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ABSTRACT

Natural language processing research has made major advances with
the concept of representing words, sentences, paragraphs, and even
documents by embedded vector representations. We apply this idea
to the problem of relating foods, as expressed in natural language
meal descriptions, to corresponding database entries. We gener-
ate fixed-length embeddings for U.S. Department of Agriculture
(USDA) food database entries, as well as vector-based representa-
tions of natural language meal descriptions, through a convolutional
neural network (CNN) architecture that predicts whether or not a
USDA food item is present in the meal description. We compute
dot products between each token in a meal description and a USDA
food entry. By ranking the network’s predicted average dot product
between each possible database food entry and a meal description,
we show it is possible to directly predict the USDA foods mentioned
in a meal without requiring intermediate steps that would be used
in a conventional database access application. We report the perfor-
mance of this model on a binary verification task of over 48k meal
descriptions, and show that this approach, when integrated with a
Markov model, substantially outperforms our previous best multi-
stage approach involving a conditional random field tagger, proba-
bilistic segmentation, and database lookup.

Index Terms— Convolutional Neural Networks, Finite State
Transducers, Crowdsourcing

1. INTRODUCTION

Many speech understanding applications involve mapping the con-
cepts present in a natural language expression to their correspond-
ing database entries. In our recent efforts to create an ability for
users to log their food intake by speech, we are faced with this situ-
ation, where we need to determine which particular foods have been
described, and, ultimately, find their associated database entry in a
nutritional database. For example, if someone says, “For breakfast
I had a bowl of Kellogg’s corn flakes,” we would like to find the
matching food entries in the USDA nutrient database (i.e., “Cereals
ready-to-eat, KELLOGG, KELLOGG’S Corn Flakes”), so we can
log the appropriate nutrition information.

As illustrated in Figure 1, our initial work on this problem [1, 2]
used conventional statistical approaches, whereby we fed meal de-
scriptions through a pipeline involving 1) semantic tagging of each
token using a conditional random field (CRF) model, 2) performing
a kind of food segmentation by using classifiers to associate foods
with their associated properties (e.g., brands, quantities etc), and
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3) retrieving matching USDA food entries from a database. This
approach had several undesirable properties. First, it was vulner-
able to intermediate errors. Second, it relied on heuristics for the
database lookup (e.g., stemming) to account for mismatches in lan-
guage usage between the meal description and the database entry.
Unfortunately, there are many instances where the common word
(e.g., “toast”) is not present in the database entry at all, so addi-
tional heuristics are required to bridge this mismatch [3]. Finally,
our data collection efforts focused on collecting natural language de-
scriptions and their associated semantic annotations, so we could not
accurately quantify the overall performance of the system.

To address these issues, we have developed a model that can
directly map between the natural language description to the under-
lying database entries. In the following sections we describe our data
collection efforts, the new CNN-based model that ranks database en-
tries matching a food description, and experiments that show that this
model substantially outperforms our previous best configuration.

Rice, white, short-
grain, cooked
Chili with Apples, Raw,
beans, canned \ With Skin

r—_\ rice — I
abowl of chili 4 an apple . USDA
Segmenter

fordinner | had a bowl of chili over rice and an apple

Quarntity Food Food Quantity Food

For dinner | had a bowl of chili over rice and an apple

Fig. 1. The previous system’s sequence of steps: CRF tagging, seg-
menting a meal into food entities, and USDA database lookup.

2. DATA COLLECTION

Previously [1], we collected 22k meal descriptions and associated
semantic annotations via crowd-sourcing with Amazon Mechanical
Turk. However, there were problems with these data: we did not
know the correct USDA answers for each meal description. In this
work, we adopt a different strategy by having Turkers generate a
meal description that matches a selected subset of USDA items. This
enables us to build models that directly map from meal descriptions
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to USDA foods. We do not know the order or location of the foods
in the meal description, but these can be inferred automatically.

In order to generate “reasonable” meal description tasks, we par-
titioned the over 5k foods in the USDA database into specific meals
such as breakfast, dinner, etc. (see Table 1). We also had a special
set of 101 food items that we are using for a pilot user study we are
conducting with nutritionists from Tufts University. A given task
was randomly assigned a subset of 9-12 food items from different
categories. To reduce biasing the language used by Turkers, we in-
cluded images of the food items along with the less natural USDA
titles. Turkers were asked to select at least three of the foods, and
generate a meal description using these items. This enabled work-
ers to select foods that would typically be eaten together, producing
more natural meal descriptions and quantities.

| Meal | #Foods | #Diaries | # Words per Diary |
Breakfast 1167 4010 18.8
Dinner 2570 3850 21.6
Salad 232 4040 19.1
Sandwiches 375 4000 20.1
Smoothies 384 3850 20.1
Pasta/Rice 1270 4000 20.6
Snacks 1342 4077 19.1
Fast Foods/Meals 669 3886 19.1
All Foods 5124 31712 198
101 Foods 101 16589 18.2

Table 1. Meal description statistics, organized by category.

3. METHOD

We employed two steps to achieve a system that directly selects
the best USDA matches for a given meal description: 1) we con-
structed a CNN model that learns vector representations for USDA
food items through a binary verification task (i.e., whether or not a
USDA item is mentioned in a meal description), and 2) we incor-
porated the model predictions into a Markov model framework to
select the most likely set of USDA foods in the meal.

3.1. Convolutional Neural Network Model

As shown in Figure 2, the model is composed of two CNNs: one
for the meal description and one for a USDA food. The text is first
tokenized using spaCy (https://spacy.io). Each CNN contains a 50-
dimension embedding layer and a 1D convolution of 64 filters span-
ning a window of three tokens with a rectified linear unit (ReLU)
activation. The USDA component follows the CNN with a max-
pooling layer over the input tokens to produce a 64 dimensional vec-
tor representation. During training this is followed by a dropout of
probability 0.2 (i.e., randomly set 20% of units to O at each update
during training), and batch normalization to maintain a mean near
zero and a standard deviation close to one.

The meal description component similarly uses dropout and nor-
malization during training. Following this, a dot product is per-
formed with the USDA vector and each 64 dimensional CNN output
of the meal description (i.e., with each token). Mean-pooling is then
performed across these dot products to produce a single scalar value,
which we force to be between zero and one with a sigmoid layer.

To prepare the data for training, we padded each USDA food en-
try to 20 tokens and each meal description to 100 tokens, and we lim-
ited the vocabulary to the most frequent 3,000 words. Our attempts
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Fig. 2. Architecture of our CNN model for predicting whether a
USDA food entry is mentioned in a meal description.

to remove bias due to the padding by masking the dot products only
seemed to hurt performance.

We trained the model to predict each (USDA food, meal) input
pair as a match or not (i.e., 1 or 0) with a threshold of 0.5 on the
output. The model learns with the Adam optimizer [4] on binary
cross-entropy loss, norm clipping at 0.1, a learning rate of 0.001,
early stopping on the validation data (i.e., 20% of the data), and mini-
batches of 16 samples. We removed all capitalization and removed
commas from the USDA food entry names. For each positive USDA
hit, we randomly selected a negative sample from the USDA items
not mentioned in the meal.

3.2. Sequential Markov Model

While the CNN model learns to predict whether or not a USDA food
is mentioned in a meal, it does not directly retrieve the matching
USDA foods from a meal. To do this, we use a Markov model frame-
work to take as input the token-by-token dot products (between each
token in a meal and all possible USDA foods) and output the most
likely sequence of USDA foods in the meal. The token-by-token
dot products for each meal description are represented by a meal
Finite-State Transducer (FST), M, with each state corresponding to
a particular token/USDA food match with weights corresponding to
the negative dot products for each token with each USDA food entry.
To enable decoding of the n-best token alignments, we construct
a food FST, F, that represents a generic food Markov model whose
states consist of USDA foods or an “Other” state (Fig. 3). The model
we used in these current experiments enables transitions between
“Other” states (i.e., no USDA food is discussed at that token) and
three interleaved USDA food states, where there are transitions for
each possible USDA entry. Each state has a self-loop, which allows
multiple consecutive tokens to have the same USDA food. To decode
a particular meal description, we compose M with F' and compute
the top-5 sequences of USDA foods with n-best Viterbi decoding.

3.2.1. Training Alignments

Composing the meal FST M with the food FST F yields token-
level alignments. For training, we can use a constrained meal FST
that only considers the known USDA foods in the particular meal
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Fig. 3. A food FST, F', for predicting the USDA food sequence in
a meal given the NN’s predicted dot products. Restricting meals to
three foods is a limitation, so we will increase flexibility in the future.

descriptions. We also use the resulting alignments to generate more
specific positive/negative training examples to improve the CNN per-
formance. For each input (USDA food, meal) pair, we generate a
positive example of a shortened food segment and its corresponding
USDA entry (and a negative example with an incorrect USDA en-
try), where the segment is all the tokens that were aligned with that
USDA food in the alignment. Thus, we fine-tune the network so that
it knows which tokens are associated with which USDA entries.

3.2.2. Segmentation

At test time, we use the n-best results for segmenting meal descrip-
tions into food entities and predicting alternative USDA items for
each entity. We are not interested in minor token-level re-alignments
however, and just care about unique USDA item sequences. To force
the n-best decoder to generate different USDA food choices, we
compose the meal and food FSTs with a third high-level FST that
outputs nothing for “Other” states and self-loops. From the positions
of the USDA foods in this final sequence of IDs, we can determine
which food alternatives group together and their ranking.

4. EXPERIMENTS

To train our models and tune hyperparameters, we split our data
into validation (20%) and training data (80%). A held-out test set
was used for evaluation. We report accuracy on the verification
task, mean average precision (MAP) scores for ranking (i.e. rank-
ing USDA foods in a meal), and a comparison of this approach to
the previous setup of tagging, segmenting, and database lookup.

4.1. Binary Verification Task

For each meal category, we report the training and validation ac-
curacy in Table 2 on the binary verification task (i.e., predicting
whether a USDA food item is mentioned in a meal description). We
can see that performance is higher for meals that have fewer foods
(e.g., salads) and is lower for more complex meals such as dinner.

4.2. 101 Foods Case Study

For all subsequent experiments, we focused on a subset of 101
USDA foods (i.e., 16,589 total meal descriptions) for training and
evaluation, which we pay special attention to since these are the
foods we will use in a pilot study. In Table 3, we show the perfor-
mance of the CNN model for binary verification and ranking (i.e.,
how highly it ranks the correct USDA foods in a meal description).
We measure the ranking performance, which is more closely aligned
to what the system must accomplish at test time, using mean average

| Meal | Train Acc. [ Val. Acc. |

Breakfast 87.5 81.3
Dinner 87.3 79.8

Salad 89.5 87.6
Sandwiches 859 82.2
Smoothies 89.5 85.5
Pasta/Rice 88.1 84.0
Snacks 85.6 78.5

Fast Foods/Meals 90.2 83.4

Table 2. Binary verification scores for each meal category.

precision (MAP).

> op_q prec(k)rel(k)
MAP = =
correct # foods in the meal @

where k is the rank of a USDA food entry, prec(k) is the precision
of the food entry at rank k (i.e., how many correct foods have been
identified so far, divided by the current rank k), and rel(k) is 1 if the
USDA food at rank k is in the meal description, and O otherwise.

We previously compared the LSTM to the CNN for semantic
tagging [5], but in this work we chose the CNN for our experiments
because it has comparable performance to the LSTM while using
fewer parameters and training faster. We also observe that incorpo-
rating aligned token segments specific to each USDA food as addi-
tional training examples improved performance.

| Model | Train Acc. | Val. Acc. [ MAP |
baseline word matcher 59.6 59.1 0.067
baseline classifier 92.2 90.8 0.076
CNN 96.0 94.5 0.889
CNN + alignments 97.2 96.1 0.907

Table 3. Performance on 101 foods. The baselines are a lexi-
cal matcher (i.e., at least two shared words is a match) and logis-
tic regression classifier trained on n-grams, word match counts, and
learned vector dot products.

4.3. System Evaluation

We ultimately care how well the system will perform at test time
with actual users, so we also compared the performance of the ex-
isting system set up with tagging followed by food-property associ-
ation and rule-based database lookup to the performance using the
new neural architecture followed by the FST n-best prediction. We
evaluated the system by the percent of correct USDA entries re-
called. As shown in Table 4, the baseline CRF tagger with many
manually defined features (including n-grams, part-of-speech tags,
word vectors and prototype similarity, clusters, and capitalization,
etc.) performs similarly to the CNN tagger with no feature engineer-
ing, when connected with the conventional SQL-based lookup in the
USDA database (Figure 1). In contrast, the CNN-produced food
embedding vector combined with FST n-best decoding has a much
higher recall than either tagger, from 79% up to 92.6%. Note that
although the FST decoding framework naturally lends itself to gen-
erating alternative hypotheses for different values of n, for purposes
of this evaluation, we only report top-5 recall.
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| Model | USDA Recall |
Baseline CRF tagging with SQL lookup 78.9%
CNN tagging with SQL lookup 78.5%
CNN food embeddings with FST 5-best 92.6 %

Table 4. System evaluation with tagging followed by USDA lookup
vs. neural-FST setup with direct USDA predictions on a held-out
test set of Sk meals with only 101 USDA foods.

4.4. Analysis

In this section, we show through qualitative analysis that the neural
network (NN) model is indeed learning meaningful vector represen-
tations of the USDA food entries, which is why it performs so well
on ranking the matching USDA foods in a meal description.

If we look at the nearest neighbor to three USDA foods (see
Table 5) using Euclidean distance, we observe that the neighbors are
semantically similar. Looking at the NN model’s predicted dot prod-

| USDA Food [
Rice white short-grain...

Fast Foods Chicken Tenders
Beans Baked Canned...

Nearest USDA Food |
...Mexican Spanish Rice
Chicken Broiler or Fryers...
Beans Black Mature...

Table 5. Nearest 101 foods to three USDA learned food vectors.

ucts between USDA foods and each token in a meal description, we
observe spikes at tokens corresponding to that USDA food entry. We
visualize the spike profile of the dot products at each token for the
top USDA hits in Fig. 4. The USDA foods “McDonald’s Big Mac”
and “Fast Foods, Cheeseburger” spike at “big mac,” whereas “Cat-
sup” peaks at “ketchup,” and “Bananas, Raw” at “peeled banana.”

Dot Product Spike Profile across Meal Diary for Top USDA Hits

— mcdonald 's big mac
— catsup
— bananas raw
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Fig. 4. Dot products between top USDA hits and meal tokens for the
meal description “for dinner I had a big mac with an extra teaspoon
of ketchup and a peeled banana.”

5. RELATED WORK

While in our work we learn embeddings for USDA food entries
through CNNs, recent work [6] has analyzed the relative strengths of
various other sentence embeddings, including averaging word vec-
tors learned with the continuous-bag-of-words method [7], LSTM

auto-encoders [8], and skip-thought vectors based on gated recur-
rent units (GRU) [9]. Our approach differs from these in that we
use a CNN rather than recurrent networks, and we learn the vectors
through a domain-specific task for predicting whether a USDA food
entry matches a meal description.

Similar work in learning joint embeddings for two different
modalities or languages have explored a margin-based contrastive
loss, which would be interesting to compare against our binary veri-
fication cross-entropy loss. For ranking annotations given an image,
prior work directly incorporated the rank into the model’s loss func-
tion, along with a hinge loss between true and false annotation sam-
ples [10]; similarly, a margin-based loss was used to learn a joint
multimodal space between images and captions for caption gen-
eration [11, 12], and sentence/document embeddings were learned
through a multilingual parallel corpus with a noise-contrastive hinge
loss ensuring non-aligned sentences were a certain margin apart [13].
Other related work predicted the most relevant document given a
query through the cosine similarity of jointly learned embeddings
based on bag-of-words term frequencies [14].

Many researchers are now exploring CNNs for natural language
processing (NLP). For example, in question answering, recent work
has shown improvements using deep CNN models for text classifica-
tion [15, 16, 17] following the success of deep CNNs for computer
vision. Whereas these architectures take in a simple input text ex-
ample and predict a classification label, our task takes in two input
sentences and predicts whether they match. In work more similar
to ours, parallel CNNs predict the similarity of two input sentences.
While we process each input with its own CNN, others first compute
a word similarity matrix between the two sentences (like an image
matrix of pixels) and use the matrix as input to one CNN [18, 19, 20].

Attention-based CNN (ABCNN) models have also been pro-
posed for sentence matching. The ABCNN [21] combines two ap-
proaches: applying attention weights to the input representations be-
fore convolution, as well as after convolution but before pooling.
Our method is similar, but we compute dot products (our version of
the attention scheme) with the max-pooled high-level representation
of the USDA vector. Hierarchical ABCNN applies cosine similarity
attention between CNN representations of a query and each sentence
in a document for machine comprehension [22]. Thus, the attention
comes after pooling across the input, whereas we compute the dot
products between each meal token and the learned USDA vector.

6. CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated a novel neural network-based
technique with FST decoding for learning a food embedding space
that enables directly translating natural language meal descrip-
tions into their corresponding USDA food database entries, with-
out requiring any semantic tagging intermediate steps and avoiding
database lookup heuristics. We achieve 92.6% recall on a held-out
set of 5,000 meal descriptions containing a limited set of 101 USDA
food options, whereas our previous baseline using a CRF tagger
combined with database lookup only achieves 79% recall. To extend
our work, we plan to collect more data for the other USDA foods, not
just the limited set of 101 food entries, which will enable us to ex-
pand the coverage of the new approach to all possible USDA foods.
In addition, since users often write typos or misspellings in their
meal descriptions, we would like to incorporate character-based em-
beddings [23, 24, 16], rather than only learning word embeddings.
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