
1450 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 25, NO. 7, JULY 2017
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Abstract—Food logging is recommended by dieticians for pre-
vention and treatment of obesity, but currently available mobile
applications for diet tracking are often too difficult and time-
consuming for patients to use regularly. For this reason, we pro-
pose a novel approach to food journaling that uses speech and
language understanding technology in order to enable efficient
self-assessment of energy and nutrient consumption. This paper
presents ongoing language understanding experiments conducted
as part of a larger effort to create a nutrition dialogue system
that automatically extracts food concepts from a user’s spoken
meal description. We first summarize the data collection and an-
notation of food descriptions performed via Amazon Mechanical
Turk (AMT), for both a written corpus and spoken data from an
in-domain speech recognizer. We show that the addition of word
vector features improves conditional random field (CRF) perfor-
mance for semantic tagging of food concepts, achieving an average
F1 test score of 92.4 on written data; we also demonstrate that
a convolutional neural network (CNN) with no hand-crafted fea-
tures outperforms the best CRF on spoken data, achieving an F1
test score of 91.3. We illustrate two methods for associating foods
with properties: segmenting meal descriptions with a CRF, and a
complementary method that directly predicts associations with a
feed-forward neural network. Finally, we conduct an end-to-end
system evaluation through an AMT user study with worker ratings
of 83% semantic tagging accuracy.

Index Terms—Conditional random field, crowdsourcing, neural
networks, semantic tagging, word vectors.

I. INTRODUCTION

EXCESSIVE weight is becoming a serious health concern.
It leads to diseases such as obesity and diabetes, which can

cause complications requiring expensive medical treatment. In
the United States, one-third of adults over 20 are obese and
nearly 70% overweight, leading to annual healthcare costs of
$113.9 billion [1], [2]. Food journaling is an effective way to
combat weight gain, but existing diet tracking applications are
often too tedious and cumbersome for patients to use [3].

The solution we propose is an artificially intelligent diet track-
ing application powered by speech and language understanding
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Fig. 1. A diagram of the nutrition system’s flow, illustrating the process of
the user recording a meal, followed by spoken language understanding, nutrient
database lookup, and finally responding to the user with the results.

technology that makes self-assessment of nutrient and caloric
intake quick and easy (see Fig. 1). Users simply describe their
meal in natural language via speech or text, and the system
automatically determines the nutrition facts.

In this paper, we investigate the core research questions under-
lying development of our system’s natural language processing
(NLP) technology. Specifically, we address the challenge of au-
tomatically identifying the food items in a user’s spoken meal
description (e.g., extracting the food “a bowl of Kellogg’s ce-
real” from the meal “This morning for breakfast I had a bowl
of Kellogg’s cereal”), in order to map the foods to a database of
nutrition facts. If we view a food item as an “entity,” or foods
and properties (e.g., brands and quantities) as “slots,” we can
map this task to a well-known named entity recognition (NER)
or slot filling problem. Thus, we investigate NER and slot filling
methods for our task.

Other research questions we investigate involve how to train
and test our models. That is, what data do we need, and how
do we collect them? Can we handle spoken meals in addition to
written meals? Does borrowing ideas from the field of distribu-
tional semantics help? Can we identify foods without manual
feature engineering? How do we determine which properties
go with which food items, and what if there is a long-distance
dependency between a food and its property? Finally, how do
we evaluate our system’s performance?

Our exploration of these research challenges yields the fol-
lowing findings:

1) State-of-the-art NER and slot filling methods can be suc-
cessfully applied to a new domain for food entity extrac-
tion on both written and spoken meals.
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2) Incorporating word vector features, inspired by distri-
butional semantics, improves performance with a con-
ditional random field (CRF) model.

3) A neural network that does not require any feature engi-
neering or pre-trained NLP tools outperforms a feature-
based CRF classifier on semantic tagging of spoken data.

4) Data for a new domain can be collected quickly and re-
liably on Amazon Mechanical Turk (AMT); similarly, a
deployed system’s performance can be quickly evaluated
on AMT without conducting lengthy user studies.

5) Food-property association is more accurately determined
with a classifier (e.g., random forest or feed-forward neu-
ral network) that incorporates long-distance dependency
features, rather than locally segmenting a meal.

In the remainder of this paper, we begin by discussing the
initial prototype of the nutrition system and related work.
Section IV details data collection for a written corpus, as
well as a spoken corpus from an in-domain speech recognizer,
Section V discusses semantic tagging and food-property asso-
ciation, Section VI presents experimental results and analysis,
and Section VII concludes.

II. THE NUTRITION SYSTEM

The understanding component forms part of a larger nutri-
tion logging prototype [4], [5] whose current interface displays
the output of a speech recognizer given the user’s spoken input
utterance, along with color-coded semantic tags (e.g., quantity,
brand, etc.) associated with particular word sequences. The seg-
mented food concepts are then shown in a table along with po-
tential matches to a nutritional database containing over 20 000
foods from the USDA and other sources.

The flow of the nutrition system is shown in Fig. 1. After
the user generates a meal description by typing or speaking,
the language understanding component labels each token in the
description and assigns properties (i.e., “brand,” “quantity,” and
“description”) to the corresponding “food” tokens. We used
conditional random field (CRF) and neural network (NN) mod-
els for the language understanding tasks: semantic tagging and
food-property association. The language understanding output
is used for database lookup and image search before responding
to the user.

III. RELATED WORK

To motivate our work on semantic tagging in the food domain,
we start by introducing prior work on the similar tasks of spoken
language understanding (SLU) in dialogue systems (i.e., deter-
mining user intent and slot filling, or tagging specific words in a
user’s query as values for slots such as arrival or departure city
in the air travel domain). We also examine the closely related
task of named entity recognition and classification (NERC). Fi-
nally, we present work in spoken dialogue systems (SDS) and
distributional semantics.

A. Spoken Language Understanding

The SLU literature largely focuses on the Air Travel Infor-
mation Systems (ATIS) corpus [6], [7], which is composed of

spoken queries about flight information. For example, under-
standing the query “I want to fly to Boston from New York next
week” involves identifying the goal as airfare and slot values of
Boston, New York, next, and week for the slots departure city,
arrival city, relative departure time, and departure time period
respectively.

Research on ATIS has moved from early work involving hand-
made template matching requiring expensive grammars to more
data-driven methods. He and Young [8] showed improved per-
formance using the expectation maximization algorithm for a
generative hidden vector state (HSV) model over hand-crafted
semantic grammar rules. Wang et al. [9] used a discrimina-
tive CRF rather than generative models to reduce slot error rate
by over 20%. Raymond et al. [10] similarly demonstrated that
the addition of a-priori long-term dependency features in CRF
models led to better performance than the generative finite-
state transducer, and Meza-Ruiz et al. [11] also showed that
global dependency features in discriminative models outper-
form the generative HSV model. This motivates our use of the
CRF with its sequential processing. Heintze et al. [12] demon-
strated a performance improvement as incrementally longer ut-
terance prefixes are seen by a classifier, and Tur et al. [13] used
dependency parsing to simplify natural utterances into more
concise, keyword-style queries that are easier for classifiers
to process. Tur et al.’s 2010 study [14] analyzing the state-
of-the-art on ATIS revealed common error patterns that were
still unresolved, including long-distance dependencies in slot
filling.

Recently, neural networks such as bidirectional RNNs [15]
and LSTMs [16] have been shown to outperform CRFs, which
motivates our use of neural networks on our tasks.

A similar trend has been observed for NERC as for SLU,
where early work applied hand-crafted rules [17], but transi-
tioned to machine learning methods over the course of the 1990s
and early 2000s, including supervised learning (e.g., hidden
Markov models, support vector machines, and CRFs [18], [19]),
as well as unsupervised clustering and semi-supervised learning
from distributional semantics, given a set of seed entities (which
motivates our prototype features for semantic tagging). Again,
more recently, neural networks have been investigated, includ-
ing convolutional neural networks (CNNs) [20] and LSTM-
CRFs [21], [22].

B. Spoken Dialogue Systems

Since our ultimate goal is to build a spoken dialogue sys-
tem (SDS) that responds to a user and asks followup clarifi-
cation questions after they record a meal description, we also
discuss state-of-the-art methods for dialogue systems. These
typically involve either statistical models or neural network ap-
proaches. Whereas previously dialogue managers were often
rule-based [23], requiring expensive hand labeling by experts
and increasing complexity as more actions were incorporated
into the set of dialogue states, recent implementations of di-
alogue managers are typically statistical in nature [24], [25].
One method is to use a Partially Observable Markov Deci-
sion Process (POMDP) [26], in which reinforcement learning
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selects optimal policies through rewards based on the state of
the environment.

Newer neural methods for conversational agents apply a
sequence-to-sequence learning method commonly used in ma-
chine translation [27] to short-text conversation (i.e., single turns
in a dialogue) [28], [29]. These researchers focus on different
aspects of conversational agents, such as incorporating context
from previous turns in the conversation [30], enhancing the di-
versity of the system’s generated responses [31], or endowing
the system with a personality so that its responses are more
consistent [32].

C. Distributional Semantics

Vector space models of semantics [33] attempt to teach com-
puters meanings of words or documents through their relation-
ship in vector space. For example, words with a similar meaning
can be represented by vectors that lie close to each other in vec-
tor space. Recent work [34]–[36] has shown that using word
vectors as features in classifiers can improve natural language
processing performance in a variety of tasks, such as part-of-
speech tagging in multiple languages [37], enriching spoken
queries in dialogue systems [38], and semantic tagging [39].
Motivated by this finding, we investigated two approaches for
incorporating word vector features into a CRF semantic tagging
model: using dense vector values directly, and measuring the
cosine distance between tokens and “prototypes” (i.e., words
most representative of a category).

Finally, we compare our work to a similar approach taken
by Manurinakurike et al. [40] for a different task involving
understanding language referring to visual objects in scenes.
Specifically, one speaker describes the objects in a scene, and
another person identifies which scene among several options is
the correct match. Their language understanding pipeline paral-
lels ours, since they first segment scene descriptions with a CRF
(like our semantic tagging with a CRF), followed by association
of visual objects and word segments using a logistic regression
classifier (like our food-property association with a random for-
est classifier). However, they use visual features, whereas we
rely on linguistic features.

As we have seen in this section, related work in SLU, NERC,
and SDS applies CRFs and neural networks, which motivates
our work on a similar task, but in a completely different domain.
Our results follow a similar conclusion, that neural networks
perform comparably well (or even better than) CRFs, without
requiring any manual feature engineering.

IV. DATA COLLECTION AND ANNOTATION

In order to train our language understanding models, we
needed to collect meal descriptions, both written and spoken,
where each token was labeled as a property (e.g., brand or quan-
tity), and property tokens were assigned to food tokens (e.g.,
the quantity “bowl” was assigned to the food “cereal”). This
section illustrates the process of using an online crowdsourcing
platform to collect a new corpus in the nutrition domain, as well
as techniques for reducing noise in the data.

Fig. 2. AMT task instructing workers to label each food word.

Fig. 3. After Turkers labeled the foods, the final AMT task asked them to
label properties (e.g., quantities and brands) of a given food word.

A. Text Corpus

We deployed three subtasks of experiments on Amazon Me-
chanical Turk (AMT) in order to crowdsource our data collec-
tion and annotation, since this is a source of demographically
diverse participants, and high-quality data can be obtained in-
expensively and rapidly [41]. In the first phase, we prompted
Turkers to write a description of a meal (breakfast, lunch, dinner,
or snack) as they would describe it orally:

Please record what you ate for breakfast today (or yesterday) using as
much detail and accuracy as possible. Be creative - we will not accept
repeat answers. Try to include as much additional information as you
remember, such as brand names, preparation methods, portion sizes,
etc. Please write the description in the way you’d imagine describing
it orally. Example: I had a boiled egg, a Thomas’s English muffin,
and an ounce of organic butter. I had a cup of coffee French roast
doctored with an ounce or two of half-and-half and two teaspoons
of brown sugar.

The diaries were then tokenized and used as input for the
second phase, where we asked Turkers to label individual food
items within the diaries (Fig. 2). The third phase combined the
meal descriptions with their food labels and prompted Turkers to
label the brand/quantity/description properties associated with
a particular food item (Fig. 3) [42].

We collected and labeled a total of 22,000 meal descrip-
tions including breakfast, lunch, dinner, and snacks on AMT,
which we used to train our models. The frequency of each tag
is shown in Table I. We measured the reliability of the data an-
notations by calculating the inter-annotator agreement among
Turkers. Specifically, we calculated Fleiss’ kappa scores for the
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TABLE I
STATISTICS FOR TOKENS ASSIGNED ONE OF FIVE POSSIBLE LABELS OUT OF

THE 22,000 COLLECTED MEAL DESCRIPTIONS

Label Frequency

Food 76,399
Brand 13,826
Quantity 38,668
Description 46,898
Other 89,729

two labeling tasks: 0.77 for food labeling, and 0.41 for prop-
erty labeling. The score for the food labeling task indicates
substantial agreement; as expected, the score for property label-
ing is lower, but the score still indicates a moderate amount of
agreement [43].

We also incorporated algorithms for improving Turker label-
ing performance. In order to determine whether the food and
property labels selected by the Turkers were reasonable, we au-
tomatically detected which tokens were foods or properties in
each meal description and required Turkers to label these tokens
upon submitting a property labeling task. If a token was miss-
ing, the submission error message would require the Turker to
return to the task to complete the labeling more accurately, but
would not reveal which tokens were missing.

To automatically generate hidden food and property labels,
we used a trie matching algorithm [44] trained on the USDA
food lexicon. A trie is an n-ary tree data structure where each
node is a character, and a path from the root to a leaf represents
a token. We built a variant of the standard trie where each
node contains a token that is part of a USDA food entry, and
a path from the root to a leaf represents an entire food phrase.
For example, a node might contain the token “orange,” and its
child node might contain the token “juice.” Then, the matching
algorithm would find every matching entry from the USDA
trie that is present in a meal description. Since USDA food
entries often contain only the singular form of a food token,
we incorporated plural handling into the trie matching, using
the Evo Inflector libary’s implementation of Conway’s English
pluralization algorithm [45].

B. Speech Corpus and Recognizer

The experiments presented in prior work [42] relied upon
written, rather than spoken, data, whereas at test time the sys-
tem must be able to handle spoken user input. To address this
limitation, we collected a corpus of spoken meal descriptions,
and created a nutrition speech recognizer [46]. We collected the
speech data via AMT [47], where we asked Turkers to record
10 meal descriptions. The diaries were selected from previously
collected written meal descriptions, and spelling and grammar
errors were manually corrected. The Turkers’ recording, con-
verted to text via a recognizer embedded in the AMT task, was
required to contain at least 60% of the words in the transcript
they were reading in order to submit the task.

We split the resulting 2,962 utterances (from 37 speakers to-
taling 2.74 hours) into 80% training, 10% development, and
10% test sets, and removed punctuation and capitalization from

Fig. 4. A depiction of the two language understanding tasks: semantic tag-
ging (e.g., quantities and foods), followed by food-property association (e.g.,
assigning “a bowl” to “cereal”).

the text data for training the language model. Using Kaldi [48],
we trained a fully-connected, feedforward, deep neural network
(DNN) acoustic model and a trigram language model on 40,000
written sentences (this is a larger set than the original 10,000
meal logs [46] because each meal was split into individual sen-
tences). The DNN’s input features were Mel-frequency cepstral
coefficients (MFCCs) that are the standard for speech recogni-
tion. The network was used in conjunction with a hidden Markov
model (HMM) recognizer that had 265 tied states; therefore it
had 265 outputs. The DNN had 6 hidden layers, each with a
sigmoid nonlinearity, followed by a softmax. The decoder had
a word error rate (WER) of 7.98% on the test set. We then an-
notated the semantic tags and food-property associations of the
recognizer’s output on AMT, as described in [4] for subsequent
understanding evaluation.

V. LANGUAGE UNDERSTANDING

In the nutrition system, after the user describes his or her
meal, the language understanding component must not only
identify the foods and properties (i.e., semantic tagging), but
also determine which foods are associated with which properties
(e.g., selecting “milk” as the food which “two cups” describes,
rather than the preceding food “cereal” in Fig. 4). This section
presents the primary research challenges we encountered in
order to solve the two language understanding tasks: semantic
tagging and food-property association.

A. Semantic Tagging

To address the first language understanding task in the system
(i.e., labeling of each token in a meal description as a food,
quantity, brand, or description), we viewed it as a type of named
entity recognition. Thus, we followed the approaches used on
this task and first applied a standard conditional random field
(CRF) baseline model, to which we investigated the addition of
more complex feature sets involving word vectors. Finally, we
examined whether we could solve the semantic tagging problem
without any feature engineering by using a convolutional neural
network (CNN).

1) Tagging With CRFs: CRFs are useful models for natu-
ral language processing tasks, such as slot filling, that involve
sequential classification [49]. In such a problem, we wish to
predict a vector of output labels y⃗ = {y0 , y1 , ..., yT } corre-
sponding to a set of input feature vectors x⃗ = {x⃗0 , x⃗1 , ..., x⃗T }.
Due to complex dependencies, this multivariate prediction prob-
lem is challenging. We can use graphical models to represent
a complex distribution over many variables more easily. The
structure of the graphical model determines how the probability
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distribution factorizes, based on a set of conditional indepen-
dence assumptions [49].

In the past, generative models, such as the naive Bayes clas-
sifier and hidden Markov models (HMMs), were popular. They
describe how to “generate” values for features given the la-
bel. However, since they model a joint probability distribution
p(y⃗, x⃗), these models can become intractable when there are
complex dependencies. The CRF takes a discriminative ap-
proach, where the conditional distribution p(y⃗|x⃗) is modeled
directly. The linear-chain CRF has the form

Pr(y⃗|x⃗, θ) =
1

Z(x⃗)

T∏

t=1

exp

{
K∑

k=1

θkfk (yt , yt−1 , x⃗t)

}
(1)

where θk is a weight parameter for feature function fk , and
Z(x⃗) is the normalization factor.

The baseline features included n-grams, part-of-speech (POS)
tags (e.g., whether the token is a noun, which is more likely for
foods, or an adjective, which may correspond to brands and
descriptions), and presence in a food or brand lexicon (i.e.,
whether the token under consideration appeared in either the
list of USDA foods or brands). We can improve upon this set of
features with semantic word vector features.

According to distributional semantics theory [50], [51], words
with similar meanings appear in similar contexts and have simi-
lar vector representations, so we explored using neural network-
trained vectors as CRF tagging features to account for semantics.
A popular method for learning word embeddings is Mikolov’s
Skip-gram model [52], released as the word2vec toolkit,1 which
learns word vector representations that best predict the context
surrounding a word. In our experiments, we trained the vectors
with the continuous bag-of-words (CBOW) approach, which
predicts the current word based on the context [53].

The research challenge here is to determine the best way
of incorporating word vectors into CRF feature sets. First, we
directly used vector component values as features for each of
the 300 dimensions of the pre-trained word vectors from the
Google News corpus, which has a three million word vocabulary
from about 100 billion words total (available on the word2vec
website). For these experiments, we used the CRFsuite [54]
implementation rather than CRF++ (although performance was
similar) for two reasons: faster running time and the ability to
use vector float values.

Motivated by the linguistics literature in which Lakoff [55]
argues that people categorize objects according to central mem-
bers of a class (i.e., “prototypes”), and that other members of
the same class have a degree of belonging which corresponds
to their “similarity” to the prototype members, we also devel-
oped a prototype similarity feature. Thus, in addition to using
the continuous, dense embeddings as features in our models, we
explored a distributional prototype method [56] for discretizing
the embedding features: representing each label category with a
prototype word (e.g., “milk” for food) and using the similarity
between a token and prototypes as features [56]. We experi-
mented both with features representing the similarity between

1https://code.google.com/p/word2vec/

a token and individual prototypes, as well as the average sim-
ilarity between a token and all the prototypes in a category. In
addition, we explored binary features for similarities below a
threshold δ tuned with cross-validation. The similarity was cal-
culated with cosine distance, and the prototypes were selected
through normalized pointwise mutual information (NPMI)

λn (label, word) =
λ(label, word)

− ln p(label, word)
, (2)

where λ(label, word) is the standard PMI

λ(label, word) = ln
p(label, word)
p(label)p(word)

. (3)

For each label, the NPMI was computed for every vocabulary
word. The top m words were chosen as prototypes for each
label, where m = 50 was selected via cross-validation.

2) Tagging With Neural Networks: Although CRFs are a
powerful discriminative classifier for sequential tagging prob-
lems, they require manual feature engineering. A new alternative
which does not require any feature engineering is a neural net-
work. In particular, recurrent neural networks and their long
short-term memory (LSTM) variant that addresses the vanish-
ing/exploding gradients problem [57], [58], have become pop-
ular in speech recognition and natural language processing, in-
cluding semantic tagging [59], [60].

In addition, convolutional neural networks (CNNs), origi-
nally developed for computer vision, have recently been suc-
cessfully applied to NLP tasks such as sentence matching [61]
and machine comprehension [62]. Recent work has shown sig-
nificant performance improvement over previous state-of-the
art text classification techniques using very deep character-level
CNNs [63]. Whereas for images the CNN learns filter maps that
apply 2D convolutions over regions of images, CNNs can also
learn filters that apply 1D convolutions to sequences of words
in a sentence. A CNN window of 5 tokens can be interpreted as
an n-gram of 5 tokens, which directly provides context similar
to the features used in a CRF.

In our work, for the semantic tagging task we implemented
variants of the CNN model in Keras [64]. Each model was com-
posed of a word embedding layer initialized uniformly with
150 dimensions, followed by a number of CNN layers, and
finally a fully-connected layer with a softmax activation to pre-
dict the semantic tag. We used the Adam optimizer [65], binary
cross-entropy loss, and dropout with early stopping to prevent
overfitting. We chose to focus on the CNN rather than the LSTM
due to faster training and fewer parameters required. Lei et al.’s
work on recurrent CNNs [66] demonstrates that models com-
bining recurrence and convolution may perform even better on
language tasks than either individually.

B. Food-Property Association

After semantic tagging, the second language understanding
task is to determine which foods map to each property, which we
call food-property association (see Fig. 4). The primary research
question we address is whether this task can be accomplished
more accurately by segmenting the meal description into food
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chunks (each containing a food item and its associated prop-
erties), or by directly predicting the most likely food for each
property (i.e., non-segmental).

1) Segmental Approaches: The first four methods we in-
vestigated for associating foods with properties all involved
segmenting meal descriptions into food chunks, where all prop-
erties within a segment were assigned to the food item that ap-
pears within the same chunk. For example, the meal description
“I ate two pancakes and drank a glass of milk” would be seg-
mented into two chunks: “two pancakes” and “a glass of milk.”
Our previous work [42] explored a simple rule that assigned
properties to the subsequent food, a Markov model [67]–[69],
transformation-based learning (TBL) [70], and a CRF that per-
formed best.

In order to adapt TBL and CRFs to the property association
problem, we framed it as a classification task. To do this, we
modeled it after the noun phrase (NP) chunking problem, a
well-known NLP task. In NP chunking, each word in a sentence
belongs to one of three IOB classes: B (begins an NP), I (inside
an NP), or O (outside an NP). For the food chunking problem,
we used the same three classes to label each word as belonging
to a food chunk or not. The features used by the classifier were
composed of a token and its semantic tag (i.e., food, quantity,
brand, description, or other).

2) Non-segmental Approaches: One drawback to using the
segmental representation is that it assumes properties appear
either directly before or after the food with which they are as-
sociated, neglecting long-range dependencies. For example, in
the meal description “I had two eggs and cheese from Safeway,”
the brand “Safeway” should be assigned to both “eggs” and
“cheese;” however, with the segmenting scheme, it is impossi-
ble to associate “Safeway” with “eggs” without also assigning
the quantity “two” to “cheese” (since all properties are applied
to all foods within a segment, and in this case there are either
two separate segments for “eggs” and “cheese” or one seg-
ment for both). In addition, converting the labeled AMT data
to IOB format requires making assumptions where some in-
formation (e.g., long-range dependencies) is omitted. Thus, we
investigated whether an alternative method for food-property as-
sociation that uses a classifier to predict which food a property
describes might perform better.

In our approach, given a tagged meal description, for each of
the property tokens the classifier determines with which food
it is associated. Given a property token ti , we iterate through
each food token fj in the meal description and generate features
for each (ti , fj ) pair. For each pair, the classifier outputs a
probability that fj is the corresponding food item for ti . Then,
for each ti , the fj with maximal probability is selected. Note
that this does not allow a property to be associated with more
than one food, but we consider this a first step and in future
work will explore association of multiple foods via a vector of
probabilities rather than one hard label.

The classifiers were trained using five features: the property
token, whether the food token is before or after the property to-
ken, the distance between the two tokens, the property’s seman-
tic tag, and the dependency relation between the property and
food tokens if the food is the property’s head in the meal log’s

dependency parse tree. We explored three different classifiers,
using the Scikit-learn toolkit’s implementation for Python [71]:
a random forest (i.e., a collection of decision tree classifiers
trained on a random sample of training data), logistic regression,
and a naive Bayes classifier. We used the spaCy NLP toolkit2

in Python for dependency parsing, tokenizing, and tagging be-
cause it is fast and provides shape features (e.g., capitalization,
numbers, etc.) that improved performance over our manually
defined shape features. We found that the random forest classi-
fier outperformed the rest, so we only show experimental results
for the random forest. Performance was evaluated via F1 scores
for property tokens.

Again, we asked whether it is possible to accomplish this task
with a neural network. Therefore, similar to the CNN we applied
to semantic tagging, we also built a feed-forward neural network
for food-property association. The network is composed of one
fully-connected layer with 128 hidden states and a sigmoid ac-
tivation function, followed by the final output layer predicting
whether or not the food and property pair is a match. It uses
the same features as the random forest classifier, but instead of
the string of the property token, it uses the embedding represen-
tation learned by the CNN for semantic tagging. Related work
also used neural networks with positional features for relation
detection [72].

VI. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents our results on the two language under-
standing tasks we have introduced and provides an analysis of
the findings that our experiments reveal. For each task, we use
our results to highlight the insights we obtained as answers to
the research questions we asked in the introduction.

To evaluate our methods for labeling and associating foods
and properties, we split the AMT data into training and test sets
and computed the precision (i.e., the fraction of predicted la-
bels that were correct), recall (i.e., the fraction of gold standard
labels that were predicted), and F1 (i.e., the harmonic mean of
precision and recall) scores for each approach. We then mea-
sured statistical significance in performance differences among
several approaches using McNemar’s significance test [73]. We
present results on both text and speech data. We also show per-
formance of the end-to-end system evaluated on AMT.

A. Semantic Tagging Experiments

For the semantic tagging task, we first discuss the initial
experiments with CRFs on baseline features, followed by im-
provements gained by adding word vector features inspired by
distributional semantics; we also investigate the effect of in-
creasing the training data size. We demonstrate that a deep
CNN outperforms the best CRF on spoken data, which is what
the live system must handle at test time, without requiring any
feature engineering or additional NLP tools.

Since the data obtained on AMT are noisy (see Table II), for
evaluation we manually cleaned the test sets for the written and

2https://honnibal.github.io/spaCy/
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TABLE II
EXAMPLES OF TURKER LABELING MISTAKES

Token AMT Label Expert Label

Whole Foods Other Brand
some Other Quantity
tangerine Food Description
a Other Quantity

TABLE III
CRF AND NN F1 SCORES PER LABEL ON THE SEMANTIC TAGGING

TASK ON TEXT

Model Food Brand Num Descr Avg

Baseline 85.4 76.7 92.8 77.6 85.4
Baseline CRF 94.2 84.1 94.9 90.0 91.9
Best CRF 94.6 85.7 95.1 90.3 92.4

1 CNN (w = 5) 93.8 82.9 95.0 89.1 91.4
2 CNNs (w = 5, 5) 94.3 83.2 94.9 89.8 91.7
3 CNNs (w = 5, 5, 3) 94.5 83.8 95.5 89.9 92.0

w refers to the CNN filter width per stacked CNN layer. The baseline
predicts tags using the most frequent tag in the training data for a token
(None if unseen in training).

spoken semantic tagging data. We noted a 1% performance im-
provement when evaluating on the expert-labeled test set rather
than using the noisy AMT labels.

We initially applied the standard CRF model (the Python
CRFsuite implementation [54]) to the semantic tagging task.
This required extensive feature engineering, in which we began
with a set of baseline features selected via cross-validation: the
combination of n-grams, food and brand lexicon features [74],
part-of-speech (POS) tags [75], and a shape feature indicat-
ing whether the token was in titlecase, lowercase, uppercase,
a number, or a piece of punctuation. We subsequently added
two new features based on learned word embeddings trained on
large corpora. We explored training vectors on the Google News
and Wikipedia corpora, as well as on domain-specific nutrition
data (i.e., the compilation of meal diaries collected from AMT);
however, the vectors trained on Google News performed best
because the data size is much larger than the nutrition data set
(1 billion versus 265,000 words).

We found that incorporating new word vector features im-
proved performance over the baseline, confirming our hypoth-
esis that features based on the distributional semantics theory
would help. Specifically, we added two word vector features: the
300-dimensional word embeddings themselves and individual
distributional prototype similarities since we found that using a
unique feature for each prototype’s similarity performed better
than averaging all the similarities per category. The performance
of the best CRF with all these features is shown in the third row
of Table III.

In answer to our research question posed in the introduc-
tion about the ability of neural networks to perform well, we
discovered that not only are CNNs competitive with CRFs on
written data (Table III), but they even outperform the best CRF
on spoken data (Table IV). The best CNN, with three layers of
64 filters each, scores only 0.4 points below the best CRF with

TABLE IV
SEMANTIC TAGGING PERFORMANCE ON SPOKEN DATA

Model Food Brand Num Descr None Avg

Best CRF 93.3 79.0 96.6 87.7 97.1 90.8
Best CNN 93.9 77.9 97.5 89.1 98.1 91.3

Fig. 5. The 10 words with the highest response to filter 52 of the CNN in the
single layer model, which mostly relate to potatoes.

word vector features and outperforms the strong CRF base-
line. This is encouraging since the CRF requires many hand-
crafted features, part-of-speech tags, and pre-trained word vec-
tors, whereas the CNN is end-to-end in that it automatically
learns its word embeddings and does not require additional NLP
tools such as part-of-speech tagging. We also observe increased
performance as we stacked more CNN layers, improving the
average F1 score from 91.4 up to 92.0 with three layers.

On spoken data, the best CNN actually outperforms the best
CRF (Table IV), demonstrating its ability to perform well de-
spite speech recognition errors. The best CNN appears to be even
more sensitive to misrecognized brands, causing lower perfor-
mance on brand recognition, but is stronger overall. The poor
performance on semantic tagging of brands for both corpora is
likely due to the small number of brand tokens (i.e., only 3.4%
of the test data’s tokens are brands), as well as the difficulty
distinguishing between brands and descriptions. However, the
even lower performance on the spoken version could be due to
misrecognized brands; for example, “don julio tortillas” was in-
correctly recognized as “on whole wheat tortillas.” In the future,
we may merge the brand and description categories since they
cause confusion.

1) CNN Analysis: Often it is challenging to determine why
neural networks perform so well; thus, we analyzed what each
of the CNN’s 64 filters in the single layer model learned. Figs. 5
and 6 show the 10 words with the highest activation in two of
the CNN filters. We see that filter 52 fires on words related to
potatoes, whereas filter 1 identifies fish.

In addition, we analyzed the activations for each token in a
meal description. Fig. 7 shows the CNN filters with the highest
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Fig. 6. The 10 words with the highest response to filter 1 of the CNN appear
to mostly identify different types of fish.

Fig. 7. The CNN filters with the highest activations for each token in a meal,
where filter 23 fires on “cured ham” and filter 46 responds to “bamboo.”

response to each token in the meal description “I had some cured
ham with canned bamboo shoots and edam cheese for dinner.”
We observe that filter 23 learns “cured ham,” which also has the
highest activation of the whole sentence. See Appendix A for
additional examples.

2) Tagging Performance With Increasing Data: We evalu-
ated the semantic tagging performance on expert-labeled test
data of the CRF with the highest performing feature set, as well
as the best CNN with three stacked layers, as a function of
the amount of training data (see Fig. 8). Increasing the amount
of training data from 10,000 to 22,000 meal descriptions im-
proved the semantic tagging performance of both models. It is

Fig. 8. Semantic tagging average F1 score over increasing amounts of data,
for the best CRF versus the best CNN.

TABLE V
PERFORMANCE OF CRF+TBL ON THE SEGMENTATION TASK USING THREE

DIFFERENT LABEL REPRESENTATIONS

Type Accuracy Precision Recall F1

IOB 86.9 63.3 60.6 61.9
IOE 87.2 63.2 65.3 64.2
IOBES 83.0 64.0 62.7 63.4

interesting to note that the CRF handles smaller data sets better
than the CNN, whereas the CNN’s performance fluctuates more
and seems to have greater performance improvements with in-
creased data; we expect the CNN to show even larger gains when
trained on more data. Although the models perform similarly
well, the CNN trains much faster (i.e., 37.4 seconds versus two
hours and eight minutes for the CRF) and requires no feature
engineering, which are both valuable contributions.

B. Property Association Experiments

Given the predicted semantic tags, we are still left with the
remaining task of determining which properties are associated
with which foods. Here we explore the performance of six dif-
ferent segmental approaches to food-property association, using
both predicted and oracle semantic tags; we then analyze the
non-segmental classifiers and show that the combination of the
two outperforms each individually. Finally, we demonstrate that
a neural network performs the best using predicted tags.

1) Segmental Experiments: In our prior work [42], we
showed that the CRF model performed best out of the four seg-
mental approaches, achieving a token-level accuracy of 86.9%
and a phrase-level F1 score of 61.9 on a smaller data set of 8,000
meal descriptions. In addition to the IOB labeling scheme de-
scribed in Section V-B1, there are two other representations for
chunking: IOE (where the “end” token is represented by E) and
IOBES (where single tokens are represented by S). We exper-
imented with these other class types using the TBL algorithm
on top of the CRF classifier. In Table V, we see that IOE has
the highest F1 score, though the accuracies are not significantly
different (p < 0.01).

Finally, we conducted oracle experiments in order to observe
how well the models performed on the segmenting task when
using the gold standard AMT labels, rather than the semi-
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TABLE VI
FOOD-PROPERTY ASSOCIATION EXPERIMENTS WITH SIX SEGMENTAL
METHODS, WHERE EXPERIMENTS WITH SEMI-CRF PREDICTIONS ARE

COMPARED TO THOSE USING AMT GOLD STANDARD LABELS

Approach F1 (Predicted) F1 (Oracle)

Simple Rule 48.0 70.9
Simple + TBL 57.5 77.9

MM 49.2 72.0
MM + TBL 56.4 74.2

CRF 61.9 78.3
CRF + TBL 61.9 78.2

TABLE VII
PERFORMANCE ON THE FOOD-PROPERTY ASSOCIATION TASK USING THE PRIOR

APPROACH OF IOE SEGMENTING WITH THE CRF, THE RANDOM FOREST
CLASSIFICATION METHOD, AND THE UNION

Model Precision Recall F1

Segmenting (Oracle) 87.9 83.9 85.9
Classifying (Oracle) 96.2 96.2 96.2
Combined (Oracle) 96.5 96.5 96.5

Segmenting (Predicted) 86.2 81.0 83.5
Classifying (Predicted) 84.7 87.9 86.3
Combined (Predicted) 84.9 88.2 86.5

Oracle experiments use true tags; predicted use CRF-
predicted tags.

Markov CRF predictions (we were using the semi-Markov CRF
at the time of the experiments). Since the semi-CRF labeling
errors are compounded when fed into the segmenting task, we
investigated how much the segmenter improved when given
correct labels. As shown in Table VI, the F1 scores for all six
methods in the oracle experiments were significantly higher
than those from the non-oracle experiments. Again, TBL signif-
icantly improved upon the simple rule and the Markov model,
but not the CRF. Therefore, the CRF alone had the overall best
accuracy and F1 score.

2) Non-Segmental Experiments: To compare the perfor-
mance of the random forest classifier to that of IOE chunk-
ing (i.e., segmentation with a CRF), we added IOE labels as
additional features for both oracle and non-oracle experiments
(see Table VII). These results show that using a random forest
classifier yields a significantly higher F1 score than the CRF
(p < 0.01), when evaluated on property tokens. For the CRF
method, the number of gold property tokens with associated
foods is greater than the number of property tokens with pre-
dicted foods, which indicates that some properties were missed
in the IOE chunking scheme and therefore were not assigned
any foods.

Our investigation demonstrates that the IOE labels from
the CRF are complementary to the classification approach. As
shown in the last row of both sections in Table VII, the addition
of IOE labels as new features in the random forest classifier
improved classification performance for both oracle and non-
oracle experiments.

An error analysis revealed scenarios in which the non-
segmental approach improved over the segmental approach, as
well as those in which the combination outperformed both indi-

TABLE VIII
PERFORMANCE ON FOOD-PROPERTY ASSOCIATION USING THE RANDOM

FOREST AND NEURAL NETWORK, ON TEXT AND SPEECH

Model Precision Recall F1

Classif. (Oracle) 94.2 94.2 94.2
NN (Oracle) 93.7 93.7 93.7

Speech: Classif. (Oracle) 99.0 99.0 99.0
Speech: NN (Oracle) 98.8 98.8 98.8

Classif. (Predicted) 86.1 83.4 84.7
NN (Predicted) 89.2 86.2 87.7

Speech: Classif. (Predicted) 84.2 90.2 87.1
Speech: NN (Predicted) 86.7 93.1 89.8

vidual approaches. For example, in the meal “1.5 Cups of Honey
Nut Cheerios 1/2 Cup Skim Milk,” the segmental method incor-
rectly predicts “Nut” as the food which “1.5 Cups” and “Honey”
describe, whereas the non-segmental method correctly selects
“Cheerios” as the food associated with these properties. Clearly,
the segmental approach has difficulty handling incorrectly pre-
dicted semantic tags (i.e., “Nut”), whereas the non-segmental
approach can handle this by directly predicting the correspond-
ing food (i.e., “Cheerios”) despite it appearing further away
from the properties. In the meal description, “veggie patty, one
365 Whole Foods piece of...naan bread...,” the non-segmental
approach mistakenly predicts “patty” as the food associated with
the brand “365,” rather than “bread.” However, in this case, the
combined method is able to leverage the correct association
identified by the segmental approach in order to fix the mistake.

Finally, we addressed the research question of whether we
can perform similarly well with a neural network. We trained a
feed-forward network on the full set of 22,000 annotated meal
descriptions, with a split of 90% for training and 10% for testing.
Table VIII shows that although the random forest classifier does
better on oracle experiments, the neural network outperforms
the simple classifier when using predicted semantic tags, which
is what the live system uses at test time. As expected, the per-
formance is significantly better in the oracle experiments than
when using predicted tags, where p < 0.01. The similar perfor-
mance of both methods on the speech corpus indicates that using
speech did not greatly impact performance. The performance is
actually higher on speech for the oracle experiments, since the
test set is much smaller (i.e., 239 spoken utterances versus 2,163
written meal logs). The decline in performance on the predicted
experiments is likely due to semantic tagging errors.

C. System Evaluation

In order to evaluate the system’s overall performance on peo-
ple, we launched an AMT task where Turkers rated how well
the system performed on three separate tasks: semantic tagging,
quantity matching, and correctly identifying USDA (Nutrient
Database for Standard Reference)3 hits for matching foods.
We asked Turkers to record two meal descriptions each and to
interact with the system by revising the quantities and selecting
a single USDA hit:

3http://ndb.nal.usda.gov/ndb/search
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Please record or type two meals (e.g., what you ate for breakfast,
lunch, dinner, or snack today or yesterday) using as much detail
and accuracy as possible in the text box provided and click enter on
your keyboard when you are done. Be creative - we will not accept
repeat answers. Try to include as much additional information as you
remember, such as brand names and quantities. Note that the system
requires using Chrome. Please interact with the system to narrow
down the USDA hits to one food and play with the quantities. Then
check the boxes in the right-most column if the labels are correct,
if the quantity is correct, if the final USDA hit correctly matches the
food you actually ate, and if the corresponding images are correct.
If you encounter any errors or have feedback from your experience
using the system, please let us know! Examples: I had a hard boiled
egg, a whole wheat english muffin, and one tablespoon of peanut
butter. For lunch I ate a sauteed onion, 3 ounces of chicken breast,
and one cup of mixed vegetables.

Using AMT for evaluation enabled us to quickly test the sys-
tem on many more people than we could evaluate in traditional
user studies. Research [41] has also demonstrated that Turker
samples are more diverse than samples used in traditional user
studies. However, the downside of crowdsourcing the system
evaluation online is that there is always the risk of noise in
AMT data, and we do not have the benefit of observing real
users in person as they use the system. We plan to conduct
a pilot study with patients of Tufts University nutritionists to
address these limitations.

The results from 437 meal descriptions containing a total of
975 food concepts indicated that 83% of semantic tags were
correct, 78% of the quantities were correct, and 71% of the
USDA hits were correct matches. There were only 34 insertions
(i.e., a non-food token labeled as food) and 96 substitutions (i.e.,
a food token labeled as non-food).

The system did not use the best models (due to difficulty
porting Python experiments to the system in Java) and thus had
a lower semantic tagging performance of 83.5 on the spoken
test data, as well as a food-property association performance
of 83.4 on spoken data. Since the system was built initially in
Java, but we ran all our most recent experiments in Python, we
would need to re-implement all the models in Java, including the
neural networks and word embedding and prototype similarity
features for the CRFs. The alternative, which we are pursuing
in our current work, is to set up a new Python Flask server4

which uses Docker5 to install the dependencies (e.g., SpaCy for
tokenization and Keras for neural networks). Thus, these engi-
neering challenges precluded inclusion of the best system in the
evaluation on AMT of the live system. We instead launched an
older Java implementation, which used a Mallet6 CRF trained
only on basic n-gram and part-of-speech tag features for seman-
tic tagging, and CRF++7 with IOE labeling for food-property
association.

VII. CONCLUSION

In this paper, we have examined the language understanding
component of a novel food logging system that allows obesity

4http://flask.pocoo.org/
5https://www.docker.com/
6http://mallet.cs.umass.edu/
7https://taku910.github.io/crfpp/

patients to monitor their caloric and nutrient intake more
easily and efficiently than existing self-assessment methods.
The methods presented here focused on the data collection
and language understanding methods for two components:
semantic tagging and food-property association. Our primary
contributions are as follows:

1) We showed that the CRF model is a viable method for se-
mantic tagging of written and spoken meal descriptions.
Our evaluation of the system’s performance on Mechani-
cal Turk indicated that semantic tagging in the deployed
system is reasonably accurate when tested by Turkers.

2) We verified that incorporating word vector features in-
spired by distributional semantics theory improves a stan-
dard CRF classifier’s semantic tagging performance.

3) We demonstrated that a deep CNN with no manually de-
signed features outperforms the best CRF for semantic
tagging on spoken data; visual analysis shows the CNN
filters learn to identify meaningful categories of words.

4) We found that segmental and non-segmental methods for
food-property association are complementary.

As part of our ongoing work, we are exploring character-
based CNNs [76]–[78] for generating word embeddings that are
less sensitive to misspellings and other inconsistencies in written
meal logs, since users often type foods and brands incorrectly
(e.g., “kellogs” vs. “Kellogg’s”). In addition, we will investigate
neural conversational agents for discussing health and nutrition
with users. Finally, we plan to use multi-task learning [20] for
jointly training a neural network model to do both semantic
tagging and food-property association.

APPENDIX

In Figs. 9 and 10, we show two additional learned CNN
filters (see Section VI-A1) with the words that yield the highest
activations.

Fig. 9. The top 10 words related to soup that have the highest response to
filter 10 of the CNN.
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Fig. 10. The top 10 words, mostly involving vegetables, that have the highest
activation in response to CNN filter 28.
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