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Abstract

Deep neural network models have achieved considerable suc-
cess in a wide range of fields. Several architectures have been
proposed to alleviate the vanishing gradient problem, and hence
enable training of very deep networks. In the speech recognition
area, convolutional neural networks, recurrent neural networks,
and fully connected deep neural networks have been shown to
be complimentary in their modeling capabilities. Combining all
three components, called CLDNN, yields the best performance
to date. In this paper, we extend the CLDNN model by intro-
ducing a highway connection between LSTM layers, which en-
ables direct information flow from cells of lower layers to cells
of upper layers. With this design, we are able to better exploit
the advantages of a deeper structure. Experiments on the GALE
Chinese Broadcast Conversation/News Speech dataset indicate
that our model outperforms all previous models and achieves
a new benchmark, which is 22.41% character error rate on the
dataset.

Index Terms: speech recognition, recurrent neural network
model, convolutional neural network model, highway connec-
tion, Mandarin/Chinese speech recognition

1. Introduction

In the past few years, neural network-based (NN) acoustic mod-
els have greatly improved automatic speech recognition (ASR)
performance over traditional Gaussian mixture models (GMM:s)
on a variety of tasks [1, 2, 3, 4, 5, 6]. Further improvement
has been achieved by using more advanced NN architectures
that are specialized to model different aspects of the speech
signal. For example, convolutional neural networks (CNNs)
are designed to learn translational invariant features, and hence
can address speaker normalization issues [7, 8, 9]. Recurrent
neural networks (RNNs) are natural for sequence-to-sequence
modeling and have demonstrated success in phonetic recogni-
tion [10], and ASR [11, 12, 13] due to their ability to learn
temporal relationships. Very recently, a model combining the
above two networks along with fully-connected deep neural net-
works (DNN5s) called CLDNN has been proposed in [14], and
achieved additional gains over any single model, or pairwise
model combination.

In the computer vision literature, NN architectures on the
order of 19 layers [15] have shown improvement over shallower
NN models. However, the best NN architectures reported in the
ASR literature are relatively shallow, typically on the order of 3
to 6 layers. The major difficulty with building a very deep NN is
the vanishing/exploding gradient problem during training. The
gradient issue was addressed with RNNs by the development of
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the long short-term memory (LSTM) block. Several architec-
tures have also been proposed very recently to enable training
of very deep networks [16, 17, 18, 19]. The idea behind these
approaches is similar to the LSTM innovation: the introduction
of gated linear dependence of memory cells between conven-
tional adjacent layers in the NN model.

In this paper, we first extend the CLDNN model by adding
highway connections to memory cells of adjacent LSTM lay-
ers, which introduces gated linear dependence. We refer to this
model as a Highway CLDNN. The highway connections avoid
the vanishing/exploding gradient flow along the NN layers, and
hence enable training of deeper NNs. Subsequently, we exploit
the power of depth by adding up to 8 LSTM layers, so that the
entire NN architecture is in total 11 layers.

The study is conducted on the LDC GALE Chinese Broad-
cast Conversation/News Speech corpus. Initial experiments on
a 120 hour dataset indicate that the Highway CLDNN model
outperforms LSTM, Highway LSTM, and CLDNN models that
all have 3 LSTM layers. Further improvement is achieved by
adding more LSTM layers to the Highway CLDNN model. A
similar trend is observed on a larger 500 hour GALE dataset.
Compared with the same test set reported in [9], we achieve a
new benchmark of 22.41% character error rate on this task.

The rest of paper is organized as follows. In Section 2, we
introduce the building blocks of our model, and describe the ar-
chitecture of the proposed Highway CLDNN. The experimental
setup is summarized in Section 3, followed with results and dis-
cussion in Section 4. Finally, we conclude in Section 5.

2. Highway Convolutional Recurrent
Deep Neural Network

In this section, we first give a brief introduction to the con-
volutional layers, recurrent layers, and highway connections,
that are the essential building blocks in our work. Then we ex-
plain how to construct our proposed Highway CLDNN model
for speech recognition with these components.

2.1. Convolutional Layers

Convolutional neural networks (CNNs), composed of at least
one convolutional layer, have shown improvement over tradi-
tional fully-connected deep neural networks on many ASR tasks
[7, 8, 9]. Unlike fully connected layers, convolutional layers
take into account the input topology, and are designed to reduce
translational variance by forcing weight sharing and applying
mean/max pooling afterward.

Let input feature x € R™**¥* be a two dimensional matrix,
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Figure 1: Comparison of Deep Long Short-Term Memory (DLSTM) RNN and Highway Long Short-Term Memory (HLSTM) RNN.

where Ty denotes the context window width and Fx denotes the
number of frequency bands. Suppose there are K kernels with
weight Wi, Wa, .- -, W and bias by, b2, - -+, bx. We use
E to index kernels and the k-th kernel W, € RT+*Fk The
activation (also called a feature map) of the k-th kernel centered
at the (¢, f)-position of the input feature is

Ty Fy

P,y = 9(2Zxi+(t7r%]),j+(t7(%}>w’%,j +br), (D)

i=1 j=1

where 0 is the activation function, which we set to be rectified
linear units here. Note that we set z;s ;» = 0if 7', j' exceeds
the boundary.

2.2. Recurrent Layers

Unlike feed-forward neural networks, recurrent neural networks
(RNNSs) contain feedback loops that feed activations not only
to the next layer, but also to the current layer as input at the
next time step. This architecture enables modeling of temporal
relationships within a context window of dynamically chang-
ing size, which is highly desirable since contextual information
plays an important role in acoustic modeling, and feed-forward
NNss are limited to considering a fixed-size context window.

In practice, simple RNNs usually suffer from the van-
ishing/exploding gradient problem, when training with back-
propagation through time (BPTT). To address this issue, long
short-term memory (LSTM) blocks, as shown in the left part of
Figure 1 were proposed in [20], which introduced a gated linear
dependence (the black dashed arrows) between memory states
of two consecutive time steps. An LSTM block is composed of
an array of memory cells ¢ as well as three gates: i, f, and o,
used to control information flow. They are defined as follows:

it = c(Waixt + Whihe—1 + Weici—1 + by) ()
fi = oc(Warxe + Whshi—1 + Wepei—1 + by) 3)
0t = 0(Waoxt + Whohi_1 + Weoei—1 + by) “4)
¢t = £ ©cim1 + i © tanh(Waexy + Wichi—1 + be) (5)
hy = W' 05 (0¢ © tanh(cy)) (6)

where x;, ¢, and h; are input feature, cell state, and cell output
respectively at time ¢. W, and b, are weight matrices and bias
vectors connecting different gates. ® denotes an element-wise
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product. Note that the number of cells in each LSTM is set to
one, and therefore Wx are diagonal matrices. W',,.,; is the
projection matrix as proposed in [11].

2.3. Highway Connection

The Highway LSTM (HLSTM) RNN was proposed in [12]. As
shown in Figure 1, it has a direct gated connection (the red
dashed arrows) between the memory cells ¢} in the lower layer
[ and the memory cells cffl in the upper layer [ 4+ 1. The carry
gate controls how much information can flow from the lower-
layer cells directly to the upper-layer cells. The gate function at
layer I + 1 at time ¢ is

I4+1 _ I4+1_1+1 141 1+1 I+1 1 141
d;" =o(W_ ' x, +W_ ¢l +W; e, +b,), (D

where bil“ is a bias term, lefll is the weight matrix connect-
ing the carry gate to the input of this layer. ng is a diagonal
weight matrix from the past cell state to the carry gate in the
current layer. Wf;‘l is a diagonal weight matrix connecting the
lower layer memory cell to the carry gate. di“ is the carry gate

vector at layer [ 4 1 at time ¢.
Using the carry gate, an HLSTM RNN computes the cell
state at layer [ 4+ 1 according to

I+1 _ ql+1 l 1+1 I+1
¢ =d; Oc+f,T 0

+itt @ tanh(WEE T + WitImlT] +be), (8

while all other equations are the same as that in the standard
LSTM RNNs as described in Eq. (2),(3),(4), and (6).

Thus, depending on the output of the carry gates, the high-
way connection can smoothly vary its behavior between that of
a plain LSTM layer or simply pass on its cell memory from
the previous layer. The highway connection between cells in
different layers makes the influence from cells in one layer to
the other more direct, and can alleviate the gradient vanishing
problem when training deeper LSTM RNNSs.

2.4. Highway CLDNN

Our Highway CLDNN structure followed the design in [14].
Figure 2 illustrates the architecture of our model. Since recur-
rent layers are able to capture temporal relationships, at each
time step we pass frame x; without context as input to the net-
work. We use a filter bank feature along with a pitch feature to
represent each frame x;.
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Figure 2: (H)CLDNN. The left path illustrates CLDNN, and the
right path illustrates our proposed Highway CLDNN.

To address the speaker normalization issue, input features
are first passed to one convolutional layer. This layer gener-
ates 256 feature maps, with kernels of consisting of a 1-by-8
receptive field. Non-overlapping max-pooling of both pooling
window and stride 3 is applied immediately after this convolu-
tional layer. As the output dimensionality is still very large (i.e.
[83/3] x 256), a projection layer to 256 dimensions is added
on top of the max-pooling layer.

Subsequently, to model temporal relationships, output from
the projection layer is then fed into a recurrent layer. In addi-
tion, following the suggestion in [14], we also pass the original
input feature x+ to the recurrent layer, providing input represen-
tations from different levels.

Since speech signals possess information at different time
scales [21], we would like the recurrent layers to capture tem-
poral relationships at different scales as well, which deep RNNs
have been argued to be able to learn [22]. Therefore, we use
Highway LSTMs for recurrent layers in order to utilize the deep
recurrent structure. Specifically, 5 layers of LSTM are applied
with 1024 cells and a 512 dimensional projection at each layer.

Finally, we feed output from the last recurrent layer into
fully-connected feed-forward layers, which provides better dis-
crimination to the output targets. Two layers of 1024 hidden
units each, with rectified linear activation functions, are applied.

3. Experiment Setup
3.1. Dataset

Our initial experiments to study the effect of highway con-
nections and neural network depth are conducted on the
GALE Phase 2 Chinese Broadcast Conversation Speech
(LDC2013S04) corpus, which is approximately 120 hours. We
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randomly select 9 hours of speech as an evaluation set. Fur-
ther experiments to verify the results are performed on a larger
500 hour corpus. In addition to the GALE Phase 2 Chi-
nese Broadcast Conversation Speech, GALE Phase 3 Chinese
Broadcast Conversation Speech Part 1 (LDC2014S09), Part 2
(LDC2015S06), and GALE Phase 2 Chinese Broadcast News
Speech (LDC2013S08) are included. Here we use the same 3-
hour evaluation set as in [9] for comparison. Evaluation sets in
both experiments are held-out from their training sets.

3.2. Model Setup and Training

We use Kaldi [23] for feature extraction, decoding, and train-
ing of an initial HMM-GMM model. A maximum likelihood-
criterion context-dependent speaker-adapted acoustic model is
trained with a standard Kaldi recipe (tri3b). Forced align-
ment is performed to generate labels for neural network train-
ing.

The Computational Network Toolkit (CNTK) [24] is used
for neural network training. As [14] suggests, we apply uniform
random weight initialization for all layers without either gen-
erative or discriminative pretraining [1]. All neural networks
are trained with a cross-entropy (CE) criterion, using truncated
back-propagation-through-time (BPTT) [25] to optimize. Each
BPTT segments contains 20 frames, and each mini-batch con-
tains 40 utterances. No momentum is used for the first epoch
and a momentum of 0.9 is used for subsequent epochs [26]. Ten
percent of training data is held out as a validation set, which is
used to control the learning rate. The learning rate is halved
when no gain is observed after an epoch.

The input features for all models are computed every 10ms,
and consist of 80 dimensional log Mel filterbank features, with
an additional 3 dimensional pitch feature, as [9] suggests, since
Chinese is a tonal language. The output targets are 4193
context-dependent states.

4. Results
4.1. Baseline Models

Here we consider three baseline models: (1) LSTM, (2) High-
way LSTM, and (3) CLDNN. For the first two models, we chose
the best architectures trained with the CE criterion reported in
[12]: each hidden layer consists of 1024 memory cells together
with a 512-node projection layer. A three-layer LSTM and
Highway LSTM were shown to achieve the best performance.
The architecture used for the CLDNN is similar to that proposed
in [14]. Specifically, we adopt the design of a convolutional
layer in [27], and choose LSTM parameters to be the same as
the other two models.

The character error rate (CER) of all baseline models are
reported in Table 1. Consistent with [14], the CLDNN achieves
a 5% relative improvement over the LSTM. However, the High-
way LSTM reaches the lowest CER among the three.

4.2. Deeper Neural Models

We begin with investigating the effect of increasing the depth of
the network on all three baseline models. Table 1 summarizes
the results of deeper models compared with the baselines. When
increasing the number of layers, neural networks usually suffer
from the vanishing gradient problem, as we can observe from
the behavior of the LSTM model.

As stated in [12, 16], the highway connection between
LSTM layers can alleviate the vanishing gradient problem, and



hence enable the capability for training deeper models. Here
a 1.6% relative improvement is observed with the Highway
LSTM model, demonstrating that we can actually have more
layers than the 3-layer model in [12].

Surprisingly, a deeper CLDNN model also achieves a slight
improvement over the original CLDNN model. We attribute this
phenomenon to not fully exploiting the advantage of the depth
in the original design. In summary, we observe that deeper ar-
chitectures help further reduce CER with Highway LSTM and
CLDNN, and the relative performance among the three models
remains consistent when adding layers.

CER(%)
Model 3LSTM Layers | 5 LSTM Layers
LSTM 3142 31.46

CLDNN 29.79 29.48

Highway LSTM 29.70 2921

Table 1: Character error rate comparison of deeper models and
baselines trained on 120hr set.

4.3. Highway CLDNN

Next we examine the effect of adding highway connections be-
tween LSTM layers to the original CLDNN model, which is
our proposed Highway CLDNN model. To separate the effect
of highway connection and depth, only models of 3 LSTM lay-
ers are compared here.

Table 2 indicates that an additional 2% relative gain is ob-
served by introducing gated linear dependence between LSTM
layers, which demonstrates the effectiveness of our proposed
model, and opens up the possibility of deeper convolutional re-
current deep neural networks. It is worth noticing that the rel-
ative gain from adding highway connections is smaller on the
CLDNN model than on the LSTM model. We conjecture that
highway connections in recurrent layers help more with input
representations modeled at lower levels.

CER(%)
Model 3 LSTM Layers
LSTM 3142
CLDNN 29.79
Highway LSTM 29.70
Highway CLDNN 29.23

Table 2: Character error rate comparison of Highway CLDNN
and baselines trained on 120hr set.

4.4. Deeper Highway CLDNN

The previous two sections demonstrated the advantage of
deeper models and highway connections respectively. In this
section, we exploit both strategies jointly and verify the result
on both the 120 hour dataset, as well as the 500 hour dataset.

Table 3 shows the results on the 120 hour dataset. By
combining both strategies, a 5-LSTM-layer Highway CLDNN
achieves the best CER performance among all models. Note
that it is possible to further reduce the error rate by adding more
layers, but since the improvement from adding more layers is
relatively marginal here, we will only discover this possibility
on the larger data set.
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CER(%)

Model 3 LSTM Layers | 5 LSTM Layers
Highway LSTM 29.70 29.21
Highway CLDNN 29.23 29.12

Table 3: Character error rate comparison of highway models
trained on 120hr set.

A similar trend can be observed in Table 4, which shows
the CER results on the 500 hour dataset. The deeper High-
way CLDNN also outperforms all other models. It is worth
noting that the relative improvement of adding layers is larger
in the 500 hour dataset than in 120 hour dataset. Specifically,
the relative gain is 3% for Highway LSTM and 1% on High-
way CLDNN for 500-hours, while 1.6% on Highway LSTM
and 0.4% on Highway CLDNN for 120-hour’s. This suggests
that deeper models are suitable for larger datasets.

CER(%)
Model 3 LSTM Layers | 5 LSTM Layers
Highway LSTM 23.33 22.63
Highway CLDNN 22.68 22.45

Table 4: Character error rate comparison of highway models
trained on 500hr set.

As suggested previously, one would be interested in push-
ing the limit of model depth for ASR. Here we constructed a
Highway CLDNN model with 8 LSTM layers, which is in total
11 hidden layers, and shows the results in Table 5. Instead of de-
teriorating the performance due to vanishing gradient problem
that very deep models usually encounter, it nevertheless obtains
a slight gain from increasing depth. This again proves the ef-
fectiveness of highway connections between layers, providing
higher flexibility for choosing the number of layers in model.

CER(%)
Model 3LSTM | 5LSTM | 8LSTM
[ Highway CLDNN | 22.68 | 2245 | 2241 |

Table 5: Character error rate comparison of Highway CLDNN
model of different numbers of layers trained on 500hr set.

5. Conclusion

In this paper, we present a comprehensive study of depth and
highway connection in recurrent and convolutional recurrent
deep neural networks. By exploiting the advantage of both
strategies, we proposed a novel architecture called Highway
CLDNN, which resolves the vanishing gradient problem when
training very deep networks by introducing gated linear depen-
dence of cells between layers. We tested our Highway CLDNN
on different sized Chinese speech recognition tasks. Experi-
mental results show that our Highway CLDNN outperforms all
previous models and achieves a new benchmark on the GALE
Phase 2 Broadcast Conversation Speech corpus. To the best
of our knowledge, the best character error rate reported on the
same evaluation set is 26.01% in [9] using a CNN model.

For future work, we plan to investigate the framework for
alternative “highway block”, such as residual networks [28] and
grid LSTMs[17]. We also would like to look into much deeper
models in a larger task.
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