
Decoupled Sampling for Graphics Pipelines

JONATHAN RAGAN-KELLEY and JAAKKO LEHTINEN and JIAWEN CHEN
MIT CSAIL
and
MICHAEL DOGGETT
Lund University
and
FRÉDO DURAND
MIT CSAIL

We propose a generalized approach to decoupling shading from visibility
sampling in graphics pipelines, which we call decoupled sampling. Decou-
pled sampling enables stochastic supersampling of motion and defocus blur
at reduced shading cost, as well as controllable or adaptive shading rates
which trade off shading quality for performance. It can be thought of as
a generalization of multisample antialiasing (MSAA) to support complex
and dynamic mappings from visibility to shading samples, as introduced
by motion and defocus blur and adaptive shading. It works by defining a
many-to-one hash from visibility to shading samples, and using a buffer to
memoize shading samples and exploit reuse across visibility samples. De-
coupled sampling is inspired by the Reyes rendering architecture, but like
traditional graphics pipelines, it shades fragments rather than micropolygon
vertices, decoupling shading from the geometry sampling rate. Also unlike
Reyes, decoupled sampling only shades fragments after precise computa-
tion of visibility, reducing over-shading.

We present extensions of two modern graphics pipelines to support
decoupled sampling: a GPU-style sort-last fragment architecture, and a
Larrabee-style sort-middle pipeline. We study the architectural implications
of decoupled sampling and blur, and derive end-to-end performance esti-
mates on real applications through an instrumented functional simulator.
We demonstrate high-quality motion and defocus blur, as well as variable
and adaptive shading rates.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism; I.3.6 [Computer Graphics]: Method-
ology and Techniques; I.3.1 [Computer Graphics]: Graphics Hardware—
Graphics Processors

Additional Key Words and Phrases: Antialiasing, Defocus Blur, Depth of
Field, Graphics Hardware, Graphics Pipeline, Motion Blur, Reyes

1. INTRODUCTION

In modern real-time rendering, shading is very expensive. This is
mirrored in hardware: an increasing majority of GPU resources are
dedicated to complex shader and texture units, while much of the
rest of the graphics pipeline—including rasterization and triangle
setup—is small by comparison. Effects such as motion and defocus
blur that require heavy sampling over a 5D domain (pixel area, lens
aperture, and shutter interval) can therefore be very expensive if the
shading cost increases linearly with the number of samples, as is
the case with stochastic rasterization or an accumulation buffer. As
a result, these effects usually must be approximated with heuristics
for real-time applications. However, while high quality antialiasing,
motion, and defocus blur do require taking many samples of the
visibility function over a 5D domain, shading usually does not vary

dramatically over the shutter interval or lens viewpoints, and can
be prefiltered.

In this paper, we introduce decoupled sampling, which separates
the shading rate from visibility and geometry sampling for motion
blur, defocus blur, and variable shading rates in graphics pipelines.
We seek to shade at a lower rate—for example, approximately
once per pixel—but sample visibility densely to enable supersam-
pling effects at a reduced cost. Decoupled sampling is inspired by
multisample antialiasing (MSAA) and RenderMan’s Reyes archi-
tecture [Akeley 1993; Cook et al. 1987], which re-use the same
shaded color for multiple visibility samples. Multisampling com-
putes the color of a triangle once per pixel but supersamples vis-
ibility (Fig. 2), achieving antialiasing without increasing shading
cost. However, MSAA is limited to edge antialiasing, and a core
contribution of this paper is to extend this principle to motion blur,
defocus blur, and variable-rate or non-screen-space shading. These
effects are challenging for MSAA because the correspondence be-
tween shaded values and visibility samples becomes irregular. For
edge antialiasing, a color shaded at a given pixel applies only to the
visibility samples inside that pixel’s footprint, so there is a fixed
number of visibility samples per shading sample, and their corre-
spondence is both local (within the pixel) and static (fixed, indepen-
dent of the input). In contrast, for an effect such as motion blur, a
fragment-sized region of a triangle can be smeared over the screen,
and the correspondence depends on the motion.

Like Reyes, we seek to leverage the assumption that a scene
point’s color is roughly constant over the shutter interval, and from
all views on the lens. This assumption is key to enabling reuse
of shaded values. But unlike fragment shading graphics pipelines,
Reyes dices the geometry into micropolygons and shades them
before fully computing visibility. Shading before visibility leads
to overshading, where micropolygons are shaded but do not con-
tribute to the image because they fall between visibility samples
or are occluded. Modern implementations of Reyes use occlusion
culling to reduce overshading due to visibility, but this culling is
inherently conservative. Reyes also requires sampling geometry as
finely as shading, even for simple or flat surfaces: it decouples
shading from visibility, but couples the shading rate to the geom-
etry sampling rate. This is potentially wasteful: just splitting and
dicing into micropolygons is complex and expensive, and rasteriz-
ing micropolygons is dramatically more expensive than rasterizing
fewer large triangles [Fatahalian et al. 2009].

We set out to decouple shading from both visibility and geom-
etry sampling rates, in the presence of complex motion and defo-
cus blur, while shading only after resolving precise visibility. In
decoupled sampling, we explicitly map visibility samples to their
corresponding shading values using a deterministic mapping func-

ACM Transactions on Graphics, Vol. NN, No. N, Article NN, Publication date: 03 2011.

2 • J. Ragan-Kelley et al.
C

lassical M
S

A
A

N
o

 D
ep

th o
f F

ield
S

had
er executio

ns/p
ixel

w
ith d

eco
up

led
 sam

p
ling

1

27

Depth of Field using Decoupled Sampling
27 visibility samples/pixel
avg. 1.67 shader executions/pixel

Fig. 1. Efficient defocus blur using decoupled sampling in a recent Direct3D game, with 27 visibility samples per pixel. The heat map encodes the amount
of shading required over the image. Existing supersampling techniques would require 27 shading samples (red) over the entire image, which is prohibitively
expensive, while decoupled sampling achieves similar quality with an overall average shading cost of only 1.67 samples per pixel, similar to current edge
multisampling antialiasing (MSAA) with no defocus or motion blur. The visible tile structure in the heat-map is due to the rasterizer scanning pattern.

tion from the visibility domain (sampling over screen space, time,
and aperture) to a well-defined shading grid. This function accounts
for motion and defocus blur, shading rate variation, and any other
properties which influence the relationship. Shading is performed
on demand, triggered by visible samples, but at a lower rate than
visibility. Memoization—remembering already-computed shading
values and reusing them when shading is requested again at ex-
actly the same location—enables reuse across many visibility sam-
ples. Rasterization and shading operate directly on the input scene
polygons, which limits rasterization cost relative to micropolygon
rendering, but does not intrinsically enable displacement mapping.
Similar to MSAA and Reyes, decoupled sampling stores the frame-
buffer at the full supersampled resolution, and the savings relative
to brute force supersampling come from the fact that multiple of
those samples receive the same shading result. Together, this en-
ables supersampling effects such as defocus and motion blur at
greatly reduced shading cost, and also supports controllable and
adaptive per-primitive shading rates to trade shading cost for se-
lective super- or sub-sampling of shader evaluation, depending on
shader frequency content.

We present implementations of decoupled sampling that extend
two graphics pipeline architectures: a sort-last fragment pipeline,
similar to current GPUs, and the tile-based sort-middle pipeline of
Intel’s Larrabee [Molnar et al. 1994; Eldridge 2001; Seiler et al.
2008]. Our implementation and evaluation focused on three pri-
mary levels of validation:
• A feature-complete functional simulator of Direct3D 9 aug-

mented with decoupled sampling and stochastic rasterization
to validate the feasibility and resulting image quality of the al-
gorithms on real content, and its interaction with the subtleties
of a real API.
• Implementation in simulated parallel pipelines to confront ma-

jor architectural issues and validate the feasibility and correct-
ness of the proposed designs.
• Microbenchmarks, performed on real content with a combina-

tion of instrumentation and microarchitectural simulation in our
functional simulator, to isolate and study the effects of the key
design choices in our proposed real-world architectures.

2. RELATED WORK

2.1 Antialiasing, Motion, and Defocus Blur

Supersampling. High-quality antialiasing, motion, and defocus blur
can be computed by supersampled rendering, e.g. using an accu-
mulation buffer [Haeberli and Akeley 1990] or stochastic rasteri-
zation [Cook et al. 1984; Cook 1986; Akenine-Möller et al. 2007].
Stochastic rasterization with motion and defocus blur is expensive,
but recent results suggest that hardware implementation will make
it feasible in the near future [Fatahalian et al. 2009; Brunhaver et al.
2010]. Similarly, recent progress has improved the efficiency of hi-
erarchical Z culling in the presence of blur [Boulos et al. 2010].
Accumulation buffer rendering works by rendering samples in time
and on the lens as successive rendering passes. This linearly scales
the load across the entire pipeline and is generally too expensive
for modern games. Stochastic rasterization supersamples only the
fragment stages (not the per-vertex computation) of the graphics
pipeline, saving substantial overhead, but it still scales linearly in
fragment shading.

2D Blur Effects. Motion and defocus blur can also be approxi-
mated via a family of 2D blur techniques applied directly to a con-
ventional, non-blurred framebuffer [Hammon 2007; Rosado 2007].
These techniques require only a small framebuffer and perform
well on current hardware, but they suffer from approximations and
ambiguity in occlusion. Breaking the scene into layers reduces oc-
clusion artifacts, but cannot eliminate them with modest numbers
of layers [Max and Lerner 1985]. Recent layer-based algorithms
[Lee et al. 2009] can perform well, but at the cost of substantial al-
gorithmic complexity and numerous heuristics. In the limit, making
layered rendering fully support occlusion would require a layer per
primitive for shading. In effect this is exactly what decoupled sam-
pling does, but on-demand and in a fine-grained fashion within the
rendering pipeline, rather than as a series of global passes through
memory. To date, accurate stochastic visibility sampling remains
the method of choice for production-quality rendering.

ACM Transactions on Graphics, Vol. NN, No. N, Article NN, Publication date: 03 2011.

Decoupled Sampling for Graphics Pipelines • 3

2.2 Decoupled Shading and Reuse

Reyes. Decoupled sampling is inspired by Reyes’s separation of
shading and visibility rates. However, rather than using micro-
polygons, it rasterizes the input geometry directly, and shading is
driven by visibility samples, as in conventional graphics hardware.
Reyes pipelines have been implemented on stream processors and
GPUs [Owens et al. 2002; Zhou et al. 2009]. The problem of paral-
lel generation of micropolygons by splitting and dicing has been re-
cently treated by Patney and Owens [2008] and Fisher et al. [2009].
In contrast, we focus on enabling effects that require high visibil-
ity sampling rates and on enabling shading reuse in the presence of
blur.

Note that, in contrast to a simple single-layered framebuffer,
Pixar’s RenderMan implementation uses an A-buffer, which stores
a sorted list of visible micropolygons per sample. This enables
order-independent transparency, but requires complex, variable-
rate storage. We view the problem of order-independent trans-
parency as orthogonal to the shading architecture and stochastic
visibility sampling; our approach can benefit from similar multi-
layer framebuffer algorithms.

Lightspeed’s indirect framebuffer eliminates overshading and
enables interactive rendering of motion blur, defocus blur, and
transparency for relighting by preprocessing Reyes’ full visibil-
ity structure for a fixed scene and viewpoint [Ragan-Kelley et al.
2007]. Shadermaps [Jones et al. 2000] precompute time- and view-
independent parts of a shader to save computation over an entire
animation.

Recent work also has applied our model of explicitly decou-
pled sampling in the context of object-space shading, improving
on Reyes by decoupling shading from both visibility and geom-
etry sampling, and evaluating shading only after precise visibil-
ity [Burns et al. 2010]. This is decoupled sampling with a mapping
function defined between visibility samples and an object-space in-
stead of image-space shading grid.

Multisampling. MSAA can be seen as a specialized instance of
decoupled sampling where only subpixel x, y locations are sam-
pled [Akeley 1993]. It does not support motion blur, defocus, or
flexible shading domains since it requires a static, one-to-n rela-
tionship between shading and visibility samples. Motion and de-
focus blur can cause a one-pixel-sized region of a triangle, which
MSAA tries to treat as a single shading sample, to influence vari-
able numbers of visibility samples, potentially across many pixels.
Fragment merging uses buffering to opportunistically share shad-
ing between micropolygons without blur, but it still builds on the
traditional fixed screen space mapping of MSAA [Fatahalian et al.
2010].

Caching. A different way of reducing shading cost is to reuse
shaded values opportunistically from frame to frame. The Mi-
crosoft Talisman architecture [Torborg and Kajiya 1996] sought
heavy reuse by using 2D warping to update the full 3D view at
a lower frame rate. In contrast, we seek full 3D rendering but save
on shading costs. Reprojection caching techniques, including the
Reverse Reprojection Cache [Nehab et al. 2007; Sitthi-Amorn et al.
2008] and the approximation cache in Hasselgren’s Multiview Ras-
terization Architecture [2006], reuse values from previous frames
or views to approximate shading. When a cache miss occurs, they
recompute shading in the new view, but do not update the cache
for nearby samples to reuse. In decoupled sampling, when a cache
miss occurs, a shaded value is computed and the cache index is
updated immediately for subsequent samples to reuse. Shading is
performed in a single, well-defined discrete domain, so results are
deterministic regardless of whether they hit or miss in the cache.

color blend

shader

gpu memory

previous
framebuffer

updated
framebuffer

filtered
result

display

rasterizer

Fig. 2. Multisample antialiasing in a conventional GPU pipeline. Edge-
tests are computed and visibility is processed (in the framebuffer) at super-
sampled resolution, while shading is computed at pixel resolution. The final
display is filtered down to pixel resolution from the supersampled frame-
buffer. This decouples shading from visibility rates for the special case of
a regular and static relationship between shading and visibility, where both
are aligned in screen-space, but this regular correspondence breaks down
under effects like motion and defocus blur.

This is essential for avoiding artifacts due to discontinuities in the
subpixel spacing at which shading was performed (Fig. 3). Decou-
pled sampling is also robust to occlusion and transparency, because
it only reuses shading within a primitive. Further, Talisman and re-
projection caching store and fetch from the entire previous frame
buffer which must be streamed in from texture memory. In con-
trast, decoupled sampling processes all the samples for a triangle
together in a single pass and performs memoization dynamically
inside the pipeline. In particular, our memoization cache can be
small and kept on-chip because it only stores data for the triangles
that are in flight. It does not share computed values across frames.

Variable Shading Rates. Yang et al. [2008] apply global level-
of-detail per frame in a general real-time rendering system by ren-
dering a subsampled image and using edge-preserving upsampling
to the final resolution. Several earlier authors have also described
adaptive subsampling and intelligent upsampling in particular use
cases. Direct3D 10.1 can dynamically adapt shading frequency by
selecting between per pixel or per visibility sample shading in
MSAA. Decoupled sampling extends this and adds more flexibil-
ity, allowing for shading over arbitrary domains like object space,
and for continuous adaptation of the shading rate, where sample
correspondences are complex.

3. DECOUPLED SAMPLING

We first describe decoupled sampling in its simplest form, be-
fore discussing specific implementations in the context of high-
performance parallel pipelines. We define visibility samples as the
points which are tested against the triangle edges and the Z-buffer,
and shading samples as the points at which surface color is com-
puted.

ACM Transactions on Graphics, Vol. NN, No. N, Article NN, Publication date: 03 2011.

4 • J. Ragan-Kelley et al.

Traditional Opportunistic Shading Cache
(nondeterministic)

Decoupled Sampling
(deterministic)

0%
≥2
0%Reference

Error from
nondeterminism

Fig. 3. Decoupled shading vs. nondeterministic caching (Reprojection
Caching, Multiview Rasterization). Shading at the exact location of a shad-
ing cache miss, as done by nondeterministic caching schemes, introduces
visible errors. Decoupled sampling produces high-quality results by com-
puting shading at locations defined by a smooth, deterministic mapping
from visibility samples to a well-defined shading grid. Meanwhile, oppor-
tunistic caching results in an unpredictable and non-smooth mapping of
shading samples into screen space, producing order-dependent shading dis-
continuities.

3.1 Algorithm

Decoupled sampling builds on standard rasterization-driven graph-
ics pipelines, as shown by the following pseudocode.

1 for each triangle
2 setup, compute edge equations
3 for each visibility sample (x, y, u, v, t)
4 if inside triangle AND passes Z // visibility driven
5 // decoupled domain
6 map (x, y, u, v, t) to shading index S
7 if S is in memoization cache
8 color← cache[S] // reuse
9 else

10 // shade on-demand, at discrete location
11 color← compute shading at S
12 cache[S]← color // dynamic cache update
13 framebuffer[x,y,u,v,t]← color // fully supersampled

First, an input triangle is rasterized against visibility samples,
which might include extra dimensions for time t and lens uv (line
3–4). We assume an API extended to provide per-vertex motion
vectors as well as lens aperture size and focusing distance. Decou-
pled sampling is mostly agnostic to the details of rasterization, and
various strategies can be used, as described in our results.

To achieve decoupling, a visibility sample that passes rasteriza-
tion and early-Z is mapped into the shading domain of the current
triangle (line 6). For example, shading can be performed an ex-

no motion linear motion vectors rotationno motion

Fig. 4. Simple failure cases for our two key approximations: assuming lin-
ear motion over the shutter interval, and shading at a single discrete time and
aperture location per frame. Note the dilation and fuzzy edge of the spin-
ning red checkered sphere: with precise motion it should remain round and
hard-edged. Similarly, smeared specular highlights on the spinning beach-
ball should remain stationary.

pected once per pixel by mapping visibility samples to the same
barycentric location at the beginning of the exposure, in the view
from the center of the lens, and snapped to the middle of near-
est pixel. This provides a many-to-one mapping to a discrete grid,
and many visibility samples map to the same shading index. (Sec-
tion 3.2 discusses the possible mappings.)

This provides us with a deterministic shading index S, which is
tested against a memoization cache (line 7). The value for S might
have already been requested by another visibility sample mapping
to the same index, in which case we can simply reuse it and avoid
recomputation (line 8). If it is not present, we trigger a shading
request (line 11), and once the value is computed, we update the
cache immediately (line 12). When using a fixed-size cache to ap-
proximate memoization, we need to free old values to make room
for new ones when the output buffer is full. Our implementations
free the least recently used item, where time of use is updated each
time the entry is looked up. Note that, when there is a miss in the
cache, decoupled sampling shades at the discrete shading index S,
not at the location of the visibility sample. This gives smooth and
deterministic results, by always shading on a single grid defined by
the mapping function, rather than shading opportunistically at the
visibility sample location which generated the miss.

Finally, the framebuffer at the visibility sample location is up-
dated with the shaded value. Note that the framebuffer is stored at
the full supersampled resolution, but might contain the same shaded
value multiple times due to reuse in line 8, as in MSAA.

For intuition about reuse, one can consider all the visibility sam-
ples that share the same shading value: a given shading value gets
smeared across the screen according to motion blur or defocus. This
is in stark contrast to MSAA, where a shaded value only affects
visibility samples within a single pixel. But decoupled sampling is
a pull or gather process, where visibility samples request shading
values. This is in contrast with micropolygon shading, where col-
ors are computed on the surface first, and then scattered into all
visibility samples they may touch.

3.2 Decoupling Mapping

Our standard decoupling mapping S simply shades once at the be-
ginning (or middle) of the shutter interval, as seen from the cen-
ter of the lens. For this, the rasterizer provides barycentric coordi-
nates defined on the clip-space triangle for each visibility sample.
These clip-space barycentrics are used to compute the correspond-
ing clip-space position on the t = u = v = 0 triangle, which is
then projected onto the screen. We discretize the obtained image
coordinates to the nearest pixel center. Note that, in the absence of
motion and defocus blur, this gives the same result as MSAA. This
mapping from clip-space barycentrics to shading coordinates is a
simple 2D projection that can be represented by a 3× 3 matrix. In

ACM Transactions on Graphics, Vol. NN, No. N, Article NN, Publication date: 03 2011.

Decoupled Sampling for Graphics Pipelines • 5

this case, simply using pixel coordinates as cache tags, there is am-
biguity between primitives overlapping the same pixels. The cache
tags must also be extended to include the unique ID of each primi-
tive to unambiguously specify the value on that surface.

Another useful mapping function shades on a parametric grid in
object space. This allows object-space shading, but decoupled from
the geometry sampling rate, and with reduced overshading due to
only shading after precise visibility. This is evaluated by Burns et
al. [2010].

Degeneracies. The mapping from barycentrics to shading loca-
tions needs to be chosen so as to avoid degeneracies. For instance,
if the triangle is behind the eye in the beginning of the time inter-
val, its image as seen from the lens center at t = 0 is not a valid
shading domain. Similar cases include triangles that degenerate to
line segments as seen from the lens center. In such cases we choose
an alternate mapping. In practice, we use t = 1 if the correspond-
ing triangle is non-degenerate, or directly shade on a regular grid
in barycentric space in extreme cases where no single reference
view is sufficient, since this space is always well-defined. This can
be seen as the 3D/5D equivalent of shading at an alternate sam-
ple location if the pixel center is outside the triangle in 2D MSAA.
It should be noted that there is no overhead caused by degener-
ate mapping configurations: the decision is made once per triangle,
and does not affect rasterization, only the projective mapping from
barycentrics to shading coordinates. While we can give less guar-
antees on shading rate in these cases, the shading results are still
computed correctly. These cases are rare and do not show in our
results in any significant way.

Approximations. Like Reyes, our technique assumes that shading
does not vary much across the aperture and during the exposure.
While this is reasonable for many configurations, it has some limi-
tations. For instance, highly view-dependent reflections on moving
objects are not handled correctly; the highlight due to a station-
ary light on a spinning, glossy ball should stay the same over the
whole frame (Fig. 4, right). Similar to MSAA, once-per-pixel shad-
ing may also yield artifacts for complex non-linear shaders such as
bump-mapped specular objects (Fig. 5). Also, per-vertex motion
vectors cannot encode curved motion. This is notable for spinning
objects (Fig. 4, left). However, this limitation is orthogonal to de-
coupled sampling, and it can be addressed either by adding time
as a dimension in the decoupling mapping and shading cache in-
dices (so that the shading domain becomes a 3D volume), or like
RenderMan by combining decoupled sampling with accumulation
buffering.

3.3 Extensions

Bilinear Reconstruction. So far we have defined the cache look-
up as a nearest-neighbor filter: visibility samples take the value of
the closest corresponding shading location. We also support bilin-
ear reconstruction. If the shading domain is 2D (e.g. pixel grid at
t = 0 in the center view of the lens), we simply interpolate be-
tween the four closest shading locations. Note that this means that
a cache miss in line 8 of the pseudocode now triggers the compu-
tation of four values.1 This can be easily generalized to a shading
domain of higher dimensions, for instance trilinear look-ups with
shading values varying in both space and time. (See the figure in
supplementary material for an example.)

Controllable shading rate. The mapping between visibility sam-
ples and shading locations can be adjusted by the programmer on

1Note that in practice samples are shaded in quadruplets anyway because
of finite difference derivative computations. See Section 5.

4 visibility samples
1 shading sample

64 visibility samples
1 shading sample

4 visibility samples
4 shading samples

64 visibility samples
16 shading samples

Fig. 5. An illustration of controllable shading rate in the case of an alias-
ing bump map. Top row: At only 1 shading sample per pixel, visibility sam-
pling rate has no effect on the aliasing. Bottom row: Increasing the shading
sampling rate alleviates aliasing problems. The shading can be supersam-
pled at its own frequency independent of visibility. The shading rate can be
controlled per primitive or per shader.

a per-primitive or per-shader basis. In particular, it can be desirable
to adjust the shading rate according to the spatial complexity of
a shader: a matte shader can be sampled only once per pixel, but a
shiny surface with high-frequency bump mapping can require shad-
ing computation at full supersampled resolution to reduce aliasing
(Fig. 5). Decoupled sampling supports controllable shading rate
by simply modifying the mapping function S in line 5, allowing
smooth and continuous control of shading granularity. For exam-
ple, varying shading rate with screen-space fragment shading sim-
ply requires changing the discretization of the mapping function to
vary its quantization frequency.

Adaptive shading rate. Shading rate can also be adapted auto-
matically based on the configuration of the current primitive or ob-
ject. In the context of defocus blur, we have experimented with a
shading rate that depends on defocus blur such that the interval be-
tween shading samples is proportional to the circle of confusion.
The circle is computed conservatively at the vertices such that the
minimum blur dictates the shading rate for the whole primitive.
When the whole triangle is out of focus, the shading grid is coarser
than the pixel grid. Combined with bilinear reconstruction, this can
yield significant savings at little impact on the image. The image in
Fig. 6) was computed at little error at an average of 1.3 shader invo-
cations per pixel using adaptive shading grid resolution, compared
to the average shading rate of 2.05 when using a fixed 1:1 mapping.
Note that alpha-tested primitives cannot be effectively subsampled
because the shading affects visibility.

Similar extensions also apply to the Reyes algorithm. The key
difference between Reyes and explicit decoupled sampling is that

ACM Transactions on Graphics, Vol. NN, No. N, Article NN, Publication date: 03 2011.

6 • J. Ragan-Kelley et al.

5%

0%

Fig. 6. This image from Half-Life 2 Episode 2 was rendered with 27 vis-
ibility samples per pixel using adaptive shader subsampling and bilinear
reconstruction from a 256-quad shading cache. The shading rate was an av-
erage 1.3 times per pixel. The error plot shows relative image difference to
the same frame rendered using non-adaptive 1:1 mapping of screen pixels
to shading locations, which had an average shading rate of 2.05 per pixel.

decoupled sampling lazily evaluates shading only as required by
visibility, rather than precomputing grids of potentially relevant
samples. This is most significant in the case of shading at more
than one time during the shutter interval or point on the lens. In
these cases, Reyes requires splitting, dicing, and shading all geom-
etry at each shading time/lens sample, while decoupled sampling
just lazily fills in the samples in a logical 3D shading grid, which is
never directly evaluated.

3.4 Discussion

Decoupled sampling is visibility driven: shading values are com-
puted only when requested by a visible visibility sample. This is in
contrast to Reyes, where micropolygons are shaded before rasteri-
zation, with only conservative knowledge of visibility.

In contrast to opportunistic schemes that seek to reuse shad-
ing across primitives and frames, we reuse shading samples only
within a single primitive during a single frame. This makes our ap-
proach robust to occlusion and transparency, because other primi-
tives cannot occlude or change cache entries due to blending. While
the shading domain might be aligned with the screen, the cache
is independent of the framebuffer. In particular, exactly the same
shaded values are returned for a given visibility sample irrespective
of whether it was cached or recomputed, making the shading en-
tirely deterministic and independent of computation order (Fig. 3).
Furthermore, the freshly computed shading values are placed into
the cache immediately for fine-grained reuse without having to wait
for the next frame.

The mapping used for computing the shading index S for a given
x, y, u, v, t tuple is a free parameter in our method, enabling us to
super- or subsample shading spatially (Figs. 5, 6), or even easily
add more dimensions like time-dependency when necessary.

Shading generally requires derivatives for antialiasing, e.g., mip-
mapping. We enable this by shading quadruplets of shading sam-
ples at a time, similar to current GPUs. We incur similar overshad-
ing at boundaries, and also need to “snap” shading locations of
samples that fall out of the triangle to ensure valid interpolation.

Because memoized shading results stand in for actual shader ex-
ecution, any secondary results of the shader invocation must also
be retained. The transparency (alpha) values of shading samples

are carried along with their color. In addition, pixel and alpha
kill/discard results must be memoized and applied to all visibil-
ity samples that use the same shading sample. Similarly, all render
target outputs must be memoized together.

4. GRAPHICS PIPELINE IMPLEMENTATIONS

Decoupled sampling method was conceived with modern real-time
graphics pipelines in mind, meant to allow evolutionary imple-
mentations which retain existing optimizations where possible. We
explore the implementation of decoupled sampling in two main
graphics pipeline architectures: a sort-last fragment pipeline similar
to current hardware GPUs, and Larrabee’s tile-based sort-middle
pipeline [Molnar et al. 1994; Eldridge 2001; Seiler et al. 2008].

Decoupled sampling is implemented by augmenting these
pipelines with 1) a space-time-lens rasterizer that computes the
barycentrics of all visibility samples, using stochastic sampling for
lens and time, 2) decoupling logic that defines the mapping from
barycentrics to shading space and the hash to the shading indices,
3) a shading cache for memoization of shading samples, generally
stored on-chip and local to the shading system or fragment back-
end, and 4) cache management logic that manages reference count-
ing and shader completion tracking, as well as the replacement pol-
icy.

The primary concerns in real-time graphics systems are paral-
lelism and the memory hierarchy. Multithreading is used to hide
long memory latencies and maintain high ALU utilization, but re-
quires coherent behavior, as well as on-chip memory to maintain
state (registers) for the many parallel items in flight. Processing
order, driven by the synchronization points (sort-middle and sort-
last), determines memory access patterns and cacheability. Finally,
sorting and distributing parallel items at synchronization points re-
quires memory—either on-chip or off—for buffering. These archi-
tectural themes underlie our design considerations, and distinguish
the trade-offs and relative cost of different implementations in the
two styles of pipeline we studied.

4.1 Efficient Implementation

Costs. We first consider the basic costs of adding decoupled sam-
pling. An efficient real-time hardware implementation needs on-
chip memory to cache memoized shading values for quick reuse.
In many cases it is possible to reuse existing buffer points for
caching, but larger reuse windows might create pressure to make
them bigger. In practice, we find caching 1k shaded quad-fragments
is highly effective (Sec. 5.3). Motion and defocus blur may also im-
pact the efficiency of color and depth compression, though earlier
investigations have shown that some existing compression schemes
can still perform reasonably [Akenine-Möller et al. 2007]. In addi-
tion, there are modest arithmetic costs for tracking barycentrics for
visibility samples, mapping and hashing them to shading samples,
and performing cache lookups and management. These per-sample
costs are small compared to shading per visibility sample, but can
still grow significant as sampling rate increases.

Visibility & Shading Coherence. High performance graphics
pipelines drive fragment processing using screen-space 2D block
traversals optimized to maintain coherence simultaneously in visi-
bility computation, shading and texture access, and framebuffer up-
dates. By remaining visibility driven, decoupled sampling retains
visibility coherence optimizations, but because it decouples shad-
ing from visibility sampling, shading coherence is no longer explic-
itly guaranteed—motion and defocus blur cause the same shading
samples to touch many pixels. However, our experiments (Sec. 5.3)

ACM Transactions on Graphics, Vol. NN, No. N, Article NN, Publication date: 03 2011.

Decoupled Sampling for Graphics Pipelines • 7

indicate that a standard space-filling 2D traversal is sufficient to
maintain coherence in the shading cache, and in particular to avoid
pathological behavior. The reuse rate is influenced both by size of
the cache, and somewhat by the amount of motion and defocus blur.

While the basic decoupled sampling algorithm logically shades
individual shading samples, our implementations compute and
cache shading in blocks in shading space to enable coherent SIMD
execution, exactly as in a non-decoupled pipeline: the shading en-
gine is not altered, and intra-block coherence is identical. In par-
ticular, the shading request batch size can be used for trading off
potential overshading for greater shading coherence similar to ex-
isting GPUs.

Texture Coherence. While texture coherence is unaltered within
shading blocks, the order in which these blocks are issued can be
altered by decoupling. However, this effect is local: since triangles
are rasterized in order and do not share shading samples, reorder-
ing due to blur and shading cache misses may only occur within
the shading blocks generated by a single triangle. The modern dy-
namic thread schedulers that drive shaders (hardware schedulers
in traditional GPUs and software fiber switching in Larrabee) are
already designed to tolerate large fine-grained variation in texture
latency due to unpredictable misses. Our experiments confirm that
texture caching and bandwidth are largely unaffected by decoupled
sampling (Sec. 5.3).

4.2 Cache Management & Synchronization

To implement our cache in a modern pipeline with multiple asyn-
chronous and parallel stages and multiple triangles in-flight at once,
the shading cache indices are augmented with triangle IDs. The re-
sulting unique cache indices are used for tracking the cache entries
throughout their lifetime. Shaded colors are not consumed until the
back-end of the pipeline, and thus cache entries cannot be freed un-
til all outstanding references to them are fulfilled. Outstanding ref-
erences are tracked using simple reference counting. This is similar
to a conventional sort-last GPU pipeline, except that buffer entries
may be referenced by more than one fragment’s visibility samples,
so their reference count must be more than 1 bit. In addition, in
pipelines where shaders can complete out of order and indepen-
dently from framebuffer processing (like sort-last GPUs), an addi-
tional flag is needed to track whether a shading block has completed
and its results populated in the cache before it is used by the back-
end. Finally, when the output buffer is full, an old value is freed to
make room for a new one. Our implementation frees the least re-
cently used non-outstanding item. This is enforced conservatively:
when the cache is full with entries that have not been consumed,
new shading requests stall.

4.3 Sort-Last Fragment

Modern GPUs primarily use variants of the sort-last fragment ar-
chitecture (Fig. 7) for synchronization and enforcing in-order ex-
ecution: shaders execute in parallel, independent from pixel pro-
cessing, and complete out of order. Strict ordering is enforced us-
ing reorder buffers of hundreds or thousands of entries before the
raster operation (ROP) units that update the framebuffer. This al-
lows fragments to be kept asynchronous and independent to as late
as possible in the pipeline, maximizing available parallelism at the
cost of fine-grained global synchronization.

We propose to reuse the existing reorder buffer between the shad-
ing and framebuffer stages as an explicit cache (Fig. 7, bottom left).
In a standard pipeline, output slots are allocated for every block of
shading samples as it is sent to the shader, and they are freed as

shading visibility memory

shader

rasterizer

z, stencil

color
blend

fra
m

eb
uf

fe
r

3

152

24

3 1 2

3 1

triangle

visibility
samples

decoupling
indices

(if miss)

shading
samples

cache management

reorder buffer

sample
queue

early-z

sy
nc
hr
on
ou
s

as
yn
ch
ro
no
us

Fig. 7. A modern sort-last GPU fragment pipeline, augmented with de-
coupled sampling. Modifications required for decoupled sampling are high-
lighted in red. Decoupled sampling makes the generation of shading sam-
ples, and the tracking of their correspondence with visibility samples, ex-
plicit rather than implicit. This requires the addition of logic and commu-
nication to explicitly track decoupling. But, in a sort-last GPU, the actual
storage of memoized shading values can be inexpensive, reusing existing
buffers between shading and color blend.

soon as they are consumed by the framebuffer update. When the
reorder buffer is full, earlier stages of the pipeline stall.

For decoupled sampling, we similarly allocate storage for shaded
colors when new shading samples are issued. To leverage reuse, we
do not free values as soon as they are first consumed, but rather
leave them in the buffer to be potentially reused by future visibility
samples. When an already-present shading sample is requested, we
only emit the corresponding cache indices into the output buffer,
and reference count the corresponding buffer entries. This intro-
duces two new architectural pressures. First, higher reuse rates call
for extending the lifetime of items, implying an increase in the
buffer size. (We study the effect of cache size on shading reuse in
Sec. 5.) Second, the reorder buffer may require more fine-grained
read ports to support efficient reads from more than one shading
sample block per block of visibility samples. In general, though,
decoupled sampling is a natural fit in a modern sort-last pipeline,
since shading and visibility processing are already “decoupled” by
asynchronous execution.

We validated our design for synchronization and resource man-
agement by building a transaction-level simulator of a modern, par-
allel GPU fragment pipeline modeled after ATI R6xx and extended
with decoupled sampling. The greatest practical architectural pres-
sure is the high framebuffer bandwidth incurred by high supersam-
pling rates required by defocus and motion blur. This issue is or-
thogonal to decoupled sampling, but we studied it to understand its
role in the overall cost of motion and defocus blur (Section 5.3.3).

ACM Transactions on Graphics, Vol. NN, No. N, Article NN, Publication date: 03 2011.

8 • J. Ragan-Kelley et al.

4.4 Tile-Based Sort-Middle

In a tiling-based rendering architecture, a front-end pass trans-
forms primitives, computes their coverage, and enqueues them at
the screen tiles they overlap. A separate back-end pass processes
all pixels in each tile, shading them and blending them into the
framebuffer. By front-loading a screen-space sort of the geome-
try, they globally synchronize over triangles rather than pixels, and
thereby dramatically simplify concurrency in fragment and pixel
processing. Within a single pixel2, all processing is synchronous
and strictly in order over the lifetime of a rendering pass all the
way into the framebuffer. This execution model fundamentally cou-
ples shading and visibility samples by tying together shading with
framebuffer processing, so it does not require synchronization, re-
ordering or explicit inter-stage buffering in the back-end. The trade-
off for the simplicity of coarse-grained global synchronization is
that triangles may cover multiple tiles, requiring redundant stor-
age and processing. Any per-triangle back-end computation (raster,
interpolant construction, etc.) is potentially duplicated, as is tile
queue storage (termed bin spread by Seiler et al. [2008]), and visi-
bility and shading coherence is lost across tile boundaries because
of asynchrony between the tiles.

These design trade-offs are potentially challenging for decou-
pled sampling. Losing coherence across tiles reduces the effective-
ness of shading reuse, and any storage used by the shading cache
competes with the framebuffer in the on-chip memory. This is exac-
erbated by blur, which increases bin spread: higher visibility sam-
pling rates require more storage per pixel, reducing the screen area
covered by a tile in a fixed storage size, and motion and defocus
blur increase the screen extents of a triangle, and therefore the num-
ber of tiles into which it falls. (We study these effects on bin spread
in Sec. 5.3.3.) Finally, the coupled execution of shading and frame-
buffer (visibility) processing is most efficient with a predictable,
fixed relationship between shading and visibility samples, where
decoupled sampling creates (and exploits) a dynamically variable
relationship to reduce shading work.

A first strategy to implement decoupled sampling is to simply ex-
tend the back-end so that each visibility sample references a unique
shading sample, and prefix the back-end processing of each pixel
with a cache lookup (and update in case of a miss). However, the ir-
regular and variable rate relationship between visibility and shading
samples causes a significant shading load imbalance because fixed-
size chunks of visibility samples require radically different amounts
of shading work. This variable rate relationship also causes poor
SIMD utilization, because the whole SIMD batch of visibility sam-
ples needs to wait for shading completion in the case of even a sin-
gle shading cache miss. In a SIMD architecture, this is equivalent
to overshading due to shading an entire block whenever a single
sample misses in the cache.

An alternative is to split the back-end into two separate asyn-
chronous phases, much like the sort-last fragment pipeline: a shad-
ing phase that computes shading asynchronously from framebuffer
updates, and a ROP phase that performs in-order framebuffer up-
dates. This better mirrors the two natural computation domains of
decoupled sampling. A basic sort-middle tiling is still performed
first, and cores still perform back-end processing in a single pass.
Within that pass, however, worker threads that previously only per-
formed coupled shading-ROP tasks now dynamically schedule be-

2“Pixels” here is a simplification: synchronization is actually over frame-
buffer samples—output locations—so neighboring triangles covering adja-
cent but non-overlapping samples within a pixel may proceed concurrently,
since they do not affect the same parts of the framebuffer.

tween shading and framebuffer updates, in effect introducing a per-
tile sort-last stage to the pipeline. Just like in a sort-last implemen-
tation, buffering is used to queue ROP work which is blocked on
shading results, and to reorder shading samples as they complete.
This architecture is more amenable to decoupling, and avoids effec-
tive overshade due to load imbalance between pixels in a tile, but
at the cost of scheduling and buffering for two separate back-end
stages rather than one. In general, any implementation of decou-
pled sampling adds more relative memory overhead to a pipeline
with synchronous fragment shading and pixel processing than one
which already buffers between the two, like sort-last pipelines.

4.5 Discussion

A sort-last implementation of decoupled sampling naturally allows
for a single, global shading cache. This leads to maximal shading
reuse for a given raster traversal order and shading cache size, be-
cause coherence is not lost due to tiling. Such maximal reuse is
achieved at the cost of having to support concurrent access from
large numbers of threads through many fine-grained cache read
ports. However, as shader outputs need to be buffered and globally
reordered even without decoupling, other architectural changes are
small. Because memoization is implemented by allowing items to
remain buffered past their first use, the only effect of caching is ex-
tending the lifetime of entries past when they are first completed
and consumed by the color buffer. In this context, the effective
cache size overhead relative to a non-decoupled pipeline is those
items that would have been retired after first reference but are kept
for re-referencing. If the framebuffer processing is strictly in order,
this overhead is limited by the size of the triangle currently being
drained through the ROPs, even if many more are in-flight after it,
because their shading samples could not have been freed from the
buffer even without decoupling.

A sort-middle architecture presents a range of alternatives for im-
plementing the shading cache. While local, per-tile caches are the
simplest, it would also be possible to implement a global shading
cache accessed by all tiles concurrently. This is at odds with the
sort-middle design goal of reducing global synchronization, and
the lack of coherence across tiles—the parts of the same triangle
that fall into neighboring tiles may be processed far apart in time—
makes this approach less attractive. However, this trade-off could
be different for a hardware-scheduled sort-middle pipeline, which
can more easily afford fine-grained global synchronization than a
software pipeline like Larrabee. Still, the long-term trends towards
ever-greater parallelism will always favor less synchronization.

In our evaluation (Sec. 5), we focus on comparing a sort-last
architecture with a global cache to a sort-middle architecture in the
limit, with purely local caches and no inter-tile communication.

5. IMPLEMENTATION AND RESULTS

To study decoupled sampling, including API integration and other
details and interactions, we implemented it in a complete Direct3D
9 functional simulator, extended with APIs to control blur and shad-
ing rate3. We evaluate decoupled sampling on actual Direct3D ap-

3Decoupled sampling extends trivially to newer versions of Direct3D with
one exception: unordered access views in pixel shaders in Direct3D 11
fundamentally break the pure-functional nature of shading. Side-effecting
shaders cannot be evaluated a variable number of times without introduc-
ing nondeterminism. Unordered access views are already defined to provide
virtually no determinism guarantees, however. Integrating them with decou-
pled sampling suggests two potential routes beyond simply leaving behavior

ACM Transactions on Graphics, Vol. NN, No. N, Article NN, Publication date: 03 2011.

Decoupled Sampling for Graphics Pipelines • 9

plications running real shaders, including Half-Life 2, Episode 2
and Team Fortress 2, extended to include motion and defocus blur.
We study the architectural implications (cache and shading coher-
ence, framebuffer bandwidth, etc.) on these scenes and describe
results in Section 5.3.

5.1 Rasterizer Implementation

The rasterizer enumerates the visibility samples that a given input
triangle hits, and computes barycentric coordinates, which are sub-
sequently mapped into shading indices. While we here describe a
particular implementation, the choice of rasterization algorithm is
orthogonal to the rest of the decoupling pipeline.

Sampling Patterns. To enable motion and defocus blur, we raster-
ize triangles that vary over time and with samples that cover the lens
aperture. The samples in our framebuffer have five dimensions: two
for the subpixel x and y coordinates, and in addition, u, v for lens
location and t for time. Like current GPUs, we employ the same
x, y sampling pattern for all pixels, but employ stochastic raster-
ization and sample lens and time using 3D jittered grid sampling
patterns that repeat every 32× 32 pixels. (Accumulation buffering
shares the lens and time pattern across all pixels, which results in
highly disturbing aliasing artifacts—see Figure 8, left).

Hit Testing and Edge Functions. We dynamically classify each
triangle into moving/non-moving and blurring/non-blurring due
to defocus, and handle each of the four cases by a special-
ized algorithm. Stationary, non-defocus-blurred triangles are ras-
terized using an unchanged 2D hierarchical rasterizer. For tri-
angles that move, but do not exhibit defocus blur, we employ
time-continuous 3D homogeneous edge functions as proposed by
Akenine-Möller et al. [2007]. For handling stationary triangles that
undergo defocus blur, we introduce novel aperture-continuous 4D
edge functions. Analogously to time-continuous edge functions,
they simplify the per-sample visibility test by pushing common
computations out into the triangle setup. See Appendix A for de-
tails. In the fully general case of both motion and defocus blurred
triangles, we compute the warped triangle that corresponds to the
u, v, t of the sample and test for a hit directly, because this turns out
to be more efficient than using 5D time-aperture-continuous edge
functions.

Scanning Order. We rasterize the triangles by looping over pix-
els in the 2D screen bounding box of the triangle, computed as the
union of all possible time/lens projections. The screen is scanned
in tiles of 32 × 32 pixels, which are processed in a Z curve order.
Inside the tiles, individual quadruplets of pixels are also rasterized
along a Z curve. To avoid the cost of testing each sample in the
entire bounding rectangle, we utilize sub-rectangles defined by the
strata of our sampling pattern in a way similar to Pixar’s Render-
Man implementation, and also analyzed by Fatahalian et al. [2009]
for micropolygons.

Motion and defocus blur can alter the efficiency of different sam-
ple layouts and raster stamp traversal orders. We follow traditional
multisampling GPUs and densely store all subpixel samples for a
given pixel together in the same block. This corresponds to blocks
which are narrow in x, y but span the full u, v, t range. Motion and
defocus blur may also impact the efficiency of color and depth com-
pression. While earlier investigations have shown that some exist-
ing compression schemes may still perform reasonably [Akenine-

undefined: only evaluating the unordered access portion of the shader to run
once per unique shading sample, regardless of the number of times it may be
recomputed under cache pressure, or only allowing unordered access writes
at per-visibility sample frequency, which is not influenced by decoupling.

Möller et al. 2007], we view further evaluation of both memory
layouts and compression as orthogonal to decoupled sampling and
leave it as future work. All of our results assume no framebuffer
compression.

5.2 Qualitative Results

To compare image fidelity to accumulation buffering and full
stochastic supersampling with varying sampling rates, we present
results for an application featuring local deformable precomputed
radiance transfer (Fig. 8) [Sloan et al. 2005]. Decoupled sampling
(center) is compared to accumulation buffering (left) and stochastic
supersampling—both of which shade every visibility sample—and
observe shading quality similar to full stochastic supersampling at
only a fraction of the shading cost. The supplementary material
contains a video showing the scene in motion, including motion
blur and a focus rack, rendered using different numbers of visibil-
ity samples and the comparison algorithms.

5.3 Evaluation

We studied the effects of the additional computational and memory
requirements related to decoupled sampling, supersampled visibil-
ity, and motion and defocus blur by instrumenting our Direct3D
9 functional simulator. We gathered statistics on shading, texture,
and framebuffer coherence as a function of sampling rate, amount
of defocus/motion blur, and shading cache size for both tiled and
non-tiled architectures. The amount of blur or blur area is reported
as the average number of pixels a single shading sample touches.
This is equivalent to the average circle of confusion for scenes with
just defocus blur, and the length of the motion trails for pure motion
blur (assuming a 1-pixel wide path). The measurements are shown
in Figure 10 and analyzed below.

5.3.1 Shading Coherence. Figure 10 analyzes the effective-
ness of the shading cache in capturing reuse for different sizes of
cache and amounts of defocus and motion blur for two test scenes
for both global (sort-last) and tiled (sort-middle) implementations
of decoupled sampling. The Half-Life 2, Episode 2 scene (left col-
umn) exhibits defocus blur and the Team Fortress 2 scene (right
column) exhibits motion blur due to camera ego-motion. Figure 9
similarly analyzes shading cache coherence over 50 frames of an-
imation with simultaneous defocus and object motion blur for the
scene in Figure 8.

With a global (sort-last) shading cache, shading rate stays nearly
constant as a function of blur area and sampling rate, varying over
at most a 3x range from 8 samples/pixel with no blur to the most in-
coherent blur at 64 samples/pixel in the same scene (Fig. 10, right).
This is the goal of decoupled sampling, and it is extremely suc-
cessful. The game frames do exhibit some variation in shading rate
as a function of blur, likely because they both include large, heav-
ily blurred background polygons which are much larger than any
reasonable shading cache. The animated bats (Fig. 9 and accompa-
nying video), meanwhile, contain only small triangles and shading
rate exhibits virtually no variation (less than 20%) over an even
wider variation in blur area.

In a sort-middle implementation, local shading caches per tile
reduce potential shading reuse, because shading is not shared
across tile boundaries. Our simulation assumes no sharing between
screen-space tiles, which represents the worst-case behavior of
the most extreme tiled renderer design. Indeed, the shading rate
plateaus at a rather low reuse rate due to lost shading coherence.
With tiling, shading rate grows much more as a function of blur,
since blur increases bin spread. The slope of shading rate growth

ACM Transactions on Graphics, Vol. NN, No. N, Article NN, Publication date: 03 2011.

10 • J. Ragan-Kelley et al.

Accumulation buffering Decoupled Sampling Stochastic Supersampling

8
Vi

si
bi

lir
y

Sa
m

pl
es

 p
er

 P
ix

el
64

 V
is

ib
ilit

y
Sa

m
pl

es
 p

er
 P

ix
el

27
 V

is
ib

ilit
y

Sa
m

pl
es

 p
er

 P
ix

el

Shading rate: 3.3-4.0 Shading rate: 64 Shading rate: 64

Shading rate: 3.0-3.6 Shading rate: 27 Shading rate: 27

Shading rate: 2.6-3.0 Shading rate: 8 Shading rate: 8

Fig. 8. A comparison of accumulation buffering, decoupled sampling, and stochastic supersampling. Top to bottom: 8/27/64 samples/pixel. Decoupled
sampling (center) attains image quality similar to full stochastic supersampling (right) with only a small fraction of the shading cost. Accumulation buffering
(left) shows significant banding and strobing artifacts, despite shading just as much as stochastic supersampling, but provides a useful comparison, as it is the
only technique achievable directly on current hardware.

as a function of blur is steeper at higher sampling rates, since they
reduce effective tile size. However, even losing substantial shading
reuse due to tiling, decoupled sampling still shades significantly
fewer samples than supersampling. To emphasize this, the second
row of graphs shows the same data, but graphed as savings (higher
is better) compared to an idealized supersampling implementation
which shades exactly once per visibility sample. Even at high lev-
els of blur, though less effective than a global cache, the decou-
pled tiled renderer still shades 2–12x less than supersampling in
the game frames, with reasonably sized caches. The bats animation,
with even higher blur and substantial overshade on small polygon
boundaries (giving an ideal shading rate above 3), however, strug-
gles to shade much less than an idealized supersampling engine
with tiled caches, while a global cache still performs nearly per-
fectly.

Motion blur (Fig. 10, right) leads to greater shading incoherence
than defocus blur (Fig. 10, left) per unit of blur area. This is caused
by interaction with the 2D space-filling rasterization traversal or-
der: defocus blur is confined to a compact area on this space-filling
traversal, while motion blur causes longer streaks, spanning a wider
range of the traversal for the same number of pixels touched. De-

pendence on the raster traversal order also implies that motion di-
rection may affect shading coherence. We ran tests with synthetic
(uniform) motion blur to study the effect of motion direction, and
observed a ±20% variation over a 360◦ rotation, suggesting that
a standard space-filling order effectively mitigates pathological be-
havior.

The last row of graphs in Figure 10 depicts the savings obtained
as a function of cache size, at a fixed, moderate level of blur (cor-
responding to the images rendered elsewhere throughout the pa-
per, and indicated by the vertical lines in the two graphs above),
in comparison to an idealized supersampling renderer that shades
exactly once per visibility sample and does not suffer from over-
shading at triangle boundaries. Decoupled sampling with quad-
granularity shading blocks begins to outperform idealized super-
sampling (shading exactly once per visibility sample) when the
cache size reaches 128 shading samples. Increasing cache size con-
tinues to improve shading performance, especially for scenes with
blurry, large triangles (the game frames), up to thousands of sam-
ples for a global cache. A 4k-entry (16 kB, for 4 bytes/sample color)
global cache provides large benefits (4–35x for the test scenes) for
a cost that seems feasible at the time of writing. Conservative per-

ACM Transactions on Graphics, Vol. NN, No. N, Article NN, Publication date: 03 2011.

Decoupled Sampling for Graphics Pipelines • 11

Heavy
blur Moderate blur No blur

Moderate
blur No blur Heavy blur

0

1

2

3

4

5

Sort Last

●●●
● ● ● ● ● ● ● ● ● ●

●●● ● ● ● ● ● ● ● ● ● ●

●●● ● ● ● ● ● ● ● ● ● ●

0 50 100 150 200 250

Tiled

●
●● ●

● ● ● ● ● ● ● ● ●

●

●●
●

●
●

●
●

●

●
●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

0 50 100 150 200 250
0

5

10

15

Sort Last

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
● ●

●
●

● ● ● ● ●
●

●
●

●
●

0 20 40 60 80 100 120

Tiled

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100 120

Sa
m

pl
es

 s
ha

de
d

/ p
ix

el

Sa
m

pl
es

 s
ha

de
d

/ p
ix

el

Mean blur area (pixels) Mean blur area (pixels)Mean blur area (pixels) Mean blur area (pixels)

64 samples/pixel
27 samples/pixel
8 samples/pixel

M
od

er
at

e
bl

ur

M
od

er
at

e
bl

ur M
od

er
at

e
bl

ur M
od

er
at

e
bl

ur

be
tte

r

be
tte

r

64 samples/pixel
27 samples/pixel
8 samples/pixel

0

10

20

30

40

Sort Last

●●● ● ● ● ● ● ● ● ● ● ●

●●● ● ● ● ● ● ● ● ● ● ●

●
●● ●

● ●
●

● ●
●

●
●

●

0 50 100 150 200 250

Tiled

●●● ● ● ● ● ● ● ● ● ● ●

●

●● ●
● ● ●

● ● ● ● ● ●

●

●●
●

●
●

●

●
●

●
●

●
●

0 50 100 150 200 250
0

10

20

30

40

Sort Last

● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
● ● ●

●

●

●

●

●

●

●

●
●

●

0 20 40 60 80 100 120

Tiled

●
●

● ● ● ● ● ● ● ●

●

●

●

●
●

● ● ● ● ●

●

●

●

●

●
●

●
● ● ●

0 20 40 60 80 100 120

Sh
ad

in
g

sa
vi

ng
s

vs
. s

up
er

sa
m

pl
in

g

Sh
ad

in
g

sa
vi

ng
s

vs
. s

up
er

sa
m

pl
in

g

Mean blur area (pixels) Mean blur area (pixels)Mean blur area (pixels) Mean blur area (pixels)

M
od

er
at

e
bl

ur M
od

er
at

e
bl

ur

M
od

er
at

e
bl

ur

M
od

er
at

e
bl

ur

be
tte

r

be
tte

r

64 samples/pixel
27 samples/pixel
8 samples/pixel

64 samples/pixel
27 samples/pixel
8 samples/pixel

0

10

20

30

40

Sort Last

24 26 28 210 212 214

Tiled

24 26 28 210 212 214

0

10

20

30

40
Sort Last

24 26 28 210 212 214

Tiled

24 26 28 210 212 214

Sh
ad

in
g

sa
vi

ng
s

vs
. s

up
er

sa
m

pl
in

g

Sh
ad

in
g

sa
vi

ng
s

vs
. s

up
er

sa
m

pl
in

g

16 64 256 1k 4k 16k16 64 256 1k 4k 16k16 64 256 1k 4k 16k16 64 256 1k 4k 16k
Shading cache size (samples) Shading cache size (samples) Shading cache size (samples)Shading cache size (samples)

break-even break-even break-even break-even

be
tte

r

be
tte

r

64 samples/pixel
27 samples/pixel
8 samples/pixel

64 samples/pixel
27 samples/pixel
8 samples/pixel

Te
am

 F
or

tr
es

s
2

H
al

f-L
ife

 2
, E

pi
so

de
 2

Fig. 10. Shading work for global sort-last and purely local tiled implementations of decoupled sampling, as a function of blur and shading cache size, at 8, 27
and 64 visibility samples per pixel. Shading rate (row 1) is the average number of shader invocations per pixel of coverage (lower is better). Shading savings
gives the factor of reduction in shading work relative to an idealized supersampling implementation which shaded exactly one sample per visibility sample.
The dotted lines in the shading cache size graphs (row 3) show the ideal shading savings using an infinite-sized cache. The top 2 rows use a 4k-sample shading
buffer. The amount of blur is reported as the average area (in pixels) touched by a single shading sample. The horizontal axis ranges from no blur on the left
to severe blur on the right (illustrated in the top row images). The moderate blur setting corresponds to all renderings seen elsewhere in the paper.

ACM Transactions on Graphics, Vol. NN, No. N, Article NN, Publication date: 03 2011.

12 • J. Ragan-Kelley et al.

0

1

2

3

4
Sort Last

0 10 20 30 40 50
0

10

20

30

40

50

Tiled

0 10 20 30 40 50

Sh
ad

in
g

R
at

e

Frame

Fr
am

eb
uf

fe
r b

an
dw

id
th

 (M
B

/fr
am

e)

0

200

400

600

800

0 10 20 30 40 50

0

2

4

6

8

10

12

0 10 20 30 40 50

B
in

 S
pr

ea
d

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50

M
ea

n
B

lu
r A

re
a

(p
ix

el
s)

64 samples/pixel
27 samples/pixel
8 samples/pixel

64 samples/pixel
27 samples/pixel
8 samples/pixel

64 samples/pixel, 16x16 tile
27 samples/pixel, 32x16 tile
8 samples/pixel, 64x32 tile

Fig. 9. Shading rate, framebuffer bandwidth, bin spread, and blur area over
50 frames of animation of the scene in Fig. 8, with motion and defocus blur,
at 8, 27, and 64 samples per pixel. The animation cycle includes flapping
wings and racks focus from the front to the rear bat with a large aperture.
Sort-last shading rate is limited by overshading fragments on the edges of
very small triangles, and is minimally influenced by blur. Blur area grows
large enough that a tiled shading cache is insufficient to extract much reuse.
Framebuffer bandwidth scales over a 50% range as a function of scene blur.
Bin spread grows with large blur, especially with the small tiles required
at high sampling rates. Blur peaks at the end of the sequence when the
foreground bat is maximally out of focus. Blur area appears large, but dom-
inated by defocus, which is an area quantity; it corresponds to a mean blur
diameter of 30-90 pixels.

tile cache performance plateaus at a substantially lower cache size
and shading savings than the global cache.

5.3.2 Texture Coherence. While we maintain SIMD ALU co-
herence in shaders by shading multiple quadruplets of samples at
a time like a normal graphics pipeline, texture locality between
blocks might be affected by the on-demand ordering of shader in-
vocations and the introduction of blur. We studied this in our Di-
rect3D 9 pipeline with a 32kB 16-way set associative texture cache

with 64-byte lines, closely modeled after actual hardware. In the
Half-Life and Team Fortress frames, we observed per-texel hit rates
around 99.6% for non-blurred MSAA images at 8 samples/pixel,
and hit rates of over 99.7% for the defocus and motion blurred im-
ages using decoupled sampling for all visibility sampling rates. The
hit rate is slightly higher with decoupling because a modestly in-
creased shading rate generates more references to roughly the same
texels. Despite the higher hit rates, texture bandwidth requirements
are slightly larger than for the pinhole image (an additional 5–15%,
depending on the sampling rate) because more total samples are
shaded. Hit rates only deteriorate for � 8kB caches, and are no
worse than for single sampling. We conclude that the texture cache
effects of decoupled ordering are negligible, and that texture cache
performance is unaltered by decoupled sampling.

5.3.3 Visibility Coherence. To build a more holistic picture of
the broader architectural impact of motion and defocus blur, we in-
vestigated the changes in visibility bandwidth—framebuffer band-
width and ROP cache coherence for sort-last, and binning data for
sort-middle—caused by the blur. (Decoupled sampling is in itself
orthogonal to the question, as it only supplies the values read from
and written to the framebuffer.)

Bin Spread (Sort-Middle) As discussed in Section 4.4, blur and

0

2

4

6

8

10

12

● ● ● ●
●

● ● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100 120
0

1

2

3

4

●●●
● ● ● ● ● ● ● ● ● ●●●

●
●

●
●

●
●

●
●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

0 50 100 150 200 250
Mean blur area (pixels)Mean blur area (pixels)

B
in

 S
pr

ea
d

B
in

 S
pr

ea
d

Half-Life 2, Episode 2 Team Fortress 2

64 samples/pixel, 16x16 tile
27 samples/pixel, 32x16 tile
8 samples/pixel, 64x32 tile

Fig. 11. Bin spread for a tiled architecture as a function of mean blur
size and visibility sampling rate. Large blurs increase the number of tiles
touched by a single primitive, while higher sampling rates reduce the x, y
tile dimensions which fit in a given fixed-size memory. (This simulation
assumes tiles are bounded to at most 128kB.)

higher visibility sampling rates affect “bin spread,” the number of
screen tiles a primitive touches, in several ways. We studied the ef-
fects on our game data assuming tile memories of at most 128 kB.
This means tiles get smaller as sampling rates increase, and we ex-
pect steeper slopes for bin spread as a function of blur for higher
sampling rates. Figures 11 & 9 show bin spread as a function of
defocus and motion blur. Defocus blur (HL2, left) causes less dra-
matic bin spread increases than linear motion blur (TF2, right). This
is again explained by the fact that linear motion paths of similar to-
tal screen area are much longer than the lens blur. We conclude that
added memory pressure caused by high sampling rates, combined
with the effective increase in triangle size caused by blur, make
strong motion blur difficult to achieve without an increase in tile
memory size. However, moderate amounts of defocus blur seem
achievable with an acceptable performance penalty, especially at
lower sampling rates.

Framebuffer Bandwidth (Sort-Last) Sort-last pipelines stream
over the framebuffer in primitive order. In this context, the main
function of a ROP cache is not to allow reuse between primitives

ACM Transactions on Graphics, Vol. NN, No. N, Article NN, Publication date: 03 2011.

Decoupled Sampling for Graphics Pipelines • 13

0

500

1000

1500

2000
No Blur

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ●
●

22 23 24 25 26 27

Moderate Blur

● ● ● ● ●
●

●
●

●
●

●
●

●

●

●

●

●

●

22 23 24 25 26 27

0
1000
2000
3000
4000
5000
6000

No Blur

● ● ● ● ●
●

● ● ● ● ● ●

● ● ● ● ●
●

22 23 24 25 26 27

Moderate Blur

● ● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

22 23 24 25 26 27

1.5G

2.0G

500M

1.0G

5.0G
6.0G

1.0G

4.0G
3.0G
2.0G

4 8 16 32 64 128 4 8 16 32 64 128 4 8 16 32 64 128 4 8 16 32 64 128
ROP cache granularity (bytes/line)ROP cache granularity (bytes/line)

0
500

1000
1500
2000
2500
3000

No Blur

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

22 24 26 28 210 212

Moderate Blur

● ● ● ● ● ● ● ●
●

●
●

●

● ● ● ● ● ● ●
●

●
●

●

●

● ● ● ● ● ●
●

● ● ●
●

●

22 24 26 28 210 212

0

500

1000

1500

No Blur

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

22 24 26 28 210 212

Moderate Blur

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
●

●
●

●
●

● ●

● ● ● ● ●
●

● ● ● ●
●

●

22 24 26 28 210 212

ROP cache size (total kB)ROP cache size (total kB)

1.0G

1.5G

500M

3.0G
2.5G

500M

2.0G
1.5G
1.0G

4 16 64 256 1024 4096 4 16 64 256 1024 4096 4 16 64 256 1024 4096 4 16 64 256 1024 4096
ROP cache size (total kB) ROP cache size (total kB)

0

1000

2000

3000

●
●

●
● ● ● ● ● ● ●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●
●

●
●

0 20 40 60 80 100 120
0

500

1000

1500

●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●

●●●●
●●

●●
●●

●● ●●
●●

●●
●● ●● ●● ●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●

0 50 100 150 200 250
Mean blur area (pixels) Mean blur area (pixels)

1.5G

1.0G

500M

3.0G

2.0G

1.0G

by
te

s/
fr

am
e

by
te

s/
fr

am
e

by
te

s/
fr

am
e

Half-Life 2, Episode 2 Team Fortress 2

M
od

er
at

e
bl

ur

M
od

er
at

e
bl

ur

64 samples/pixel
27 samples/pixel
8 samples/pixel

64 samples/pixel
27 samples/pixel
8 samples/pixel

64 samples/pixel
27 samples/pixel
8 samples/pixel

64 samples/pixel
27 samples/pixel
8 samples/pixel

Fig. 12. Framebuffer bandwidth usage in a sort-last implementation of decoupled sampling for two game frames (Half-Life 2, Episode 2, left, and Team
Fortress 2, right) as a function of the amount of blur and ROP cache size. Top row: total framebuffer bandwidth as a function of blur area, using 64kB each
color and depth-stencil caches with 32-byte lines. Middle row: Framebuffer bandwidth in a moderately blurred frame as a function of ROP cache size, using a
32-byte line. Bottom row: Framebuffer bandwidth in a moderately blurred frame as a function of ROP cache granularity (line size), using 128kB total cache.
Note that, at line at a line size of one sample (4 bytes), the blurred renders incur identical bandwidth to the corresponding non-blurred renders.

updating the same samples, but to coalesce reads and writes for a
number of nearby covered samples into larger block transactions.
The key question, then, is what impact blur has on the ability to
coalesce streaming framebuffer accesses.

We studied ROP cache performance in our three test scenes by
measuring the amount of off-chip framebuffer bandwidth in three
scenarios: 1) as a function of blurriness with a fixed-size cache, 2)
as a function of ROP cache size in a moderately blurred frame, and
3) as a function of cache line size with a moderately blurred image
and a fixed-size cache. In our simulation, the framebuffer is laid
out along the same Z curve used for rasterizer traversal (Sec. 5.1).
The results are presented in Figure 12 & 9. As expected, for a
fixed cache and line size (of 128kB and 32 bytes, respectively),
we observe increases in bandwidth requirements with larger de-
focus and motion blurs. However, the increases remain within 50%
over MSAA (no blur) even in the case of severe defocus and motion

blurs: In short, coalescing still works with motion and defocus blur.
Blur does not increase the total number of samples being tested and
updated, it simply spreads them out in space. Neighboring regions
of the same surface, however, are likely to sparsely fill in other
samples within roughly the same space at roughly the same time,
and traditional caches are sufficient to capture this aggregate co-
herence in framebuffer access, both with and without blur. Increas-
ing cache size corresponds to enlarging the window over which
samples may be coalesced, while reducing line size corresponds
to allowing finer-grained transactions with memory. In the limit of
a single-sample line size, blurred and non-blurred versions of the
frame have effectively identical framebuffer bandwidth. In our re-
sults, reducing line size is the stronger lever than increasing cache
size, but can be more difficult to apply in practice. We expect that a
blur-oriented architecture would drive towards finer-grained lines,
and use a 32-byte line in our simulations. This is at least as large

ACM Transactions on Graphics, Vol. NN, No. N, Article NN, Publication date: 03 2011.

14 • J. Ragan-Kelley et al.

as the native atom of current memory technology, but smaller than
non-blur-oriented ROP cache designs would likely choose.

We conclude from our results that, while the bandwidth cost of
blurry rendering are nontrivial at high sampling rates due to the
large data size of a highly sampled and uncompressed framebuffer,
the increase in our tests of at most 50–60% due to blur is a mod-
est additional cost for such effects, and within the capabilities of
near-future memory systems. For instance, 27 visibility samples per
pixel deliver good quality and require 750–1200 MB of bandwidth
per frame in our example scenes.

5.3.4 Decoupling (Mapping to shading grid). To access the
shading cache, the rasterizer computes shading coordinates for each
visible sample by a 2D projective mapping. Its arithmetic cost is
the same as evaluating one 2D perspective-correct interpolant—
much less than supersampled shading—but this still must be done
for each visible sample. As visibility sampling rate grows, this
cost becomes nontrivial: in our simulations, it makes up 19–38%
of the total frame cost because shading cost is reduced so much
(Sec. 5.4). Like many features, decoupling should only be enabled
when needed: when blur, adaptive shading, or other applications
mean it would provide a significant savings in shading work.

5.3.5 Bilinear Reconstruction. All images/video, except
Fig. 6, where shading is subsampled in parts of the screen, use
nearest neighbor reconstruction from the shading cache. When
not using adaptive shading rates, we find the visual difference
between bilinear and nearest neighbor reconstruction negligible.
We re-simulated the Half-Life 2 frame at moderate blur with
bilinear reconstruction and the shading rate increased by at most
20% (due to overshade where bilinear samples required more
than 1 quad), with slightly less overhead for higher sampling
rates. Texture cache miss rate increased modestly but measurably
(per-texel hit rate dropped from 99.6% to 99.5%).

5.4 End-to-End Performance Estimates

While it is challenging to directly predict the absolute performance
of a hardware architecture that has not been built, we believe we
can offer a reasonable estimate of relative cost and an intuition
for overall performance of an actual implementation by using the
data gathered by our instrumented functional simulator. We mea-
sure the changes in arithmetic work and off-chip bandwidth caused
by motion blur, defocus blur, and decoupled sampling, in compari-
son to single-sampled rendering. We determine a baseline break-
down between the relative costs of pipeline stages for a single-
sampled render using the simulation framework and methodology
described by Seiler et al. [2008]. It simulates the full functionality
of the pipeline, attributing cost to categories of operations based on
separate cycle-accurate simulation, and adds delays based on de-
tailed simulation of architecture components (e.g. caches) during
functional execution of the specific frame. This gives a moderately
precise cost of rendering each scene, per-sample-shaded and per-
visibility sample rasterized and blended, at a 1x sampling rate, on
a specific hardware architecture (Larrabee). This model is accurate
for sort-middle architectures. We derive an approximate breakdown
for sort-last architectures from the same data by ignoring tiling-
related costs, and deriving framebuffer bandwidth from our own
ROP cache simulation (Fig. 12). We then model the effect of de-
coupled sampling by extrapolating per-sample costs based on the
exact numbers of samples shaded and rasterized, as well as bin
spread and bandwidth, simulated in our Direct3D 9 pipeline for
decoupled sampling with motion and defocus blur. While the ab-
solute performance estimated may not be precise, this provides a

first-order picture of the relative cost for different pipeline stages,
and the pipeline as a whole, at different sampling rates.

To derive the results, we make the following assumptions and ad-
ditions to the baseline single-sampled model. First, we assume that
the vertex stage does not scale. Second, we add a decoupling map-
ping cost for the decoupled sampling pipelines based on the arith-
metic cost on the same units used for shading. Third, we assume
that rasterization cost scales linearly in visibility sampling rate. A
stochastic rasterizer optimized comparably to a commercial 2D ras-
terizer is an open research problem and is orthogonal to decoupled
sampling; our performance model corresponds roughly to an accu-
mulation buffer rasterization strategy where a single aperture-time
sampling pattern is used for all pixels, and a complete 2D setup is
performed for each unique sample. This is more pessimistic than
MSAA, which is generally sub-linear in total rasterization cost, but
we expect blurry visibility to be less coherent. Fourth, we scale
fragment shading based on the number of samples shaded, which
we have precisely simulated for all configurations. For the super-
sampled renderer, this scales with the number of visibility sam-
ples. Finally, we use our simulated framebuffer bandwidth figures
for framebuffer traffic on the sort-last architecture, and extrapo-
lated bin bandwidth by the change in simulated bin spread on sort-
middle.

We simulate the performance of our two game frames at 1280×
720 resolution with tiled and global sort-last decoupled sampling
at 8, 27, and 64 samples per pixel, and compare to an idealized su-
persampling renderer which shades exactly one sample per visibil-
ity sample. Figure 13 presents these results broken down by major
pipeline stage, as well as simulated single-sampled and 4x MSAA
for comparison.

As visibility sampling scales, vertex processing drops from a
modest to a completely insignificant portion of total rendering cost.
(It is small enough to be invisible in these graphs.) Computational
costs for supersampling scale in direct proportion to the single-
sampled render, with the exception of vertex processing. Rasteriza-
tion (red) and framebuffer processing (orange), by contrast, grow
from a modest share of single-sampled rendering cost to a much
larger portion as sampling rates increase when decoupled sampling
is enabled. (By comparison, 4x MSAA only doubles rasterization
cost relative to single sampling in both frames.)

The key result is that decoupled sampling radically reduces shad-
ing cost (aqua) for these scenes, keeping it nearly constant with a
global sort-last cache, and not constant but still substantially re-
duced relative to supersampling with a tiled cache. Consequently,
decoupled sampling outperforms stochastic supersampling in total
rendering cost by large multiples as visibility sampling rates in-
crease. To achieve this win in shading cost, decoupled sampling
pays a per-visibility sample cost to compute the mapping to shad-
ing samples (purple). While small per sample, this cost scales with
sampling rate, and so becomes large as a fraction of overall cost at
high sampling rates. At any sampling rate, however, it still remains
far lower than the cost of shading per-visibility sample for any but
the most trivial shaders. In summary, decoupled sampling reduces
the overall computational cost of rendering these real game frames
extended with 64-sample motion and defocus blur by approxi-
mately 2–4x compared to full supersampling, and shading cost by
3–6x (factoring the cost of decoupling into shading), with both sort-
last and sort-middle rendering architectures.

Discussion. The shift in end-to-end computation balance from
shading towards visibility-related costs as sampling rates increase
suggests reevaluating the trend away from fixed-function visibility
hardware: implementing rasterization and decoupling arithmetic as
fixed-function units will likely significantly reduce their share of

ACM Transactions on Graphics, Vol. NN, No. N, Article NN, Publication date: 03 2011.

Decoupled Sampling for Graphics Pipelines • 15

1x 4x
SS

64x
SL TSS

27x
SL TSS

8x
SL TMSAA

1x 4x
SS

64x
SL TSS

27x
SL TSS

8x
SL TMSAA

framebuffer
shade
decoupling
binning
rasterization
vertex

Team Fortress 2Half-Life 2, Episode 2

N
o

rm
al

iz
ed

 p
er

fo
rm

an
ce

 (v
s.

 4
x

M
S

A
A

)

0

5

10

15

1

Fig. 13. Estimated relative end-to-end costs for the Half-Life 2 (left graph) and Team Fortress 2 (right graph) frames, measured in relation to a 4x MSAA
rendering without motion or defocus blur. The bars show estimated relative costs of pipeline stages for sort-last decoupled sampling (SL), tiled decoupled
sampling with per-tile caches (T) and supersampling (SS) for 8, 27 and 64 visibility samples per pixel. Also shown is a single-sampled rendering.

the total cost. Furthermore, these games have relatively inexpensive
shading; the win of decoupling (and relative cost of shading in both
sort-last and tiled implementations) would grow rapidly with the
more expensive shaders of the most cutting-edge titles. The trend
to more expensive shading is only expected to increase in the future.

Though we focus on relative end-to-end performance scaling,
rather than absolute frames per second deliverable on a specific ar-
chitecture, the total computational costs, in terms of the Larrabee
model used as a baseline, are sufficient for all decoupled sampling
tests to achieve 60Hz performance on these scenes within current-
generation hardware resources. The required bandwidth is also
achievable, although much higher than current compressed MSAA
rendering, for all but 64x sampling, which is near the limits of
current hardware. Hierarchical Z and compression would improve
this, but such high sampling rates are fundamentally bandwidth-
intensive. We conclude that a real-time implementation is many
times faster than full supersampling, and likely feasible to imple-
ment.

6. CONCLUSIONS

Decoupled sampling enables the rendering of defocus and motion
blur at reduced shading costs. This is achieved by decoupling shad-
ing from visibility sampling. Our caching approach can be seen as
wholly deterministic function memoization, in contrast to schemes
that opportunistically approximate using previous frames or views.
Our results demonstrate that micropolygon shading, as in Render-
Man’s Reyes architecture and the Razor ray tracer [Stoll et al.
2006], is only one choice in the design space of architectures to
decouple shading from visibility sampling. Decoupled sampling
has the advantage over micropolygon shading that it only com-
putes shading after precise visibility, reducing overshade in com-
plex scenes with opaque surfaces. (Though micropolygon renderers
perform conservative culling before shading, studies of real scenes
have shown significant over-shading of non-visible points in Ren-

derMan [Ragan-Kelley et al. 2007].) Decoupled sampling also al-
lows decoupled shading and visibility sampling with larger-than-
sub-pixel polygons, saving geometry processing overhead where
possible. Finally, our approach imposes only limited alteration of
current sort-last architectures, mostly the addition of a cache man-
agement unit. In all, it makes real-time rendering of motion and
defocus blur feasible with modest extensions to current graphics
pipelines.

Decoupled sampling is also feasible for sort-middle pipelines,
but it requires a larger change to the basic sort-middle model to
be efficient, and still struggles to achieve high shading efficiency
in some situations due to loss of coherence across tile boundaries.
More generally, blur and high sampling rates are fundamentally
challenging for tiling architectures. While we have studied a lo-
cal, per-tile cache, a global cache has potential for much higher
wins, provided it is large enough to alleviate the effects of poor co-
herence between tiles. Spilling cache entries off-chip could keep
local memory pressure low, while allowing a cache large enough to
push a tiled renderer back towards the shading rates achievable by
the global cache of a sort-last architecture. For expensive shaders,
a per-sample gather even from off-chip may still be less expen-
sive than full recomputation of shading. In addition, optimizing the
scheduling order between tiles might regain some lost visibility co-
herence. One could potentially even choose to interleave tile pro-
cessing to trade the framebuffer bandwidth of spilling and reload-
ing tile memory for greater shading coherence. Studying the trade-
off of global vs. local synchronization for caching is natural future
work.

Because decoupled sampling fundamentally supersamples visi-
bility while sampling shading at a dramatically lower rate, the load
balance among stages changes with decoupling. This is fine for a
software renderer, but in a hardware pipeline could require over-
provisioning hard-wired visibility resources. Conversely, finer-
grained synchronization allows better shading reuse, and fine-

ACM Transactions on Graphics, Vol. NN, No. N, Article NN, Publication date: 03 2011.

16 • J. Ragan-Kelley et al.

grained synchronization is much cheaper in special-purpose hard-
ware.

Stochastic motion and defocus blur make visibility more expen-
sive both in terms of rasterization efficiency and framebuffer stor-
age. We found that framebuffer caches are still effective, but blur
creates pressure to consider finer-grained line sizes and perhaps
larger caches. While we have pursued rasterization to some degree,
this area is an interesting avenue of future work. In particular, a
space-filling pattern is well suited to defocus, but is less ideal for
strong motion, suggesting that traversing along motion lines should
be investigated. This could improve shading reuse under large blur.
In addition, framebuffer compression requires further study.

Like with MSAA, multi-pass deferred shading is challenging for
decoupled shading and visibility rates since it traditionally uses vis-
ibility structures (the framebuffer) to encode shading information.
The scattering of shaded values due to lens and motion blur com-
pounds the difficulties. However, this is not a fundamental algo-
rithmic problem with decoupling, but an artificial constraint of the
multi-pass fashion in which deferred shading is currently imple-
mented. We believe decoupling (like MSAA) would be compatible
with a pipeline built to be natively aware of deferred shading.

Finally, the abstract idea of decoupled sampling is not tied to
a rasterization-based hardware rendering architecture. It is easy
to see that a whole continuum of applications, ranging from the
standard hardware pipelines we have studied through micropoly-
gon renderers to ray tracing can be easily formulated using our
recipe; the main difference of such potential implementations to
usual caching schemes is that decoupled sampling uses a consis-
tent mapping between separate shading and visibility domains, and
deterministically memoizes the shading results, rather than oppor-
tunistically reusing results which can yield effectively irregular
shading sampling. In the future we intend to study decoupled sam-
pling in a ray tracing environment. This presents several interesting
possibilities, such as introducing shading LOD, as determined by
ray differentials, as an additional dimension in the cache key.

ACKNOWLEDGMENTS

Jason Mitchell provided generous help in capturing real game
scenes. All Half-Life and Team Fortress content is courtesy of
Valve Software. This work was supported by Singapore-MIT Gam-
bit and a grant from Intel Corp. Jonathan Ragan-Kelley was sup-
ported by NVIDIA and Intel PhD fellowships.

REFERENCES

AKELEY, K. 1993. RealityEngine graphics. In Proceedings of SIGGRAPH
93. Computer Graphics Proceedings, Annual Conference Series. 109–
116.

AKENINE-MÖLLER, T., MUNKBERG, J., AND HASSELGREN, J. 2007.
Stochastic rasterization using time-continuous triangles. In Graphics
Hardware 2007. 7–16.

BOULOS, S., LUONG, E., FATAHALIAN, K., MORETON, H., AND HAN-
RAHAN, P. 2010. Space-time hierarchical occlusion culling for micro-
polygon rendering with motion blur. In Proceedings of High Performance
Graphics 2010. 11–18.

BRUNHAVER, J., FATAHALIAN, K., AND HANRAHAN, P. 2010. Hardware
implementation of micropolygon rasterization with motion and defocus
blur. In Proceedings of High Performance Graphics 2010. 1–9.

BURNS, C. A., FATAHALIAN, K., AND MARK, W. R. 2010. A lazy object-
space shading architecture with decoupled sampling. In Proceedings of
High Performance Graphics 2010. 19–28.

COOK, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans-
actions on Graphics 5, 1 (Jan.), 51–72.

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The reyes im-
age rendering architecture. In Computer Graphics (Proceedings of SIG-
GRAPH 87). 95–102.

COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Distributed ray
tracing. In Computer Graphics (Proceedings of SIGGRAPH 84). 137–
145.

ELDRIDGE, M. 2001. Designing graphics architectures around scalability
and communication. Ph.D. thesis, Stanford University.

FATAHALIAN, K., BOULOS, S., HEGARTY, J., AKELEY, K., MARK,
W. R., MORETON, H., AND HANRAHAN, P. 2010. Reducing shading
on gpus using quad-fragment merging. ACM Transactions on Graph-
ics 29, 4 (July), 67:1–67:8.

FATAHALIAN, K., LUONG, E., BOULOS, S., AKELEY, K., MARK, W. R.,
AND HANRAHAN, P. 2009. Data-parallel rasterization of micropoly-
gons with defocus and motion blur. In Proceedings of High Performance
Graphics 2009. 59–68.

FISHER, M., FATAHALIAN, K., BOULOS, S., AKELEY, K., MARK, W. R.,
AND HANRAHAN, P. 2009. DiagSplit: Parallel, crack-free, adaptive
tessellation for micropolygon rendering. ACM Transactions on Graph-
ics 28, 5 (Dec.), 150:1–150:10.

HAEBERLI, P. E. AND AKELEY, K. 1990. The accumulation buffer: Hard-
ware support for high-quality rendering. In Computer Graphics (Pro-
ceedings of SIGGRAPH 90). 309–318.

HAMMON, E. 2007. Practical post-process depth of field. In GPU Gems 3,
H. Nguyen, Ed. Addison Wesley, Chapter 28, 583–605.

HASSELGREN, J. AND AKENINE-MÖLLER, T. 2006. An efficient multi-
view rasterization architecture. In Rendering Techniques 2006: 17th Eu-
rographics Workshop on Rendering. 61–72.

JONES, T., PERRY, R., AND CALLAHAN, M. 2000. Shadermaps: a method
for accelerating procedural shading. Tech. Rep. 2000-25, Mitsubishi
Electric Research Labs.

LEE, S., EISEMANN, E., AND SEIDEL, H.-P. 2009. Depth-of-field ren-
dering with multiview synthesis. ACM Transactions on Graphics 28, 5
(Dec.), 134:1–134:6.

MAX, N. L. AND LERNER, D. M. 1985. A two-and-a-half-D motion-blur
algorithm. In Computer Graphics (Proceedings of SIGGRAPH 85). 85–
93.

MOLNAR, S., COX, M., ELLSWORTH, D., AND FUCHS, H. 1994. A sort-
ing classification of parallel rendering. IEEE Computer Graphics and
Applications 14, 4, 23–32.

NEHAB, D., SANDER, P. V., LAWRENCE, J., TATARCHUK, N., AND

ISIDORO, J. R. 2007. Accelerating real-time shading with reverse re-
projection caching. In Graphics Hardware 2007. 25–35.

OLANO, M. AND GREER, T. 1997. Triangle scan conversion using 2d ho-
mogeneous coordinates. In 1997 SIGGRAPH / Eurographics Workshop
on Graphics Hardware. 89–96.

OWENS, J. D., KHAILANY, B., TOWLES, B., AND DALLY, W. J. 2002.
Comparing Reyes and OpenGL on a stream architecture. In Graphics
Hardware 2002. 47–56.

PATNEY, A. AND OWENS, J. D. 2008. Real-time Reyes-style adaptive
surface subdivision. ACM Transactions on Graphics 27, 5 (Dec.), 143:1–
143:8.

RAGAN-KELLEY, J., KILPATRICK, C., SMITH, B. W., EPPS, D., GREEN,
P., HERY, C., AND DURAND, F. 2007. The Lightspeed automatic in-
teractive lighting preview system. ACM Transactions on Graphics 26, 3
(July), 25:1–25:11.

ROSADO, G. 2007. GPU gems 3. Addison Wesley, Chapter Motion Blur
as a Post-Processing Effect, 575–581.

ACM Transactions on Graphics, Vol. NN, No. N, Article NN, Publication date: 03 2011.

Decoupled Sampling for Graphics Pipelines • 17

SEILER, L., CARMEAN, D., SPRANGLE, E., FORSYTH, T., ABRASH, M.,
DUBEY, P., JUNKINS, S., LAKE, A., SUGERMAN, J., CAVIN, R., ES-
PASA, R., GROCHOWSKI, E., JUAN, T., AND HANRAHAN, P. 2008.
Larrabee: A many-core x86 architecture for visual computing. ACM
Transactions on Graphics 27, 3 (Aug.), 18:1–18:15.

SITTHI-AMORN, P., LAWRENCE, J., YANG, L., SANDER, P. V., AND NE-
HAB, D. 2008. An improved shading cache for modern GPUs. In Graph-
ics Hardware 2008. 95–101.

SLOAN, P.-P., LUNA, B., AND SNYDER, J. 2005. Local, deformable pre-
computed radiance transfer. ACM Transactions on Graphics 24, 3 (Aug.),
1216–1224.

STOLL, G., MARK, W. R., DJEU, P., WANG, R., AND ELHASSAN, I.
2006. Razor: An architecture for dynamic multiresolution ray tracing.
Tech. Rep. 06-21, University of Texas at Austin.

TORBORG, J. AND KAJIYA, J. 1996. Talisman: Commodity real-time 3D
graphics for the PC. In Proceedings of SIGGRAPH 96. Computer Graph-
ics Proceedings, Annual Conference Series. 353–364.

YANG, L., SANDER, P. V., AND LAWRENCE, J. 2008. Geometry-aware
framebuffer level of detail. Computer Graphics Forum 27, 4 (June),
1183–1188.

ZHOU, K., HOU, Q., REN, Z., GONG, M., SUN, X., AND GUO, B. 2009.
Renderants: Interactive reyes rendering on gpus. ACM Transactions on
Graphics 28, 5 (Dec.), 155:1–155:11.

APPENDIX

A. APERTURE-CONTINUOUS EDGE FUNCTIONS

Four-dimensional edge functions may be derived following Olano
and Greer [1997]. Their ordinary 2D homogeneous edge equations
are exactly the rows of the inverse of the 3 × 3 matrix V formed
whose columns are the xw, yw,w coordinates of the three vertices
of the triangle. Now, the effect of the lens parameters u and v are
shears in camera space: x and y are translated parallel to the im-
age plane by amounts that depend on the distance of the vertex to
the focal plane. This shear can be represented in clip space by the
matrix

S(u, v) =

1 0 −Hu/J Hu
0 1 −Iv/J Iv
0 0 1 0
0 0 0 1

 ,

where H, I, J are constants that depend on the world-space focus-
ing distance, aperture size, field of view, and near and far clipping
plane distances. The final 4D edge functions are given by the rows
of (S(u, v)V)−13 , where the subscript denotes the dropping of the
third column and row (the z coordinates). Expanding the inverse
using Cramer’s rule reveals the form of each edge function:

1

N(u, v)

 Av +B
Cu+D

Eu+ Fv +G

T

. (1)

Here N(u, v) = det(S(u, v)V)3 is a normalization term shared
between all three edge functions and A . . .G are different for each
of the three functions. N(u, v) is a linear polynomial of u, v. Once
the edge function has been evaluated for a given u, v pair, test-
ing a pixel (x, y, 1) against it is computed as a dot product. Note
that (B,D,G) form the usual 2D edge function in the absence of
defocus. Also note that the normalization is required only for com-
puting barycentrics after a hit has already been determined using
the unnormalized formula. Owing to the well-mannered nature of

the depth-of-field warp, the 4D edge functions are, interestingly,
cheaper to set up and to evaluate per visibility sample than time-
continuous 3D edge functions.

ACM Transactions on Graphics, Vol. NN, No. N, Article NN, Publication date: 03 2011.

