈ R2. Assuming that
the orientation is known, the problem is to find the distance
ρ from the origin to the line that separates all data points,
except a few outliers, from the origin. More precisely, for all

points xi ∈ X , except a few outliers, 〈a, xi〉 ≥ ρ holds, where
〈·, ·〉 denotes the dot product. Let ξi = max (ρ − 〈a, xi〉, 0) be
the distance from a point xi to the separating line (projected
along a) for outliers, and zero for inliers.

Given a line described by a normal a and distance
ρ, a point xi with ξi > 0 is an outlier with respect to the
line (a, ρ). We formulate the closest edge detection problem as
the maximization of ρ − C

∑
i∈I ξi , where C is a constant

problem-dependent parameter. This seeks to maximize the
distance ρ of the separating line to the origin while mini-
mizing the total distance

∑
i∈I ξi of the outliers to the line.

Notice that C = 0 results in each data point being an out-
lier, while C → ∞ allows no outliers in a feasible solution.
We allow for the presence of outliers by formulating the
problem as follows:

maximize ρ − 1
ν

∑

i∈I
ξi, (2a)

subject to di ≥ ρ − ξi, ∀i ∈ I, (2b)

ξi ≥ 0, ∀i ∈ I, (2c)

where ρ ∈ R and ξi ∈ R are the decision variables, ν ∈ R is
a parameter that serves as an upper bound on the number
of outliers, and di = 〈a, xi〉 is the distance of point xi to the
origin when projected along a.

For computational purposes, we consider the dual of
the linear program (5.6.1):

minimize
∑

i∈I
diλi, (3a)

subject to
∑

i∈I
λi = 1, ∀i ∈ I, (3b)

0 ≤ λi ≤ 1
ν
, ∀i ∈ I, (3c)

where λi are called the dual variables. Let (ρ∗, ξ ∗
1 , . . . , ξ ∗

n )
be the optimal solution to the linear program (2) and

Journal of Field Robotics DOI 10.1002/rob



Walter et al.: A Situationally Aware Voice-Commandable Robotic • 607

(λ∗
1, . . . , λ

∗
n) be the optimal solution of the dual linear

program (3). The optimal primal solution is recovered from
the dual solution as ρ∗ = ∑

i∈I λ∗
i di .

Algorithm 5, DUALSOLVE solves the dual linear pro-
gram in time O(n min{log n, ν}). The algorithm employs two
primitive functions: SORT considers a set {yi}i∈I and returns
a sorted sequence of indices J such that yJ (j ) ≤ yJ (j+1),
and MIN returns the index j of the minimum element in
a given set. The elementary operations in DUALSOLVE re-
quire only additions and multiplications, without the need
to compute any trigonometric functions, which makes it
computationally efficient in practice. We use this algorithm
in the DISTFIND(ν, a,X ) procedure (Algorithm 6) to solve
the original linear program (2). Clearly, DISTFIND also runs
in time O(n min{log n, ν}).

Algorithm 5: DUALSOLVE (ν, a,X )

1 for all i ∈ I do
2 λi := 0;

3 for all i ∈ I do
4 di :=< a, xi >;

5 D := {di}i∈I ;
6 if log |D| < ν then
7 J := SORT(D);
8 for j := 1 to �ν� do
9 λJ (j ) := 1/ν;

10 λJ (�ν�+1) := 1 − �ν�/ν;
11 else
12 for i := 1 to �ν� do
13 j := MIN(D);
14 λj := 1/ν;
15 D := D \ {dj };
16 j := MIN(D);
17 λj := 1 − �ν�/ν;

18 return {λi}i∈I

Algorithm 6: DISTFIND(ν, a,X )

1 for all i ∈ I do
2 di :=< a, xi >;

3 {λi}i∈I := DUALSOLVE(ν, a,X );
4 ρ := ∑

i∈I λidi

Now, we relax the assumption that the orientation is
known. We employ DUALSOLVE a constant number of times
for a set {ai}i∈{1,2,...,N} of normal vectors that uniformly span
an interval of possible orientations (Algorithm 7). After each
invocation of DUALSOLVE, the method computes a weighted
average zi of the data points using the dual variables re-
turned from DUALSOLVE as weights. Using a least-squares

method, a line segment is fitted to the resulting points
{zi}i∈{1,2,...,N} and returned as the closest edge as the tuple
(z′, a′, w′), where z′ is the position of the midpoint, a′ is the
orientation, and w′ is the width of the line segment.

Algorithm 7: EDGEFIND(ν,X , θmin, θmax, N )

1 for j := 1 to N do
2 θ := θmin + (θmax − θmin)j/N ;
3 a := (cos(θ ), sin(θ ));
4 {λi}i∈I := DUALSOLVE(ν, a,X );
5 zj := ∑

i∈I λixi ;

6 (z′, a′, w′) := LINEFIT({zj }j∈{1,2,...,N});
7 return (z′, a′, w′)

5.6.2. Pallet and Truck Classification and Estimation

Pallet and truck perception algorithms run DISTFIND or
EDGEFIND over sets {Xk}k∈K of data points, one for each
tine- and carriage-mounted LIDAR, to identify linear seg-
ments within the volume of interest. We then use these seg-
ments to compute several features that we use as input
to a classifier to identify positive detections of pallets and
truck beds. These features include relative distances and
orientations between linear segments that encode different
geometric properties of pallets and truck beds (e.g., width,
slot width, depth, height, etc.). These features are calculated
based upon single scans for pallets and pairs of scans from
the left- and right-mounted vertical LIDARS for trucks. For
a more detailed description of these features and the way in
which they are computed, we refer the reader to our earlier
work (Walter, Karaman, & Teller, 2010).

Features are fed into a classifier that, upon detecting
a pallet within a scan (Figure 9) or a truck in a scan pair
(Figure 10), yields an estimate of the object’s pose and
geometry. This includes the position, orientation, and
the location and the slot width of pallets, and the 2D
position, orientation, and height off the ground of the truck
bed. The method then uses these estimates to initialize a
Kalman filter with a conservative prior. The filter employs
subsequent detections as observations to track the pose
and geometry of the truck and pallets online.

5.6.3. Manipulation Controller

Given the filter estimates for the truck and pallet pose, the
manipulation controller steers the robot from an initial po-
sition and heading to a final position and heading. The al-
gorithm is tailored and tuned for precise pallet engagement
operations.

Let zinitial and ainitial be the robot’s initial position and
orientation, where zinitial is a coordinate Euclidean plane and
ainitial is a normalized two-dimensional vector. Similarly, let
zfinal and afinal be the desired final position and orientation
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Figure 9. Output of the pallet detection algorithm as a pallet on a truck bed is being actively scanned, sorted by increasing height.
(a),(b) LIDAR returns from the undercarriage and the truck bed are rejected as pallet candidates. (c)–(e) LIDAR returns from the
pallet face are identified as the pallet. (f) The load on the pallet is correctly ruled out as a candidate pallet face.

Figure 10. The system classifies pairs of vertical scans as being negative (left, in green) or positive (right, in pink) detections of a
truck bed, and it uses the latter to estimate the truck’s pose.

of the robot. (In our application, zfinal and afinal represent the
pallet position and orientation.) Without loss of generality,
let zfinal = (0, 0) and afinal = (1, 0) be oriented toward the X-
axis (Figure 11). Similarly, let ey be the distance between
zinitial and zfinal along the direction orthogonal to afinal, and
let eθ be the angle between the vectors ainitial and afinal, eθ =
cos−1(ainitial · afinal). Finally, let δ be the steering control input
to the robot. In this work, we use the following steering
control strategy for pallet engagement operations:

δ = Ky tan−1(ey) + Kθeθ , (4)

where Ky and Kθ are controller parameters. Assuming a
Dubins vehicle model (Dubins, 1957) of the robot

ż = (cos θ, sin θ ) (5a)

θ̇ = tan−1(δ), (5b)

the nonlinear control law (4) can be shown to converge such
that ey → 0 and eθ → 0 holds if −π/2 ≤ eθ ≤ π/2 is initially
satisfied (Hoffmann, Tomlin, Montemerlo, & Thrun, 2007).
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Figure 11. Illustration of the controller algorithm.

5.7. Object Reacquisition

Critical to the effectiveness of the forklift is its ability to
understand and execute long task sequences that the user
commands using natural language speech (e.g., “Pick up the
pallet of tires and put them on the truck”). This requires that
the robot be able to robustly detect the presence of objects in
the environment (e.g., “the pallet of tires” and “the truck”)
over long excursions in both space and time. Achieving the
level of recall necessary to persistently reacquire objects is
challenging for the forklift and other robots that operate
with imprecise knowledge of their absolute location within
dynamic, uncertain environments.

We developed a one-shot appearance learning algo-
rithm (Walter et al., 2012) that automatically builds and
maintains a model of the visual appearance of each user-
indicated object in the environment. This enables robust ob-
ject recognition under a variety of different lighting, view-
point, and object location conditions. The user provides a
single manual segmentation by circling it in an image from
one of the forklift’s cameras shown on the tablet interface.
The system bootstraps on this single example to automati-
cally generate a multiple-view, feature-based object model
that captures variations in appearance due to changes in
viewpoint, scale, and illumination. This automatic and op-
portunistic model learning enables the robot to recognize
the presence of objects to which the user referred, even for
viewpoints that are temporally and spatially far from those
of the first training example.

Given a segmentation cue, the algorithm constructs a
modelMi that represents the visual appearance of an object
i as a collection of views, Mi = {vij }. We define a view vij as
the appearance of the given object at a single viewpoint and
time instant j (i.e., as observed by a camera with a partic-
ular pose at a particular moment). A view consists of a 2D
constellation of SIFT keypoints (Lowe, 2004) comprised of
an image pixel position and a local descriptor. The system
initializes a new model Mi for each indicated object, using
the set of SIFT features that fall within the gesture in that

particular frame to form the new model’s first view vi1. The
method then searches new camera images for each model
and produces a list of visibility hypotheses based on visual
similarity and geometric consistency of keypoint constella-
tions. New views are automatically added over time as the
robot moves; thus the collection of views opportunistically
captures variations in object appearance due to changes in
viewpoint and illumination.

5.7.1. Single-view Matching

As the robot acquires new images of the environment, the
system (Algorithm 8) continuously searches for instances
of each model Mi within the scene, producing a visibil-
ity hypothesis and associated likelihood for the presence
and location of each view. For each view vij , our algorithm
matches the view’s set of descriptors Fij with those in the
image at time t Ft to produce a set of point-pair corre-
spondence candidates Cij t (line 2). We evaluate the simi-
larity spq between a pair of features p and q as the nor-
malized dot product between their descriptor vectors fp

and fq , spq = ∑
k(fpkfqk)/‖dp‖‖dq‖. We exhaustively com-

pute all similarity scores and collect in Cij t at most one pair
per feature in Fij , subject to a minimum threshold. Table I
enumerates the parameter settings that the forklift uses for
reacquisition.

Algorithm 8: Single-View Matching

Input :˜A model view vij and camera frame It

Output:˜Dij t = (
H�

ij , c
�
ij

)

1 Ft := {(xp, fp)} ← SIFT(It );
2 Cij t := {

(sp, sq )
} ← FeatureMatch(Ft ,Fij )

sp ∈ Ft , sq ∈ Fij ;
3 ∀ xp ∈ Cij t , xu

p ← UnDistort(xp);
4 H�

ij t := {H�
ijt , d

�
ij t , C̃�

ij t } ← {};
5 for n = 1 to N do
6 Randomly select Ĉu

ij t ∈ Cu
ij t ,|Ĉu

ij t | = 4;
7 Compute homography Ĥ from (xu

p, xu
q ) inĈu

ij t ;
8 P ← {}, d̂ ← 0;
9 for

(
xu

p, xu
q

) ∈ Cu
ij t do

10 x̂u
p ← Ĥxu

p ;
11 x̂p ← Distort(x̂u

p);
12 if dpq = |xq − x̂p| ≤ td then
13 P ← P + (

xp, xq

)
;

14 d̂ ← d̂ + min(dpq, td );

15 if d̂ < d�
ij then

16 H�
ij t ← {Ĥ , d̂,P};

17 c�
ij t = |C̃�

ij t |/(|vij | min(α|C̃�
ij t |, 1);

18 if c�
ij t ≥ tc then

19 Dij t ← (
H�

ijt , c
�
ij t

)
;

20 else
21 Dij t ← ();
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Since many similar-looking objects may exist in a sin-
gle image, Cij t may contain a significant number of outliers
and ambiguous matches. We therefore enforce geometric
consistency on the constellation by means of random sam-
ple consensus (RANSAC) (Fischler & Bolles, 1981) with a
plane projective homography H as the underlying geomet-
ric model (Hartley & Zisserman, 2004). Our particular robot
employs wide-angle camera lenses that exhibit noticeable
radial distortion. Before applying RANSAC, we correct the
distortion of the interest points (line 3) to account for devi-
ations from standard pinhole camera geometry, which en-
ables the application of a direct linear transform to estimate
the homography.

With each RANSAC iteration, we select four distinct
(undistorted) correspondences Ĉu

ij t ∈ Cu
ij t with which we

compute the induced homography Ĥ between the cur-
rent image and the view vij (line 7). We then apply the
homography to all matched points within the current im-
age, redistort the result, and classify each point as an inlier
or outlier according to its distance from its image counter-
part using a prespecified threshold t in pixel units (lines 12
and 14). As the objects are nonplanar, we use a loose value
for this threshold in practice to accommodate deviations
from planarity due to motion parallax.

RANSAC establishes a single best hypothesis for each
view vij that consists of a homography H�

ijt and a set of inlier
correspondences C̃�

ij t ∈ Cij t . We assign a confidence value
to the hypothesis cij t = |inliers|/[|vij | min(α|inliers|, 1)]
(line 17) that compares the number of inliers to total points
in vij . If the confidence is sufficiently high per a user-defined
threshold tc, we output the hypothesis.

5.7.2. Multiple-view Reasoning

The single-view matching procedure may produce a num-
ber of match hypotheses per image and does not prohibit
detecting different instances of the same object. Each object
model possesses one or more distinct views, and it is possi-
ble for each view to match at most one location in the image.
To address this, the algorithm reasons over these matches
and their associated confidence scores to resolve potential

ambiguities, thereby producing at most one match for each
model and reporting its associated image location and con-
fidence.

First, all hypotheses are collected and grouped by ob-
ject model. To each active model (i.e., a model for which a
match hypothesis has been generated), we assign a confi-
dence score equal to that of the most confident view can-
didate. If this confidence is sufficiently high as specified by
a threshold tmatch

c , we consider the model to be visible and
report its current location, which is defined as the original
2D gesture region transformed into the current image by
the match homography associated with the hypothesis.

While this check ensures that each model matches no
more than one location in the image, we do not impose the
restriction that a particular image location matches at most
one model. Indeed, it is possible that running the multiple-
view process on different models results in the same image
location matching different objects. However, we have not
found this to happen in practice, which we believe to be a re-
sult of surrounding contextual information captured within
the user gestures.

5.7.3. Model Augmentation

As the robot navigates within the environment, an ob-
ject’s appearance changes due to variations in viewpoint
and illumination. Furthermore, the robot makes frequent
excursions—for example, moving cargo to another location
in the warehouse—that result in extended frame cuts. When
the robot returns to the scene, it typically observes objects
from a different vantage point. Although SIFT features toler-
ate moderate appearance variability due to some robustness
to scale, rotation, and intensity changes, the feature and con-
stellation matches degenerate with more severe scaling and
3D perspective effects.

To retain consistent object identity over longer time
intervals and larger displacements, the algorithm period-
ically augments each object model by adding new views
whenever an object’s appearance changes significantly. In
this manner, the method opportunistically captures the
appearance of each object from multiple viewing angles and

Table I. Reacquisition parameter settings.

Parameter Description Setting
smin
pq Minimum dot product (i.e., maximum allowable distance) between SIFT feature matches (Alg. 8, line 2). 0.9

N Number of RANSAC iterations for single-view matching (Alg. 8, line 5). 600
td Maximum distance in pixels of projected interest points for RANSAC inliers (Alg. 8, line 12). 10.0 px
tc Minimum confidence threshold for homography validation (Alg. 8, line 18). 0.10
tmatch
c Minimum confidence threshold for a visible model match. 0.10
hmin Minimum scale variation between an existing model view and a new view for model augmentation. 1.20
dmin Minimum displacement of the robot between new and existing views for model augmentation. 0.50 m
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Figure 12. New views of an object annotated with the corresponding reprojected gesture. New views are added to the model
when the object’s appearance changes, typically as a result of scale and viewpoint changes. Times shown indicate the duration
since the user provided the initial gesture. Note that the object is out of view during the periods between (c) and (d) and between
(e) and (f), but it is reacquired when the robot returns to the scene.

distances. This increases the likelihood that new observa-
tions will match one or more views with high confidence
and, in turn, greatly improves the overall robustness of
reacquisition. Figure 12 depicts views of an object that are
automatically added to the model based upon appearance
variability.

The multiple-view reasoning signals a positive detec-
tion when it determines that a particular model Mi is
visible in a given image. We then examine each of the
matching views vij for that model and consider both the
robot’s motion and the geometric image-to-image change
between the view vij and the associated observation hy-
pothesis. In particular, we evaluate the minimum position
change dmin = minj ‖pj − pcur‖ between the robot’s current
position pcur and the position pj associated with the j th
view. We also consider the minimum 2D geometric change
hmin = minj scale(Hij ) corresponding to the overall 2D scal-
ing implied by match homography Hij . If both dmin and hmin

exceed prespecified thresholds, signifying that no current
view adequately captures the object’s current image scale
and pose, then we create a new view for the modelMi using
the hypothesis with the highest confidence score.

In practice, the system instantiates a new view by gen-
erating a virtual gesture that segments the object in the image.

SIFT features from the current frame are used to create a new
view, and this view is then considered during single-view
matching (Section 5.7.1) and during multiple-view reason-
ing (Section 5.7.2).

5.8. User Interface

One of the most fundamental design requirements for our
system is that it must afford an intuitive interface that allows
existing personnel to quickly and efficiently command the
robot with minimal training. Toward that end, we worked
extensively with soldiers and civilians within military
logistics throughout the iterative design process. Taking
into account their feedback and the results of their tests, we
developed a multimodal command interface that enables
humans to issue high-level tasks to the robot using a combi-
nation of simple pen-based gestures made on a hand-held
tablet, and utterances spoken using natural language.

5.8.1. Graphical User Interface

Our interface (Correa et al., 2010) operates on a Nokia N810
Internet Tablet (Figure 13) that provides a built-in micro-
phone for speech input, alongside a touchscreen and stylus.
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Figure 13. The hand-held tablet provides one means for the user to interact with the robot. The tablet enables the user to visualize
the robot’s situational awareness and to convey task-level directives through a combination of pen-based gestures and natural
language utterances.

Figure 14. The interface presents images from (a) each of the robot’s four cameras as well as (b) an overhead view, each augmented
with the robot’s knowledge of objects in its surround.

The graphical user interface presents images from one of the
forklift’s four cameras that are annotated with the robot’s
object-level knowledge about its surround (e.g., obstacles,
pedestrians, and pallets), thus providing the user a 360◦

view of the area around the robot. Additionally, the inter-
face offers a rendered overhead view of the robot’s local
environment that depicts its location in the topological map
along with an indication of the robot’s awareness of nearby
objects. For both the overhead and camera views, we de-
liberately choose to provide a high-level abstraction of the
robot’s world model over rendering raw sensor data (as
others have done) to minimize the cognitive burden on the
user that results from having to interpret the data.

In addition to providing an indication of the robot’s
situational awareness, the tablet lists the queue of tasks that
the forklift is to perform. The user can click on and cancel
any of these tasks if needed. Additionally, the interface in-
dicates the current status of the robot. Text boxes at the top
of the screen display a variety of information, including the
system’s recognition of the latest utterance, the robot’s op-
erating mode (i.e., “Active,” “Manual,” or “Paused”), and a
description of the robot’s current action. For example, when
the robot is approaching a pallet on the back of a truck
as part of a pick-up task, the interface lists “Approaching
truck” and “Active: Pickup.”
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(a) (b) (c)

Figure 15. (a) A circular stroke alone is ambiguous: it could be either (b) a circular path or (c) a pallet manipulation command.
Context determines the gesture’s meaning.

5.8.2. Drawing on the World

By drawing on the canvas, the user can command the robot
to move, pick up, and place pallets throughout the envi-
ronment. Gestures have different meanings depending on
their context. For example, circling a pallet is an instruction
to pick it up, while circling a location on the ground or on
the back of a truck is an instruction to put the pallet at the
circled location. Drawing an “X” or a dot on the ground is an
instruction to go there, while drawing a line is an instruction
to follow the path denoted by the line.

The interface first classifies the shape of the user’s
sketch into one of six types: a dot, an open curve, a circle,
an “X,” a pair of circles, or a circled “X.” It then infers the
context-dependent meaning of the shape, upon which we
then refer to it as a gesture. The system recognizes shapes as
in traditional sketch recognition systems: it records the time-
stamped point data that make up each stroke, and it uses
heuristics to compute a score for each possible shape classifi-
cation based on stroke geometry. It then classifies the stroke
as the highest-scoring shape. To classify shapes as gestures,
the system must consider both what was drawn and what
it was drawn on. We define the scene (i.e., the context) as the
collection of labeled 2D boxes that bound the obstacles, peo-
ple, and pallets visible in the camera view. Reasoning over
the scene is what differentiates this approach from ordinary
sketch recognition.

Figure 15 shows an example of the use of context to dis-
ambiguate a stroke. In this example, the stroke [Figure 15(a)]
could be either a circular path gesture that avoids objects
[Figure 15(b)], a pallet pickup command [Figure 15(c)], or
a pallet placement command (not shown). The interpreta-
tion of the stroke depends upon its geometry as well as the
context in which it was drawn. For example, when the pro-
jected size is too large to indicate a pallet drop-off location
(or when the forklift is not carrying a pallet), the system in-
terprets the gesture as suggesting a circular path. We further
incorporate scene context into the classification process so

as to not rely solely upon stroke geometry for interpretation,
making the algorithm less sensitive to gesture errors.

This ability to disambiguate shapes into different ges-
tures allows us to use fewer distinct shapes. As a result,
the geometrical sketch recognition task is simplified, lead-
ing to higher gesture classification accuracy and robust-
ness. The smaller lexicon of simple gestures also allows the
user to interact with the system more easily (Correa et al.,
2010).

5.8.3. Natural Language Understanding

In addition to context-aware gesture recognition, we
developed and implemented a framework that en-
ables people to issue commands using natural language
speech (Tellex et al., 2011). For example, as an alter-
native to summoning the robot to the storage bay, cir-
cling the pallet to be picked up, summoning it to is-
suing, and then circling a placement location on the
truck, the user can simply say “Pick up the tire pal-
let and put it on the truck.” The tablet performs speech
recognition onboard using the PocketSUMMIT library
(Hetherington, 2007). The robot then uses the language un-
derstanding algorithm (running on the robot) to interpret
the resulting text, and the vision-based reacquisition and
pallet manipulation capabilities to execute the command.
This directive requires a few seconds of the user’s time at
the outset, after which the robot carries out the task, which
may take tens of minutes. In contrast, the aforementioned
gesture-based interaction requires that the user be involved
throughout, albeit for only a few seconds at a time.

A challenge to understanding commands spoken in
natural language is to correctly ground (i.e., map) the lin-
guistic elements to their referents in the robot’s model of its
state and action space. We address this problem by learn-
ing a probabilistic model over the space of groundings for
the linguistic constituents in the command. The task of
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interpreting the utterance is then one of performing infer-
ence in this model to identify the most likely plan. Under-
lying the model is the generalized grounding graph (G3),
a probabilistic graphical model that we instantiate for each
command based upon the hierarchical structure of natural
language (Tellex et al., 2011). The model encodes the rela-
tionship between linguistic elements that refer to places and
objects in the environment (e.g., “receiving” or “tire pallet”),
spatial relations (e.g., “on the truck”), and actions that the
robot can perform (e.g., “pick up”), and the robot’s model of
its environment and available actions. We learn these rela-
tions by training the model on a corpus of natural language
commands that are paired with hand-labeled groundings in
the robot’s state and action space. The task of interpreting
a new command is then one of building the G3 graph and
performing inference on the unobserved random variables
(i.e., the set of objects, places, relations, and actions in the
robot’s world model). For more information about the spe-
cific operation of the G3 framework, we refer the reader to
our previous work (Tellex et al., 2011).

5.9. Operation in Close Proximity to People

The robot must be able to operate safely in close proxim-
ity to people, whether it is a supervisor or bystanders who
move unconstrained within the warehouse. To ensure that
the robot operates safely and that its presence is accepted by
people, we endowed the robot with a number of failsafe be-
haviors. By design, all potential robot trajectories conclude
with the robot coming to a complete stop (even though this
leg of the trajectory may not always be executed, particu-
larly if another trajectory is chosen). Consequently, the robot
moves more slowly when close to obstacles (conservatively
assumed to be people). The robot also signals its internal
state and intentions, in an attempt to make people more
accepting of its presence and more easily able to predict its
behavior (Correa et al., 2010).

Humans can infer a great deal of information from the
behavioral cues of others. If people are to accept the pres-
ence of a 2,700 kg robot, they must be able to infer its current
state and intent with similar ease. We allow the forklift to
convey a subset of similar cues to people in its surround by
equipping it with LED signage, strings of LED lights cir-
cling the body and mast, as well as speakers mounted to the
roof.

5.9.1. Annunciation of Intent

The marquee lights that encircle the forklift encode the
robot’s state as colors, and imminent motion as moving
patterns. For example, a chasing light pattern renders the
intended direction of the robot, strobing forward when it is
about to move forward and backward just before it is go-
ing to move in reverse. The LED signage displays short text
messages describing the robot’s current state (e.g., “Active,”

“Paused,” or “Manual”), the current task (e.g., “Summon:
Storage”), and any imminent actions (e.g., forward motion
or mast lifting). When the forklift is transitioning to au-
tonomous mode, the speakers sound a warning while the
LED signs spell out the time remaining until the robot is
autonomous (e.g., “Active in ... 3, 2 ,1”). Subsequently, the
speakers announce tasks right before the robot is about to
perform them. In our experience, we found that it is useful
to be more verbose with signage and verbal annunciation
at the outset and, once people become comfortable with
the robot’s presence, to reduce the rate at which the robot
vocalizes its state and intent.

5.9.2. Awareness Display

The forklift also uses its annunciators to inform bystanders
that it is aware of their presence. Whenever a human is
detected in the vicinity, the marquee lights, consisting of
strings of individually addressable LEDs, display a bright
region oriented in the direction of the detection (Figure 16).
If the estimated motion track is converging with the fork-
lift, the LED signage and speakers announce “Human ap-
proaching.”

5.9.3. Shout Detection

The operator’s interface provides several mechanisms by
which he or she can quickly place the robot in a safe
stopped state. Other people operating within the robot’s
surround, however, must also have a means of stopping
the robot when necessary. For that reason, we equipped the
robot with four array microphones facing forward, right,
left, and rearward. The forklift continuously listens on each
channel for shouted warnings. The input audio is trans-
mitted to a streaming speech recognizer (Hetherington,
2007) that is configured to detect a set of key utterances
that include several different stop commands. Further, the
system continuously listens for a small set of utterances
that direct summoning and manipulation tasks, allowing
users to command the robot without the tablet interface
(Chuangsuwanich, Cyphers, Glass, & Teller, 2010; Chuang-
suwanich & Glass, 2011). The challenge that we address is
to develop a recognizer that provides a low false negative
rate (namely, for shouted stop commands) without signif-
icantly hindering the true positive rate, despite the noisy
environments in which the robot operates.

5.9.4. Subservience and Autonomy Handoff

We place more trust on human judgment than we do on
the forklift in all cases. Accordingly, the robot relinquishes
complete control to any person in the driver’s seat. When
a human closely approaches the robot, it pauses for safety.
When a human enters the cabin and sits down, the robot
detects his/her presence in the cabin through the report of
a seat-occupancy sensor, the user’s contact with the mast or
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Figure 16. The robot utilizes a combination of LED signs and LED lights to indicate that it is aware of people in its vicinity. The
lights mimic the robot’s gaze toward approaching pedestrians.

transmission levers, or the turning of the steering wheel. In
this event, the robot reverts to behaving exactly as a manned
forklift, completely ceding control. The system remains fully
in manual mode until the user engages the parking brake,
steps out of the cabin and away from the vehicle, and places
it in autonomous mode using the hand-held tablet interface.
At this point, the system uses visual and audible cues to
indicate to the user and any bystanders that it is resuming
autonomous operation. Additionally, when the robot cannot
perform a difficult task and requests help, anyone can then
climb in and operate it.

6. DEPLOYMENT AND RESULTS

Over the course of three and a half years developing the sys-
tem, we have performed numerous experiments and field
trials. We have operated the system successfully in a num-
ber of different model and actual warehouse facilities. These
include extensive testing at a model warehouse configured
as a military supply support activity (SSA) situated on an
outdoor, gravel shuttle parking lot on the MIT campus. We
also operated the system for several weeks at an in situ
SSA located at Fort Belvoir in the summer of 2009, where
we performed extensive end-to-end testing. Additionally,
we deployed the robot for a two-week period in an active
SSA at Fort Lee (Figure 17) where the robot operated along-
side U.S. Army soldiers. In the Fort Belvoir and Fort Lee
field trials, as well as those at the MIT test site, the robot

was frequently commanded by military personnel, includ-
ing soldiers active and knowledgeable in military logistics.
In each case, the soldier was given a brief training session
before using either the hand-held interface or speaking di-
rectly to the robot to command various tasks.

In the following sections, we present experimental re-
sults that evaluate each of the critical subsystems described
previously. We then discuss the end-to-end performance of
our system during the various deployments.

6.1. Obstacle Avoidance and Anytime Optimal
Motion Planning

A key performance metric for the navigation subsystem is
the ability to closely match the predicted trajectory with
the actual path, as significant deviations may cause the ac-
tual path to become infeasible. Feasibility not only includes
safe operation in the vicinity of bystanders and obstacles
(i.e., avoiding collisions), but it also requires that the ve-
hicle does not reach the limits of its dynamic capabilities,
namely risk rollover when carrying significant load. Dur-
ing normal operation in several outdoor experiments, we
recorded 97 different complex paths of varying lengths (6–
90 m) and curvatures. For each, we measure the average
and maximum lateral error between the predicted and ac-
tual vehicle position over the length of the path. In all cases,
the average prediction error does not exceed 0.12 m, while
the maximum prediction error does not exceed 0.35 m.
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Figure 17. The robot transporting cargo at the Fort Lee SSA.

We also test the robot’s ability to achieve a variety of
destination poses in the vicinity of obstacles of varying sizes.
When a valid path exists, the forklift identifies and executes
a collision-free route to the goal, navigating around pallets,
vehicles, and pedestrians. In some case, the system rejects
paths as being infeasible even though they were collision-
free. We attribute this to the conservative 0.25 m safety
buffer that the system places around each obstacle. We also
test the robot’s behavior when obstructed by a pedestrian
(a mannequin), in which case the robot stops and waits for
the pedestrian to move out of the way.

We evaluate the performance of our anytime optimal
motion planning algorithm using both a high-fidelity simu-
lator as well as the forklift operating in our MIT warehouse.
In both cases, we compare our algorithm with one based
on an RRT. The simulation experiments consider the en-
vironment shown in Figure 18, in which the robot must
find a feasible path from an initial pose in the lower left to
the goal region indicated by the green box. We performed
a total of 166 Monte Carlo simulation runs with our mo-
tion planner and 191 independent runs with the standard
RRT. Both planners use branch-and-bound for tree expan-
sion and maintain a committed trajectory. Both the RRT and
RRT* were allowed to explore the state space throughout
the execution period.

Figure 18 compares the paths that result from the RRT-
based motion planner with those that the vehicle traversed
using our anytime optimal motion planning algorithm. In
some situations, the algorithm initially identifies a high-
cost path that routes the vehicle to the right of the obstacles.
In each case, however, the opportunistic rewiring reveals
a shorter, lower-cost route between the obstacles. Subse-
quently, the branch-and-bound and online refinement fur-
ther improve the plan into a more direct path as the vehicle
navigates to the goal. While the RRT algorithm refines the
initial plan using branch-and-bound, these improvements

tend to be local in nature and do not provide significant
improvements to the tree structure. Consequently, the RRT-
based planner often gets “stuck” with a tree that favors
longer paths that steer the forklift to the right of the obsta-
cles.

Our algorithm exploits the execution period to modify
the tree structure as it converges to the optimal path. This
convergence is evident in the distribution over the length
of the executed simulation trajectories [Figure 19(a)] that
exhibits a mean length (cost) of 23.82 m with a standard
deviation of 0.91 m for the set of 166 simulations. For com-
parison, Figure 19(b) presents the distribution for the RRT
planner. The mean path length for the 191 RRT simulations
is 29.72 m with a standard deviation of 7.48 m. The signifi-
cantly larger variance results from the RRT getting “stuck”
refining a tree with suboptimal structure. The anytime
RRT*, on the other hand, opportunistically takes advantage
of the available execution time to converge to near-optimal
paths.

These simulation experiments are useful in evaluat-
ing the convergence properties of the planner. We also per-
formed a series of experiments with the forklift at our MIT
model warehouse to validate the performance of the algo-
rithm under real-world conditions. We operated the vehicle
in the gravel lot among stationary and moving vehicles. We
ran a series of tests in which the robot was tasked to navi-
gate from a starting position in one corner to a 1.6 m goal
region in the opposite corner while avoiding the obstacles.
In each experiment, the robot began to plan motions imme-
diately prior to tracking the committed trajectory with the
controller.

Figure 20 presents the result of two different tests with
the anytime motion planner as well as with the RRT. The
plots depict the best trajectory as maintained by the planner
at different points during the plan execution (false-colored
by time). In the scenario represented in the upper left, our

Journal of Field Robotics DOI 10.1002/rob



Walter et al.: A Situationally Aware Voice-Commandable Robotic • 617

Figure 18. Vehicle paths traversed for (a) 65 simulations of the RRT and (b) 140 simulations with our RRT* planner.
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Figure 19. Histogram plots of the executed path length for (a) RRT and (b) RRT* simulations. The vertical dashed lines in
(a) depict the range of path lengths that result from the RRT* planner.

algorithm initially identifies a suboptimal path that goes
around an obstacle, but, as the vehicle begins to execute the
path, the planner correctly refines the solution to a shorter
trajectory. As the vehicle proceeds along the committed tra-
jectory, the planner continues to rewire the tree, as evident
in the improvements near the end of the execution, when
the paths more directly approach the goal. Meanwhile, the
RRT initially identifies paths that take unnecessarily high-
cost routes around obstacles. After moving a few meters,
the planner discovers a shorter path but the structure of the
tree biases the RRT toward refinements that are only local
in nature.

6.2. Pallet Engagement: Estimation and
Manipulation

Next, we present an evaluation of the pallet estimation and
manipulation algorithms. This is based on extensive test-

ing within two of the outdoor warehouse environments.
We commanded the robot to pick up pallets from differ-
ent locations on the ground as well as from truck beds. We
recorded the lateral position and orientation of the robot
with respect to the pallet in each test as reported by the
robot’s dead-reckoning module. Note that the experiments
were conducted with different types of pallets that, within
each type, exhibited varying geometry (i.e., width, slot lo-
cation, and slot width). The pose of the pallet relative to the
truck and the truck’s pose relative to the forklift also varied.

Figure 21 shows a plot of the successful and failed
pallet pickup tests, together with the final relative angle
and cross track error in each experiment (see Figure 22 for
histograms). Note that most of the failures are due to un-
successful pallet detections, and they occur when the robot
starts longitudinally 7.5 m and/or laterally 3 m or more
away from the pallet. In the majority of these cases, the
robot’s vantage point together with the sparseness of the
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Figure 20. Two runs of our anytime optimal planner (top) compared with those of the RRT (bottom). The forklift started in the
upper left and was tasked with driving to the goal region while avoiding obstacles. The trajectories indicate the planned paths at
different points in time during the execution and are false-colored by time. Circles denote the initial position for each path.

pallet structure were such that the laser rangefinder yielded
few returns from the pallet face. In the cases in which the
pallet was visible during the initial scanning of the volume
of interest, 35 of the 38 ground engagements were success-
ful. We define a successful engagement as one in which the
forklift inserts the tines without moving the pallet. In one of
the three failures, the vehicle inserted the tines but moved
the pallet slightly in the process. In tests of truck-based en-
gagements, the manipulation was successful in all 30 tests
in which the pallet was visible during the initial scanning
process.

6.3. Vision-based Object Reacquisition

We performed an extensive set of experiments over sev-
eral days at the Fort Lee SSA to validate the performance
of our object reacquisition algorithm. The experiments are
meant to assess the method’s robustness to typical condi-
tions that include variations in illumination, scene clutter,
object ambiguity, and changes in context. The environment
consisted of more than 100 closely spaced objects, including
washing machines, generators, tires, engines, and trucks,
among others. In most cases, objects of the same type with
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Figure 21. Results of the pallet engagement tests from (a), (b) a truck bed and (c), (d) the ground. Each path represents the robot’s
trajectory during a successful pickup. Each “x” denotes the robot’s initial position for failed detections (red) and engagements
(blue). Arrows indicate the robot’s forward direction. All poses are shown relative to that of the pallet, centered at the origin with
the front face along the x-axis. The trajectories are colored according to (a), (c) the relative angle between the pallet and the robot
(in degrees), and (b),(d) the cross track error (in cm) immediately prior to insertion.

nearly identical appearance were placed less than a me-
ter apart (i.e., well below the accuracy of the robot’s ab-
solute position estimate). In addition to clutter, the data
sets were chosen for the presence of lighting variation that
include global brightness changes, specular illumination,
and shadow effects, along with viewpoint changes and

motion blur. The conditions are representative of many of
the challenges typical of operations in unprepared, outdoor
settings.

We structured the experiments to emulate a typical op-
eration in which the user first provides the robot with a
single example of each object as the robot drives alongside
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Figure 22. Histograms of the error in relative angle (left) and lateral offset (right) for pallets engaged from truck beds and the
ground.

them. We follow this tour (training) phase with a reacquisi-
tion (testing) phase in which the user directs the robot to
retrieve one or more of the objects by name. A number of
conditions can change between the time that the object is
first indicated and the time it is reacquired, including the
physical sensor (right-facing versus front-facing camera), il-
lumination, object positions within the environment, aspect
angle, and scale.

Several video clips collected at 2 Hz were paired with
one another in five combinations. Each pair consists of a
short tour clip acquired from the right-facing camera and
a longer reacquisition clip acquired from the front-facing
camera. Ground truth annotations were manually gener-
ated for each image in the reacquisition clips and were used
to evaluate performance in terms of precision and recall. We
consider a detection to be valid if the area of the intersection
of the detection and ground truth regions exceed a fraction
of the area of their union.

Table II lists the scenarios, their characteristics, and the
performance achieved by our algorithm. Possible condition
changes between tour and reacquisition clips include sensor
(right versus front camera), lighting (illumination and shad-
ows), 3D pose (scale, standoff, and aspect angle), context
(unobserved object relocation with respect to the environ-
ment), confusers (objects of similar appearance nearby), and

t (intervening hours:minutes). True and false positives are
denoted as TP and FP, respectively; truth indicates the total
number of ground truth instances; frames is the total number
of images; and objects refers to the number of unique object
instances that were toured in the scenario. Performance is

Table II. Conditions and reacquisition statistics for the differ-
ent experiment scenarios.

Scenario 1 2 3 4 5

Train Afternoon Evening Morning Morning Noon
Test Afternoon Evening Evening Evening Evening
Sensor � � � � �
Lighting � � � �
3D pose � � � � �
Context �
Confusers � � �

t 00:05 00:05 14:00 10:00 07:00
Frames 378 167 165 260 377
Objects 6 1 1 1 1
Truth 1781 167 165 256 257
TP 964 158 154 242 243
FP 59 0 0 0 0
Precision 94.23% 100% 100% 100% 100%
Recall 54.13% 94.61% 93.33% 94.53% 94.55%

reported in terms of aggregate precision TP/(TP+FP) and
recall TP/truth.

In all five experiments, the method produces few if any
false positives, as indicated by the high precision rates. This
demonstrates that our approach to modeling an object’s
appearance variation online does not result in drift, as often
occurs with adaptive learners. We attribute this behavior
to the geometric constraints that help to prevent occlusions
and clutter from corrupting the appearance models.
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Figure 23. Recall rates as a function of scale change (a) for all objects by scenario and (b) for each object in Scenario 1.

While the algorithm performs well in this respect, it
yields a reduced number of overall detections in the first
scenario. This experiment involves significant viewpoint
changes between the initial training phase and the subse-
quent test session. Training images were collected as the
robot moved in a direction parallel to the front face of each
object, and the user provided the initial training example
for each object when it was fronto-parallel to the image. As
the robot proceeded forward, only views of the object’s front
face and one side were available for and added to its appear-
ance model. During the testing phase of the experiment, the
robot approached the objects from a range of different an-
gles, many of which result in views of unmodeled sides of
the object. In these cases, the algorithm is unable to identify
a match to the learned model. This, together with saturated
images of highly reflective objects, results in an increased
false negative rate. While utilizing homography validation
as part of the multiple-view matching significantly reduces
false matches, it also results in false negatives due to un-
modeled 3D effects such as parallax.

We evaluate the relationship between recall rate and the
change in scale between an object’s initial view (scale = 1)
and subsequent observations. Figure 23(a) plots aggregate
performance of all objects for each of the five test scenarios,
while Figure 23(b) shows the individual performance of
each object in Scenario 1. Figure 24 plots the performance
of a single object from Scenario 5 in which the context has
changed: the object was transported to a different location
while nearby objects were moved. Finally, Figure 25 reports

recall rates for this object, which is visible in each of the
scenarios.

For the above experiments, we manually injected a ges-
ture for each object during each tour clip—while the robot
was stationary—to initiate model learning. We employ a
single set of parameters for all scenarios: for single-view
matching, the SIFT feature match threshold (dot product)
is 0.9 with a maximum of 600 RANSAC iterations and an
outlier threshold of 10 pixels; single-view matches with con-
fidence values below 0.1 are discarded. The reasoning mod-
ule adds new views whenever a scale change of at least 1.2
is observed and the robot moves at least 0.5 m. We find that
the false positive rate is insensitive to these settings for the
reasoning parameters, which we chose to effectively trade
off object view diversity and model complexity (data size).

6.4. Shouted Warning Detection

We assess the behavior of the shouted warning system
through a study involving five male subjects in the MIT
model warehouse on a fairly windy day (6 m/s average
wind speed), with wind gusts clearly audible in the ar-
ray microphones. Subjects were instructed to shout either
“Forklift stop moving” or “Forklift stop” under six different
operating conditions: idling (reverberant noise), beeping,
revving engine, moving forward, backing up (and beep-
ing), and moving with another truck nearby backing up
(and beeping). Each subject shouted commands under each
condition (typically at increasing volume) until successful
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Figure 24. Recall rates as a function of scale change for an object in different positions and at different times. The pallet was on
the ground during the tour and reacquired 7 h later both on the ground and on a truck bed.
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Figure 25. Recall rates as a function of scale change for a single object across all scenarios.

detection occurred. All subjects were ultimately successful
under each condition; the worst case required four attempts
from one subject during the initial idling condition. Includ-
ing repetitions, a total of 36 shouted commands were made,
of which 26 were detected successfully on the first try. The
most difficult operating condition occurred when the en-
gine was being revved (low SNR), resulting in five missed
detections and the only two false positives. The other two
missed detections occurred when the secondary truck was
active. We refer the reader to our earlier work (Chuang-
suwanich, Cyphers, Glass, & Teller, 2010; Chuangsuwanich
& Glass, 2011), which presents the results of additional
shouted warning experiments.

6.5. End-to-end Operation

The robot has successfully performed a number of end-to-
end deployments at numerous model and actual military
SSAs. These include extensive testing over the course of
several years at the MIT warehouse test site, in which the
robot was commanded by both civilians as well as mili-
tary personnel. The experiments include scenarios in which
the operator commanded the robot from within its immedi-
ate vicinity, using both the tablet interface as well as direct
speech. Additionally, the robot has successfully performed
end-to-end missions directed by operators who were more
than 1,000 km away over a standard internet connection.
This type of control is made possible by the task-level na-
ture of the command-and-control architecture together with

our system design, which favors greater autonomy and sit-
uational awareness on the part of the robot.

Among our many trials with the U.S. Army, the robot
operated successfully over the course of two weeks on a
packed earth facility at Fort Belvoir (Virginia) in June 2009.
Under voice and gesture command of a U.S. Army Staff
Sergeant, the forklift unloaded pallets from a flatbed truck
in the receiving area, drove to a bulk yard location speci-
fied verbally by the supervisor, and placed the pallets on
the ground. The robot, commanded by the supervisor’s sty-
lus gesture and verbally specified destination, retrieved an-
other indicated pallet from the ground and placed it on a
flatbed truck in the issuing area. During operation, the robot
was interrupted by shouted “Stop” commands, pedestrians
(mannequins) were placed in its path, and observers stood
and walked nearby.

We also directed the robot to perform impossible tasks,
such as engaging a pallet whose slots were physically and
visually obscured by fallen cargo. In this case, the fork-
lift paused and requested supervisor assistance. In general,
such assistance can come in three forms: the supervisor can
command the robot to abandon the task; a human can mod-
ify the world to make the robot’s task feasible; or a human
can climb into the forklift cabin and operate it through the
challenging task. In this case, we manually moved the ob-
struction and resumed autonomous operation.

In June 2010, the robot was deployed for two weeks
at an active U.S. Army SSA at Fort Lee (Virginia). Over the
course of the year since the June 2009 operation, we had
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developed the robot’s ability to perform vision-based object
reacquisition and to correctly interpret and execute more
extensive spoken commands, including those that reference
objects in the environment. Additionally, we endowed the
robot with additional annunciation mechanisms and safety
behaviors, including the ability to regulate its speed based
upon its perception of local hazards in its surround. During
the experiments at Fort Lee, personnel commanded the
vehicle to perform a number of pallet manipulation and
transport tasks using a combination of the tablet interface
and by directly speaking to the forklift. The vehicle
safely carried out these tasks in the presence of military
personnel both on foot and operating other forklifts and
trucks.

7. LESSONS LEARNED AND FUTURE WORK

While military observers judged the demonstrations to be
successful, the prototype capability remains crude when
compared to the capabilities of skilled operators. In oper-
ational settings, the requirement that the supervisor break
down complex tasks that require advanced levels of rea-
soning (e.g., “Unload the truck”) into individual subtasks,
and explicitly issue a command for each would likely be-
come burdensome. A direction for current work is to enable
robots to reason over higher-level actions to achieve greater
autonomy. Moreover, our robot is not yet capable of ma-
nipulating objects with nearly the same level of dexterity
as expert human operators (e.g., lifting the edge of a pallet
with one tine to rotate or reposition it, gently bouncing a
load to settle it on the tines, shoving one load with another,
etc.). This aptitude requires advanced capabilities to esti-
mate and reason over load dynamics, and to plan actions
drawn from a set of behaviors far richer than the set that
our system considers.

We learned a number of valuable lessons from test-
ing with real military users. First, pallet indication gestures
vary widely in shape and size. The resulting conical region
sometimes includes extraneous objects, causing the pallet
detector to fail to lock on to the correct pallet. Second, peo-
ple are willing to accommodate the robot’s limitations. For
example, if a speech command or gesture is misunderstood,
the supervisor will often cancel execution and repeat the
command; if a shout is not heard, the shouter will repeat it
more loudly. This behavior is consistent with the way a hu-
man worker might interact with a relatively inexperienced
newcomer.

We developed an interaction mechanism that uses the
microphones affixed to the vehicle to allow people to com-
mand the robot simply by talking to it, much as they would
with a manned vehicle. This capability, however, raises chal-
lenges that must be addressed if the system is to be deployed
in noisy, hostile environments. While human operators are
able to identify which commands are directed toward them,
our system cannot isolate relevant speech from audible clut-

ter. Indeed, this is an open research problem. Additionally,
it is difficult to recognize who is issuing the command with
this form of interaction, thereby limiting the security of
the command interface, which military personnel have ex-
pressed as a priority of any deployed system.

More generally, recognition of shouted speech in noisy
environments has received little attention in the speech com-
munity, and it presents a significant challenge to current
speech recognition technology. From a usability perspec-
tive, it is likely that a user may not be able to remember spe-
cific “stop” commands, and that the shouter will be stressed,
especially if the forklift does not respond to an initial shout.
From a safety perspective, it may be appropriate for the
forklift to pause if it hears anyone shout in its general vicin-
ity. Thus, we are collecting a much larger corpus of general
shouted speech, and we aim to develop a capability to iden-
tify general shouted speech as a precursor to identifying
any particular command. In addition, we are also exploring
methods that allow the detection module to adapt to new
audio environments through feedback from users.

Support for additional interaction mechanisms would
improve usability and acceptance by current personnel.
Speech is only one way in which supervisors command
manned forklifts. During each of our visits to active storage
and distribution centers, we found that people make exten-
sive use of hand and body gestures to convey information
to the driver. People often use gestures by themselves or ac-
company them with spoken commands, for example saying
“Put the pallet of tires over there” and pointing at or gazing
toward the referred location. In other instances, particularly
when conditions are noisy, people may use only gestures
to communicate with the operator. For example, ground
guides frequently use hand signals to help the driver ne-
gotiate a difficult maneuver. Our system does not provide
a mechanism for people to communicate with the robot
through hand gestures or eye gaze. Several gesture-based
input mechanisms exist (Perzanowski et al., 2001), however,
and it would be possible to take advantage of the structured
nature of gestures used by the military (Song, Demirdjian, &
Davis, 2011) to incorporate this form of interaction. We are
currently investigating algorithms that incorporate deictic
gestures into our natural language grounding framework.

As the robot is directed to perform increasingly
complex tasks, there is a greater likelihood that it will
encounter situations in which it cannot make progress.
Our system includes a centralized process that monitors
the robot’s status in conjunction with status monitoring
capabilities at the level of individual processes. This allows
the robot to detect certain instances when it is not making
progress, but requires overly detailed input from the
system designer. They can identify each potential failure
condition and the associated symptoms, but that does not
scale with task complexity. Alternatively, the designer may
establish abstract symptoms that suggest failure (e.g., the
time duration of the current task), but that makes it difficult
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to identify the specific cause and, in turn, to ask for help.
We adopted both approaches. A fielded system requires a
capacity to detect when the robot is “stuck” that generalizes
to the large space of possible failure conditions and that
can discern the different causes, with minimal domain
knowledge required of the designer. Further, the system
should notify the user in a comprehensible manner and
request assistance by asking for additional information to
resolve ambiguity (Tellex et al., 2012) or for the user to take
over manual control. It would be desirable for the robot to
use these instances as positive examples and learn from the
user-provided demonstrations (Argall, Chernova, Veloso,
& Browning, 2009) to improve its proficiency at the task.

Every one of our tests at MIT and military bases was
performed with a dedicated safety operator monitoring the
robot. Without exception, the robot operated safely, but in
the event that anything went wrong, we could immediately
disable the robot using a remote kill switch. To deploy the
system commercially or with the military, which we cannot
require to have a safety officer, other mechanisms are nec-
essary to guarantee that the robot’s behavior is safe. Most
critically, the robot must be able to recognize each instance
when a person, either on foot or driving another vehicle,
enters or is likely to enter its path, and behave accordingly.
Similarly, the robot must not engage or place cargo in close
proximity to people. The slow speeds at which the vehicle
operates improve reaction time. The greatest challenge
is to develop algorithms for person detection suitable to
unstructured environments that can guarantee near-zero
false negative rates with false positive rates sufficiently low
to be usable in practice. To our knowledge, no algorithms
exist that offer performance comparable to that of human
operators.

Our system fuses data from several sensors mounted to
the robot, which requires that each be accurately calibrated.
While there are well-defined procedures to determine the in-
trinsic and extrinsic calibration parameters for LIDARs and
cameras, they can be time-consuming and require external
infrastructure. It is not uncommon for these parameters to
change over the course of operations, for example as a result
of sensors being replaced due to failure or being removed
and remounted. Each time this happens, the sensors must
be recalibrated, which can be a challenge when the vehicle
is deployed. One way to simplify the extrinsic calibration
would be to manufacture vehicles with fixed sensor mount
points with known pose relative to a body-fixed reference
frame. Alternatively, the robotics community would benefit
from calibration procedures that can be performed oppor-
tunistically in situ, such as by exploiting the terrain. An on-
the-fly capability would not only simplify calibration, but
it could also be used to automatically detect instances of
inaccurate calibration estimates. There has been some work
in this direction, including the use of egomotion for cali-
bration (Brookshire & Teller, 2012), but it remains an open
problem.

Over the past several years, the automotive industry
has been moving toward manufacturing cars that ship with
drive-by-wire actuation. To our knowledge, the same is
not true of most commercial ground vehicles, including lift
trucks. We chose the Toyota platform since it offered the eas-
iest path to drive-by-wire actuation, but we still expended
significant effort modifying our baseline lift truck to control
its degrees of freedom. Particularly difficult were the steer-
ing, brake, and parking brake inputs, which required that
we mount and control three motors and interface a clutch
with the steering column. It would greatly simplify devel-
opment and deployment if vehicles were manufactured to
be drive-by-wire with a common interface such as CAN bus
for control. Manufacturers are not incentivized by research
customers to make these changes, but the transition can be
accelerated by customers with greater purchasing power,
such as the U.S. military.

The storage and distribution centers operated by the
military or disaster relief groups are typically located in
harsh environments. The sensors onboard the vehicle must
be resistant to intrusions from inclement weather, mud,
sandstorms, and dust. Most of the externally mounted hard-
ware on our platform has an IP64 rating or better, however
greater levels of protection are necessary for the environ-
ments that we are targeting. Meanwhile, we encountered
several instances in which one or more of our sensors (e.g.,
a laser rangefinder) became occluded by dust and mud. The
system needs a means of detecting these instances and, ide-
ally, mechanisms to clear the sensor’s field-of-view, much
like windshield wipers. Perhaps most challenging is to de-
velop sensors and perception algorithms that can function
during extreme events such as sandstorms, which would
blind the cameras and LIDARs onboard our robot.

Throughout the duration of the project, representatives
from the military and industry stressed the importance of
having easy-to-use tools to diagnose hardware and software
failures. Our group has developed a few different introspec-
tive tools as part of LCM (Huang, Olson, & Moore, 2010)
and Libbot (Huang, Bachrach, & Walter, 2014), which we
used extensively during development and testing. These
tools, however, are intended primarily as diagnostic tools
for developers and are deliberately verbose in the amount
of information that they expose to the user. If the system
were to be put in the hands of users without the benefit of
having developers nearby, we would need to provide sim-
ple diagnostic tools, analogous to the scan tools used in the
automotive industry.

8. CONCLUSION

This paper described the design and implementation of an
autonomous forklift that manipulates and transports cargo
under the direction of and alongside people within min-
imally prepared outdoor environments. Our approach in-
volved early consultation with members of the U.S. military
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to develop a solution that would be both usable and cultur-
ally acceptable by the intended users. Our contributions
include the following: novel approaches to shared situa-
tional awareness between humans and robots; efficient com-
mand and control methods; and mechanisms for improved
predictability and safety of robot behavior. Our solution
includes a one-shot visual memory algorithm that oppor-
tunistically learns the appearance of objects in the environ-
ment from single user-provided examples. This method al-
lows the robot to reliably detect and locate objects by name.
Our multimodal interface enables people to efficiently is-
sue task-level directives to the robot through a combination
of simple stylus gestures and spoken commands. The sys-
tem includes an anytime motion planner, annunciation and
visualization mechanisms, and pedestrian and shout detec-
tors.

We described the principal components of our system
and their integration into a prototype mobile manipulator.
We evaluated the effectiveness of these modules and de-
scribed tests of the overall system through experiments at
model and operating military warehouses. We discussed
the lessons learned from these experiences and our interac-
tion with the U.S. military, and we offered our conclusions
on where future work is needed.
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