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ABSTRACT

Utterances from
a single learner

In this work, we introduce two improvements to our previously pro-
posed mispronunciation detection framework. The framework fo-
cuses on each learner individually and consists of two main proce-
dures: unsupervised error pattern discovery and pronunciation error
decoding. First, we propose nbest filtering to disambiguate uncertain
error candidate hypotheses obtained from acoustic similarity cluster-
ing. Second, we propose personalized template-based rescoring to
refine the mispronunciation detection results. The second contribu-
tion of the paper is that we demonstrate the portability of the frame-
work to a new target language. Experimental results on the iCALL
corpus, a nonnative Mandarin corpus consisting of speakers of Eu-
ropean origin, show that the new error pattern discovery process sig-
nificantly reduces the size and increases the coverage of the error
candidate set. Also, the rescoring technique effectively improves
system performance on mispronunciation detection and diagnosis.

Index Terms— Computer-assisted pronunciation training (CAPT
dynamic time warping (DTW), extended recognition network (ERN)

1. INTRODUCTION

There has been rapid growth in the number of people with various
native language (L1) backgrounds learning a second language (L2).
With the pronunciation assessment and corrective feedback provided
by computer-aided pronunciation training (CAPT) systems, students
enjoy great flexibility in both time and place when practicing their
speaking skills [1, 2]. According to language transfer theory, learn-
ers often apply knowledge from their L1 to an L2 [3], which indi-
cates that learners coming from the same L1 background will very
likely share the same set of pronunciation error patterns. Neverthe-
less, other factors, such as a learner’s level of competency in the L2,
also affect error patterns [1, 4]. As aresult, students often learn better
with individual tutoring than with conventional classroom teaching.
However, the concept of personalization in current CAPT sys-
tems exists only in forms such as student performance tracking [5]
and automatic material generation [6]. Most existing mispronuncia-
tion detection algorithms rely on a large amount of labeled training
data and linguistic knowledge in the L1s and L2s [7, 8,9, 10, 11]. As
a result, the system’s assessment ability is constrained by the avail-
able resources, and it is difficult to tailor a system to every student.
In our previous work [12], we proposed a mispronunciation de-
tection system that does not require nonnative training data. The
system contains two main procedures: unsupervised error pattern
discovery and pronunciation error decoding. In the first stage, we
discover an individual learner’s error patterns by computing acoustic
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Fig. 1. System flowchart. The system focuses on a single learner
and performs two-pass error pattern discovery to determine a set of
error candidates. Pronunciation error detection and template-based
rescoring are then carried out to determine the actual pronunciation
errors. Shaded blocks are newly proposed in this work (discussed in
Section 3.1 and 3.3).

distance between phoneme segments. In the second stage, on the ba-
sis of the learner-specific error candidates and the context constraint
that only one type of pronunciation error is allowed per triphone, we
decode phonemic pronunciation errors produced by Cantonese and
Mandarin (L1) learners of English (L2).

In this work, we demonstrate the portability of the proposed
framework by focusing on phonemic pronunciation errors produced
by English (L1) learners of Mandarin (L2). Due to the emergence of
mobile-assisted language learning apps [13], collecting speech from
a single learner has become easy [14]. Therefore, we expand the
scale of experiments by testing the framework using the iCALL cor-
pus [15, 16], a large-scale nonnative Mandarin corpus consisting of
speakers of European origin. In addition, the framework is improved
in two directions. As shown in Fig. 1, for the first stage, we run nbest
filtering after computing acoustic distances to form a two-pass error
pattern discovery process. Experimental results show that the new
error candidate set has higher quality in terms of error coverage and
size. Second, we perform personalized template-based rescoring us-
ing a set of segments selected from the learner’s speech. Experimen-
tal results show that the likelihood scores from the recognizer and
the distance scores from the templates are complementary.
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2. RELATED WORK AND BACKGROUND
2.1. Mispronunciation detection and diagnosis

Automatic speech recognition (ASR) technology has been a core
component in CAPT systems [1, 2]. Distance scores from template-
based recognizers [17] and likelihood and posterior probabil-
ity scores from hidden Markov model (HMM)-based recogniz-
ers [18, 19] have been computed to detect pronunciation errors. In
order to diagnose the exact error types, some prior work identifies
error patterns either from expert knowledge [7, 9, 10, 11] or from
nonnative training data [7, 8], and incorporates them into the lexicon
to form an extended recognition network (ERN). During decoding,
the errors and the error types are detected at the same time.

However, both the linguistic expertise and a fully transcribed
nonnative corpus are expensive and time-consuming to collect.
Molina et. al [20] propose to generate possible confusion words
based on distance between acoustic models from an ASR engine.
Wang and Lee [21] perform unsupervised phoneme posteriorgram
clustering to discover mispronunciation patterns directly from data.
Our proposed framework in [12] is based on ERNs. Instead of
extracting error patterns from nonnative training data, we compute
acoustic distance between phoneme segments from an individual
learner’s speech to determine a set of learner-specific error patterns
in an unsupervised manner.

2.2. Mandarin Chinese phonology

Each character in Mandarin Chinese corresponds to a single syllable.
A syllable starts with an optional initial (consonant), and then a final
(vowel and an optional nasal consonant) together with a lexical tone.

In this work, we focus on phonemic pronunciation errors and
leave tone errors aside for now. We refer to initials and finals as
Pinyin units, and they are the target units for our mispronunciation
detection task. In addition, similar to the concept of triphone in En-
glish speech recognition, we use a concept of tripinyin, which con-
sists of a Pinyin unit together with its left and right contexts. For
instance, a tripinyin #_zh_ong is an initial zh under the context of a
final ong, and # stands for the syllable boundary.

2.3. Extended recognition network (ERN)

In a finite state transducer (FST) based recognizer, the lexicon is rep-
resented as an FST that maps phoneme sequences to words. The FST
can be enhanced by adding multiple arcs corresponding to possible
phoneme variations, and thus form an ERN. For Mandarin Chinese,
we incorporate the error patterns on the Pinyin unit level. Fig. 2
shows an example of an ERN of the character (in Pinyin) “zhong”,
with one deletion on the initial and one substitution on the final.
Running recognition or forced alignment with the ERN may result
in output Pinyin sequences different from the canonical pronuncia-
tions, and thus we can detect pronunciation errors.

Fig. 2. An example of an ERN of the character (in Pinyin) “zhong”.
Error patterns are incorporated on the Pinyin unit level (initial and
final), as shown in dashed arcs. € denotes an empty string in FST
input/output. In this work we do not consider tone errors.

3. SYSTEM DESIGN

We discuss the new features of the framework as shown in Fig. 1.

3.1. Two-pass unsupervised error pattern discovery

After forced alignment with canonical pronunciations, assume the
utterances are segmented into N Pinyin units, {s;}/,. Let U =
{u;}_, be the Pinyin unit inventory set, and R = {r;}/_; be the
set of unique tripinyin patterns. Each segment s; is associated with
one canonical Pinyin label p; € U and one tripinyin label ¢; € R.
In the first pass, we compute dynamic time warping (DTW)
distance between frames of MFCCs for all (s;,s;) pairs, denoted
DTW (si, sj). A threshold 7 is set so that we obtain a set of Pinyin
labels for each s; from their nearest neighbors as local candidates:

Ci = {pilps # i DTW (si,5) < 7}i=1,..N (1)

We gather the candidates from segments with the same tripinyin
label and form R first-pass tripinyin-specific error candidate sets:

ECia= |J Ci,i=1,.,R )

Jrtj=r;

Note that we do not consider global candidates obtained based on
Gaussian mixture model (GMM) distance as in previous work [12],
as a pilot study showed that using a DTW distance generates more
accurate error candidate sets than a GMM distance does.

As ECjyirst’s are obtained based on acoustic distances between
segments, the direction of mispronunciation, i.e. whether p; is mis-
pronounced as p; or the opposite, is unclear. To disambiguate this
uncertainty, we propose to run a second pass of nbest filtering. For
each EC}irst, we build an ERN by incorporating the error candidate
set into the canonical lexicon. We run R times of forced alignment
using one ERN at a time. In the end, EC", ..., consists of the Pinyin
labels from the ¢-th time nbest output.

3.2. Pronunciation error decoding

We convert the R error candidate sets into L pronunciation rules by
considering substitution and deletion errors only, as insertions are
rare based on empirical analysis. A deletion error is considered for
an initial when there is a final in its candidate set. No deletion is
allowed for the finals as they are the nucleus of a syllable, and we
assume the learners read all the Pinyin symbols.

We run decoding with the constraint that only one pronunciation
rule is allowed per tripinyin as in previous work. In the iterative
decoding process proposed in [12], the first iteration runs L times of
forced alignment, each time with an ERN that incorporates only one
pronunciation rule. The rule with the best likelihood score is chosen
and incorporated into the lexicon, and the process continues on to
the next iteration of forced alignments with the remaining rules. To
deal with the large scale of speech that might be emerging in the
future, in this work, we approximate the iterative process by running
the first iteration (L times of forced alignment) only and select rules
based on their likelihood scores. This approximation improves the
worst case time complexity from exponential to linear, while a pilot
study did not show significant degradation in system performance.

3.3. Speaker-dependent template-based rescoring

In CAPT, an inevitable challenge is the mismatch between the acous-
tic characteristics of native and nonnative speech. In our person-
alized framework, we tackle this challenge by taking advantage of
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the large amounts of per-speaker data to build a speaker-dependent
template-based speech recognizer. It has been empirically shown
that template-based approaches complement standard parametric
ASR systems in speech retrieval tasks [22].

The templates consist of the segments that are marked as correct
from all the L times of forced alignment in the previous step. Two
types of templates are built. The first type contains templates for
each tripinyin 7;:

M, = {sjlt; = ri,sjiscorrect},i =1,..., R 3)
The second type contains templates for each unique Pinyin unit u;:
M one = {sj|p; = ws,s;j is correct}, i = 1,...,U (€)]

To compute the distance score for a pronunciation rule /;, we
first locate the mispronounced segments from the forced align-
ment result. Assume the format of [; is a_f_v (tripinyin) —
¢ (Pinyin unit). The distance score of I; is computed as follows.

1. If 6 represents a deletion error, since we assume finals cannot
be deleted, 3 can only be an initial and y a final, and the target
tripinyin is #_y_#. Otherwise, J is a substitution, and the target
tripinyin is a_6 .

2. We compute average pairwise DTW distance between the
mispronounced segments and the templates from the set M;,;
of the target tripinyin (#_y_# or a_dy). If the template set is
empty, we back off to use Mimono of § (0r M ono of v if 4 is
deletion).

3. Average DTW distance with M;,; of a_3_~ (or back off to
M pmono of B) is computed as reference distance.

The distance score is defined as the distance to the target template set
minus the reference distance. It can be viewed as a confidence score
from the learner-specific template-based speech recognizer. The fi-
nal score for each rule [; is a weighted sum between the negative log
likelihood score from the forced alignment and the distance score.

4. EXPERIMENTS
4.1. Corpus

The nonnative corpus used in this study is the iCALL corpus [15,
16]. It consists of 305 beginning learners of Mandarin Chinese from
European origin reading 300 Pinyin prompts, including 200 words
and 100 sentences. All utterances are manually transcribed in Pinyin.
The difference between the transcription and the Pinyin prompts
serves as the ground truth pronunciation errors for evaluation. In ad-
dition, every utterance has a proficiency score graded by an expert,
ranging from 1 to 4, with 4 being the highest level.

Table 1 shows the division of the data for experiments. In our
current study, we only consider learners with English as L1 to avoid
L1 mismatch issue for the supervised oracles. Compared with our

Table 1. Division of the corpus for experiments. Only speakers
whose L1 is English are considered.

Average

Speakers proficiency score

# Pinyin units

Training (for oracles)

36 males, 25 females | 148,592 | 2.63
Testing
34 males, 22 females [ 134,637 | 272
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Fig. 3. Evaluation of the quality (error coverage vs. size) of the
error candidate sets. The nbest filtering process reduces the size of
ECY;rs¢ by more than half.

previous study, new experiments are on a much larger scale (from
200 triphones per speaker to 500 tripinyins per speaker).

4.2. Experimental settings

The native acoustic model is trained using the GALE phase 2 Man-
darin Chinese broadcast news corpus with the Kaldi toolkit [23]. A
120-hr subset is randomly chosen as the training set, and the remain-
ing 6-hr as the development set. All waveforms are transformed into
39-dimensional MFCCs plus three-dimensional pitch features every
10-ms, including first and second order derivatives. Cepstral mean
normalization (CMN) is done on a per speaker basis, followed by
linear discriminant analysis (LDA) and feature-space maximum like-
lihood linear regression (fMLLR) for feature transformation. Each
Pinyin unit is mapped to a unique phoneme sequence, and we build a
subspace GMM (SGMM)-HMM-based triphone model trained with
maximum mutual information (MMI) criterion [24]. The character
error rate on the development set is 13.26%.

Speaker adaptation is done for each learner separately. As stu-
dents make less mistakes on shorter utterances [16], only utterances
whose length is less than three characters and their canonical pro-
nunciation from the Pinyin prompts are included into MMI training.

4.3. Error pattern coverage

We first examine the error candidate sets generated under three sce-
narios: two-pass error pattern discovery (ECsecond), One-pass error
pattern discovery (EC'firs¢), and error patterns extracted from the
training data (ECtrqin). We evaluate their quality by computing
their size and error coverage, which is the percentage of error pat-
terns in the ground truth that are found in the error candidate set.

Fig. 3 shows the average number of error candidates per tripinyin
versus the error coverage of the test set. As the DTW threshold 7
and the length of the nbest list increase, the size and the coverage
of ECfirst and ECsecona also increase. As 7 approaches infin-
ity, ECirst becomes the Pinyin inventory and its coverage reaches
100%. On the other hand, a threshold can be set on the frequency
of occurrences of the error patterns in the training set. Both the cov-
erage and the size of EC},q.n decrease as the frequency occurrence
threshold increases, and there exists limitation on the maximum cov-
erage for EC4rqin, Which is 77% in this case. The nbest filtering
removes redundancy in ECY.s¢. When the average error cover-
age is at 77%, the size of ECsccona i 59% smaller than the size
of ECyirst. A compact error candidate set makes the subsequent
pronunciation error decoding process more efficient.

Although the trends in size versus error coverage from EClsecond
and EClyqin are similar, in Fig. 4, we further examine their worst
case coverage, i.e. the minimum coverage on an individual learner.
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Fig. 4. Evaluation of the minimum error coverage on a single learner.
FECsecond consistently has higher worst case coverage, implying
stronger tolerance in speaker variation.

The result shows that ECsecona consistently has higher worst case
coverage than EC},qin. This demonstrates the advantage of per-
forming the error candidate selection process on a per learner basis.
The error patterns in £Ct,qin may represent the common problem
of an L1 population, but it may not cover individual variation.

4.4. Mispronunciation detection and diagnosis

We evaluate the system’s final performance using ECsecond (Unsu-
pervised, unsup) and ECtyq.n (supervised, sup), with the operating
points set at where the error coverage is 77%. The weight on the
distance score for rescoring is empirically set to 60. Results based
on EC},qin are considered as oracles as they use information from
the training data. An unsupervised baseline is implemented based
on free Pinyin unit recognition (pinyin-rec) with a trigram Pinyin
unit language model also trained on the GALE Mandarin Chinese
corpus. Pronunciation errors are detected when there is mismatch
between the pinyin-rec output and the Pinyin prompts.

Mispronunciation detection performance

1001
—S—unsup

80 —A— unsup+rescoring
= sup (oracle)
S 60 - * - sup+rescore (oracle)
< —— pinyin-rec
L 40

20¢ O

0 5 10 15 20 25 30 35

FRR (%)
Fig. 5. Evaluation of false acceptance rate (FAR) vs. false rejection
rate (FRR). Speaker-dependent template-based rescoring improves
the system’s performance by reducing both FAR and FRR.

4.4.1. Mispronunciation detection

We compute two metrics to evaluate the performance of mispronun-
ciation detection: false rejection rate (FRR), which is the percentage
of the total number of correct Pinyin units that are misidentified by
the system, and false acceptance rate (FAR), which is the percentage
of the number of all the incorrect Pinyin units that are accepted by
the system as correct.

Fig. 5 shows the results. A threshold can be set on the scores of
the pronunciation rules to control the size of system’s output, which
leads to trade-off between FRR and FAR. We also adjust the lan-
guage model weight in free Pinyin unit recognition. However, it
constantly has high FRR (> 25%), and this is unfavorable for a
CAPT system as it would discourage the students [1]. As a result,
we focus on the remaining four system settings in the following dis-
cussion and evaluation.

Mispronunciation diagnosis performance
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Fig. 6. Evaluation of diagnostic error rate (DER) vs. number of true
rejection (TR). Speaker-dependent template-based rescoring also
helps reduce DER of the proposed framework.

Speaker-dependent template-based rescoring improves the per-
formance for both the unsup and sup systems. When FAR is at 50%,
FRR of the unsup system is improved by 14% relative, and 11%
relative for the sup systems. With templates from the learner’s own
speech, speaker variation is removed and thus it helps distinguish be-
tween acoustically similar segments on which the recognizer often
fails. In fact, the performance of unsup+rescore achieves the same
performance as the oracle system without rescoring.

4.4.2. Mispronunciation diagnosis

We focus on the segments whose ground truth errors are covered by
the error candidate sets and compute diagnostic error rate (DER),
which is the percentage of the correctly detected pronunciation er-
rors (true rejection, TR) that have incorrect diagnostic feedback.

Fig. 6 shows the results. In high TR region, the performance
of DER is more steady. When TR is at 1500, template-based
rescoring helps reduce DER by 5% relative for the unsup system.
There remains a gap towards the oracles. One explanation is that
the templates contain segments which are mispronounced and thus
introduce noise in distance scores. Also, the error candidates in
ECjsecond are more acoustically similar to each other than the can-
didates in ECtrqin due to the nature of the unsupervised error
pattern discovery process.

5. CONCLUSION AND FUTURE WORK

In this paper, we present two improvements to our previously pro-
pose mispronunciation detection system and demonstrate the L2 lan-
guage portability of the framework by empirical validation on non-
native Mandarin. Experimental results show that the proposed nbest
filtering reduces the size of the error candidate set by 59% relative
while preserving its complete coverage. Furthermore, we are able
to accommodate to high variations of error patterns across learners
and thus achieve better worst-case error coverage. In addition, the
proposed personalized template-based rescoring effectively reduces
detection errors in an unsupervised fashion.

We have been focusing on the lexical level in ASR by model-
ing mispronunciations with ERNs. Therefore, while the automati-
cally discovered error candidate set has high error coverage, the per-
formance is limited by the acoustic model. As the community has
started to explore deep learning in mispronunciation detection [25,
26], we also plan to improve performance from the acoustic level.
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