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Why End-to-End?

ImageNet Classification with Deep Convolutional Neural Networks. Krizhevsky et al.
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Why End-to-End?

Sequence to Sequence Learning with Neural Networks. Sutskever et al. 2014.
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Complexity of ASR

® The HMM/GMM or HMM/DNN pipelines are highly complex

— Multiple training stages: Cl phone, CD senones, ...

— Various resources: dictionaries, decision trees, ...

— Many super-parameters: number of senones, number of Gaussians, ...
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End-to-End ASR!

e ASRis a sequence-to-sequence learning problem

e Asimpler paradigm with a single model (and training stage)

“I am in Boston today”
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LSTM Models

RNNs model temporal dependency across speech frames.

Long short-term memory (LSTM) units.

— Memory cells store the history information.

— Various gates control the information flow inside the LSTM.

— Advantageous in learning long-term temporal dependency.
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LSTM Models

L h, Miao et al.]

it = o(Wizxe + Wirhe—1 + Wicer—1 + by)

fi = o(Wyroxe + Wyenhy1 + Wyeei—1 +by)

¢t =f ©ci—1 +it © ¢(Weaxe + Werhe—1 + be)
0 = o(Worxt + Worhi—1 4+ Woeer + b))

h: =0t ® ¢(ct)

® |STMs outperform DNNs in the
hybrid approach [Sainath et al.,

® This is uni-directional LSTM,
i.e., forward LSTM.

input gate
forget gate
memory cell

output gate
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Bi-directional LSTMs

e h(t) = [h_f(t), h_b(t)]

Backward
LSTM

BiLSTM
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Deep BiLSTM Model
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Connectionist Temporal Classification

® (CTCis a sequence-to-sequence learning technique [Graves et al.]
LCTC — IIIPI”(Z | X)

label sequence / \ observations

“ABC” X=(x1, ..., X1)
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Connectionist Temporal Classification

® (CTCis a sequence-to-sequence learning technique [Graves et al.]
LCTC — IIIPI”(Z | X)

label sequence / \ observations

“ABC” X=(x1, ..., X1)

Y =(y, ..., y7)
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CTC Paths

CTC is a sequence-to-sequence learning technique [Graves et al.]
LCTC — lIlPI/'(Z | X)
label sequence / \ observations

“ABC” X=(xi,..., X7)
CTC Path

Y=(ys ..., ¥7)

CTC paths bridge frame-level labels with the label sequence

— A CTC path is a sequence of labels on the frame level p= Lpy, ..., pr]

— The likelihood of a CTC path is decomposed onto the frames:

T
Prip|X)=]]»"
=1 16



CTC Paths

CTC paths differ from labels sequences in that:

— Add the blank as an additional label, meaning no (actual) labels are
emitted

— Allow repetitions of non-blank labels
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Many-to-one mapping from CTC paths ®(z) to the label
seguence z

Pr(z | X)= Z Pr(p | X) Computationally

I
ped(2) Intractable !!
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Forward-Backward Algorithm

expanded
labels
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Forward Computation

expanded
labels

a, (s)
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Forward Computation

expanded
labels

[
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Backward Computation
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Backward Computation

B (s)

summed probability

of all CTC paths

starting at f with s
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CTC Training

® Evaluation of the objective Pr(z|X)

1

Pr(z|X)=Y a,(s)B(5) Lere =InPr(z|X)

s=1

® Gradients w.r.t. the pre-softmax network outputs:

0 Lere " 1

CTC = yp — o,(s)B,(s) soft labels
da, ' Pr(z|X) se%k) t t

) S
Jal = Vi 7|8k hard labels
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What Happens during CTC Training?

init |

'.

iter8

iterl4
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CTC Decoding

Difficulty of CTC decoding

— Previous work proposed beam search for CTC [Graves et al, Hannun et al.]
— Incorporating word language models efficiently was difficult

— It was challenging to deal with the behaviors of blanks

WEFST-based Decoding

— 3 WFSTs encode 3 components required in decoding

The language model WFST G

how are you
how is it
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Lexicon -- L

® Maps sequences of lexicon units to words.

® Phonemes as CTC labels: the standard dictionary WFST

IH : 1s Z : <eps>
© ()

® C(Characters as CTC labels

is IHZ

— Contains word spellings, easy to include OOV words

— The space <space> between each pair of words is taken as a label

— Allows <space> to appear optionally at the beginning and end of the word

<eps> : <eps>

<space> : <eps>

<eps> : <eps>

IS

IS

<space> : <eps>
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Token --T

e Maps a (segment of) CTC path to a lexicon unit (phonemes or
characters)

® Allows occurrences of blanks and repetitions of non-blank labels

A:<eps>

<blank>:<eps <b1ank> <eps>
<eps>: <eps>
0
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Search Graph & Posterior Scaling

® The 3 WFSTs are composed into a search graph
S =T omin(det(LoG))

O —composition  det —determinization  min —minimization

e The search graph encodes the mapping from a sequence of
frame-level CTC labels to a sequence of words.

e During decoding, scale the label posteriors with their priors
p(x, | k) o< p(k|x,)/ p(k)

where the prior p(k) is estimated from the expanded label

sequences ( J A B Y C ) from the training set by simple
counting. -



Eesen Recipe - Switchboard

https://github.com/yajiemiao/eesen

# Use the same datap prepatation script from Kaldi
local/swbdl_data_prep.sh $swbd || exit 1;

# Construct the phoneme-based lexicon Data Prep and FST Composrtlon

local/swbdl_prepare phn dict.sh || exit 1;

# Compile the lexicon and token FSTs
utils/ctc_compile dict_token.sh data/local/dict_phn data/local/lang phn_tmp data/lang phn || exit 1;

# Train and compile LMs.
local/swbdl train lms.sh data/local/train/text data/local/dict phn/lexicon.txt data/local/lm $fisher dirs

# Compile the language-model FST and the final decoding graph TLG.fst
local/swbdl_decode graph.sh data/lang phn data/local/dict phn/lexicon.txt || exit 1;

# Data preparation for the eval2000 set
local/eval2000_data_prep.sh $eval2000 dirs

Feature Generation

# Generate the fbank features; by default 40-dimensional fbanks on each frame

steps/make_fbank.sh --cmd "$train cmd" --nj 32 data/train exp/make_fbank/train $fbankdir || exit 1;
utils/fix_data_dir.sh data/train || exit;
steps/compute_cmvn_stats.sh data/train exp/make_fbank/train $fbankdir || exit 1;

steps/make_ fbank.sh --cmd "$train cmd" --nj 10 data/eval2000 exp/make_ fbank/eval2000 $fbankdir || exit 1;
utils/fix_data_dir.sh data/eval2000 || exit;
steps/compute_cmvn_stats.sh data/eval2000 exp/make_fbank/eval2000 $fbankdir || exit 1;
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Eesen Recipe - Switchboard

https://github.com/yajiemiao/eesen

# Specify network structure and generate the network topology
input_feat dim=120 # dimension of the input feature

lstm_layer num=4 # number of LSTM layers
lstm cell dim=320 # number of memory cells in every LSTM layer
dir=exp 110h/train_phn_1${lstm_layer num} c${lstm_cell dim} M Od e I Tra Inin g

mkdir -p $dir

# Output the network topology

utils/model topo.py --input-feat-dim $input feat dim --lstm-layer-num $lstm layer num \
--lstm-cell-dim $1lstm cell dim --target-num $target num \
--fgate-bias-init 1.0 > $dir/nnet.proto || exit 1;

# Label sequences; simply convert words into their label indices
utils/prep ctc_trans.py data/lang phn/lexicon numbers.txt data/train 100k _nodup/text "<unk>" | gzip -c -
utils/prep ctc_trans.py data/lang phn/lexicon_ numbers.txt data/train dev/text "<unk>" | gzip -c - > $dir/

# Train the network with CTC. Refer to the script for details about the arguments

steps/train_ctc_parallel.sh --add-deltas true --num-sequence 10 --frame-num-limit 25000 \
--learn-rate 0.00004 --report-step 1000 --halving-after-epoch 12 \
data/train_100k_nodup data/train_dev $dir || exit 1;

Decoding

# decoding
for 1m suffix in swl_tg swl_fsh tgpr; do
steps/decode_ctc_lat.sh --cmd "$decode_cmd" --nj 20 --beam 17.0 --lattice_beam 8.0 --max-active 5000 --acwt
data/lang phn_${1lm suffix} data/eval2000 $dir/decode_eval2000_${lm suffix} || exit 1;
done
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Eesen Recipe - Switchboard

https://github.com/yajiemiao/eesen

# Specify network structu

lstm layer num=4 #
lstm cell dim=320 #

dir=exp 110h/train_phn |
mkdir -p $dir

# Output the network to
utils/model topo.py --i
--lstm-cell-dim $lstm
--fgate-bias-init 1.0]

# Label sequences; simp
utils/prep_ctc_trans.py|
utils/prep_ctc_trans.py]|

# Train the network wit
steps/train_ctc_paralle]
-—-learn-rate 0.00004

data/train_lOOk_nodupwv. N — —

Decoding

# decoding

re and generate the network topology

input feat dim=120 # dimancion of tho innnt foaruroll

NO

HMM

GMM

Phonetic decision trees

Multiple training stages
Dictionaries, if characters are CTC
labels

lodel Training

pr_num \

text "<unk>" | gzip -c -
funk>" | gzip -c - > $dir/
LS

t 25000 \

for 1m suffix in swl_tg swl_fsh tgpr; do
steps/decode_ctc_lat.sh --cmd "$decode_cmd" --nj 20 --beam 17.0 --lattice_beam 8.0 --max-active 5000 --acwt
data/lang phn_ ${1lm suffix} data/eval2000 $dir/decode_eval2000_${1lm suffix}

done

|| exit 1;
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Results on WSJ

Experimental Setup

— 4 bi-directional LSTM layers, each with 640 memory cells

— 40-dimemsional log-mel filterbank features, plus A and AA

— Training utterances are sorted by their lengths, and 10 utterances are
processed in a batch each time

— WERs on the eval92 testing set

Phoneme-based Systems

— The CMU dictionary as the lexicon

— 72 labels including phonemes, noise marks and the blank

Character-based Systems

— 59 labels including letters, digits, punctuation marks and the blank.
34



Results on WSJ

Models | Vocabulary WERY

CTC Original NIST 7.87

Phone

Hybrid DNN Original NIST 7.14




Phone

Char

Models | Vocabulary WERY

Results on WSJ

CTC Original NIST 7.87
Hybrid DNN Original NIST 7.14
CTC Original NIST 9.07
CTC Expanded Retrained 7.34
Graves et al. Expanded Retrained 8.7
Hannun et al. Original Unknown 14.1
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Results on Switchboard

® Experimental Setup

— 300 hours of training speech; tested on the SWBD part of Hub5’00

— 5 bi-directional LSTM layers, each with 640 memory cells

— CTC labels: 46 phonemes (including the blank)

® |nitialization of Forget-gate Bias

— Initializing the forget gate bias to a larger value helps LSTM learn long-

term dependency [Jozefowicz et al.]

— The bias of the forget gates is initialized to 1.0

ir = U(Wzlxt + Wirhi—1 4+ Wicei—1 + by

fi =oc(Wsoxe + Werhi—1 + Weeei—1 +b

¢t =fi©Oci—1 +it © d(Weaxe + Werhe—1 + be
0: — U(W()I Xt + Wohht—l + W()( Ct + bo

)
/)
)
)



Results on Switchboard

Models | FGBias | WER%

CTC 0 15.7

CTC 1.0 15.0




Results on Switchboard

M #Model Param WER%

CTC 11M 15.0
Hybrid DNN 40M 16.9
Hybrid LSTM 12M 15.8

For fairness, all the systems use the filterbank features



Results on Switchboard

M #Model Param WER%

CTC 11M 15.0
300-Hour
Training | Hybrid DNN 40M 16.9
Hybrid LSTM 12M 15.8
m #Model Param WER%
CTC 8M 19.9
110-Hour
Training | Hybrid DNN 12M 20.2
Hybrid LSTM 8M 19.2




Decoding Efficiency

Models | Decoding Graph |_GraphsSize | RTF*

CTC TLG 123M 0.71
Hybrid DNN HCLG 216M 1.43
Hybrid LSTM HCLG 216M 1.12

* RTF — Real time factor



Frame Skipping

10
—) —J

blanks
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Frame Skipping

original

[x1. x2]  [X3. X4] [X5

frame skipping
training & decoding

#Frames Skipped | Decoding RTF WER%

0 0.71 15.0
1 0.38 15.8
2 0.25 16.5
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Frame Skipping

X1 X2 X3 X4 X5 [x1. x2] [X3, X4] [X5

frame skipping

original
training & decoding

#Frames Skipped | Decoding RTF WER%

0 0.71 15.0

1 0.38 15.8

<100Hrs — 2 0.25 16.5
110Hrs —> 0 L 19.9
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Results on HKUST Mandarin

® Experimental Setup
— Chinese Mandarin conversational telephone speech [Liu et al.]

— 175 hours of training

— CTC labels: 3600+ Chinese characters

Models | Features | __CER%

Hybrid DNN FBank 39.42

CTC FBank 39.70
CTC FBank+Pitch 38.67




Results on Multilingual CTC

® Experimental Setup

— BABEL multilingual corpora

— Around 80 hours of training speech per language

— Features: filterbank + pitch

Models | Training Hrs |_iilabels | _CTC WER%

Tagalog 84.5 48 51.5
Turkish 77.2 51 54.5
Pashto 78.4 54 56.6




Outline

Motivation

End-to-End Speech Recognition

— Deep LSTM Models
— CTC Training
— WEFST-based Decoding

Experiments & Analysis

Conclusions

48



Conclusions

® Conclusions
— We have presented a complete end-to-end ASR framework
— CTC models achieve comparable performance to the hybrid approach

— There are still a lot of unknowns about CTC

® (Open Questions
— How can we perform Keyword Search (KWS) over CTC models?
— How can we add context-dependency to CTC labels?
— How can we estimate i-vectors [Dehak et al.]?

— How can we perform pre-training of the deep BiLSTM models?
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