
Helium: Lifting High-Performance Stencil Kernels
from Stripped x86 Binaries to Halide DSL Code

Charith Mendis† Jeffrey Bosboom† Kevin Wu† Shoaib Kamil† Jonathan Ragan-Kelley‡

Sylvain Paris� Qin Zhao? Saman Amarasinghe†
†MIT CSAIL, Cambridge, MA, USA

‡Stanford University, Palo Alto, CA, USA
�Adobe, Cambridge, MA, USA ?Google, Cambridge, MA, USA

{charithm,jbosboom,kevinwu,skamil,saman}@csail.mit.edu
jrk@cs.standford.edu sparis@adobe.com zhaoqin@google.com

Abstract
Highly optimized programs are prone to bit rot, where performance
quickly becomes suboptimal in the face of new hardware and com-
piler techniques. In this paper we show how to automatically lift
performance-critical stencil kernels from a stripped x86 binary and
generate the corresponding code in the high-level domain-specific
language Halide. Using Halide’s state-of-the-art optimizations tar-
geting current hardware, we show that new optimized versions of
these kernels can replace the originals to rejuvenate the application
for newer hardware.

The original optimized code for kernels in stripped binaries is
nearly impossible to analyze statically. Instead, we rely on dynamic
traces to regenerate the kernels. We perform buffer structure recon-
struction to identify input, intermediate and output buffer shapes. We
abstract from a forest of concrete dependency trees which contain
absolute memory addresses to symbolic trees suitable for high-level
code generation. This is done by canonicalizing trees, clustering
them based on structure, inferring higher-dimensional buffer ac-
cesses and finally by solving a set of linear equations based on
buffer accesses to lift them up to simple, high-level expressions.

Helium can handle highly optimized, complex stencil kernels
with input-dependent conditionals. We lift seven kernels from Adobe
Photoshop giving a 75% performance improvement, four kernels
from IrfanView, leading to 4.97× performance, and one stencil from
the miniGMG multigrid benchmark netting a 4.25× improvement
in performance. We manually rejuvenated Photoshop by replacing
eleven of Photoshop’s filters with our lifted implementations, giving
1.12× speedup without affecting the user experience.
Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming—Program transformation; D.2.7
[Software Engineering]: Distribution, Maintenance and Enhancement—
Restructuring, reverse engineering, and reengineering
Keywords Helium; dynamic analysis; reverse engineering; x86
binary instrumentation; autotuning; image processing; stencil com-
putation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI’15, June 13–17, 2015, Portland, OR, USA.
Copyright c© 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

1. Introduction
While lowering a high-level algorithm into an optimized binary exe-
cutable is well understood, going in the reverse direction—lifting
an optimized binary into the high-level algorithm it implements—
remains nearly impossible. This is not surprising: lowering elimi-
nates information about data types, control structures, and program-
mer intent. Inverting this process is far more challenging because
stripped binaries lack high-level information about the program. Be-
cause of the lack of high-level information, lifting is only possible
given constraints, such as a specific domain or limited degree of ab-
straction to be reintroduced. Still, lifting from a binary program can
help reverse engineer a program, identify security vulnerabilities, or
translate from one binary format to another.

In this paper, we lift algorithms from existing binaries for the
sake of program rejuvenation. Highly optimized programs are es-
pecially prone to bit rot. While a program binary often executes
correctly years after its creation, its performance is likely subop-
timal on newer hardware due to changes in hardware and the ad-
vancement of compiler technology since its creation. Re-optimizing
production-quality kernels by hand is extremely labor-intensive,
requiring many engineer-months even for relatively simple parts
of the code [21]. Our goal is to take an existing legacy binary, lift
the performance-critical components with sufficient accuracy to
a high-level representation, re-optimize them with modern tools,
and replace the bit-rotted component with the optimized version.
To automatically achieve best performance for the algorithm, we
lift the program to an even higher level than the original source
code, into a high-level domain-specific language (DSL). At this
level, we express the original programmer intent instead of obscur-
ing it with performance-related transformations, letting us apply
domain knowledge to exploit modern architectural features without
sacrificing performance portability.

Though this is an ambitious goal, aspects of the problem make
this attainable. Program rejuvenation only requires transforming
performance-critical parts of the program, which often apply rel-
atively simple computations repeatedly to large amounts of data.
Even though this high-level algorithm may be simple, the generated
code is complicated due to compiler and programmer optimizations
such as tiling, vectorization, loop specialization, and unrolling. In
this paper, we introduce dynamic, data-driven techniques to abstract
away optimization complexities and get to the underlying simplicity
of the high-level intent.

We focus on stencil kernels, mainly in the domain of image-
processing programs. Stencils, prevalent in image processing ker-
nels used in important applications such as Adobe Photoshop, Mi-

code coverage
with stencil

code coverage
without stencil

filter function and
candidate instructions

coverage difference

forward and
backward analysis

concrete trees

tree abstraction

code generation

DSL source

filter code

profiling and
memory tracing

code
localization

expression
extraction

output

analysis

data
capture

input

input data output data

symbolic trees

buffer structure
reconstruction

dimensionality, stride,
extent inference

instruction
tracing

and
memory
dumping

dynamically
captured data

executable

Figure 1. Helium workflow.

crosoft PowerPoint and Google Picasa, use enormous amounts of
computation and/or memory bandwidth. As these kernels mostly
perform simple data-parallel operations on large image data, they
can leverage modern hardware capabilities such as vectorization,
parallelization, and graphics processing units (GPUs).

Furthermore, recent programming language and compiler break-
throughs have dramatically improved the performance of stencil
algorithms [17, 22, 25, 26]; for example, Halide has demonstrated
that writing an image processing kernel in a high level DSL and
autotuning it to a specific architecture can lead to 2–10× perfor-
mance gains compared to hand-tuned code by expert programmers.
In addition, only a few image-processing kernels in Photoshop and
other applications are hand-optimized for the latest architectures;
many are optimized for older architectures, and some have little
optimization for any architecture. Reformulating these kernels as
Halide programs makes it possible to rejuvenate these applications
to continuously provide state-of-the-art performance by using the
Halide compiler and autotuner to optimize for current hardware and
replacing the old code with the newly-generated optimized imple-
mentation. Overall, we lift seven filters and portions of four more
from Photoshop, four filters from IrfanView, and the smooth stencil
from the miniGMG [31] high-performance computing benchmark
into Halide code. We then autotune the Halide schedules and com-
pare performance against the original implementations, delivering
an average speedup of 1.75 on Photoshop, 4.25 on IrfanView, and
4.25 on miniGMG. The entire process of lifting and regeneration is
completely automated. We also manually replace Photoshop kernels
with our rejuvenated versions, obtaining a speedup of 1.12× even
while constrained by optimization decisions (such as tile size) made
by the Photoshop developers.

In addition, lifting can provide opportunities for further optimiza-
tion. For example, power users of image processing applications
create pipelines of kernels for batch processing of images. Hand-
optimizing kernel pipelines does not scale due to the combinatorial
explosion of possible pipelines. We demonstrate how our techniques
apply to a pipeline kernels by creating pipelines of lifted Photoshop
and IrfanView kernels and generating optimized code in Halide,
obtaining 2.91× and 5.17× faster performance than the original
unfused pipelines.

2. Overview, Challenges & Contributions
Helium lifts stencils from stripped binaries to high-level code.
Helium is fully automated, only prompting the user to perform any
GUI interactions required to run the program under analysis with

and without the target stencil. In total, the user runs the program five
times for each stencil lifted. Figure 1 shows the workflow Helium
follows to implement the translation. Overall, the flow is divided into
two stages: code localization, described in Section 3, and expression
extraction, covered in Section 4. Figure 2 shows the flow through
the system for a blur kernel. In this section, we give a high-level
view of the challenges and how we address them in Helium.

While static analysis is the only sound way to lift a computation,
doing so on a stripped x86 binary is extremely difficult, if not
impossible. In x86 binaries, code and data are not necessarily
separated, and determining separation in stripped binaries is known
to be equivalent to the halting problem [16]. Statically, it is difficult
to even find which kernels execute as they are located in different
dynamic linked libraries (DLLs) loaded at runtime. Therefore, we
use a dynamic data flow analysis built on top of DynamoRIO [8], a
dynamic binary instrumentation framework.
Isolating performance critical kernels We find that profiling in-
formation alone is unable to identify performance-critical kernels.
For example, a highly vectorized kernel of an element-wise op-
eration, such as the invert image filter, may be invoked far fewer
iterations than the number of data items. On the other hand, we
find that kernels touch all data in input and intermediate buffers
to produce a new buffer or the final output. Thus, by using a data-
driven approach (described in Section 3.1) and analyzing the extent
of memory regions touched by static instructions, we identify kernel
code blocks more accurately than through profiling.
Extracting optimized kernels While these stencil kernels may
perform logically simple computations, optimized kernel code found
in binaries is far from simple. In many applications, programmers
expend considerable effort in speeding up performance-critical
kernels; such optimizations often interfere with determining the
program’s purpose. For example, many kernels do not iterate over
the image in a simple linear pattern but use smaller tiles for better
locality. In fact, Photoshop kernels use a common driver that
provides the image as a set of tiles to the kernel. However, we
avoid control-flow complexities due to iteration order optimization
by only focusing on data flow. For each data item in the output
buffer, we compute an expression tree with input and intermediate
buffer locations and constants as leaves.
Handling complex control flow A dynamic trace can capture only
a single path through the maze of complex control flow in a program.
Thus, extracting full control-flow using dynamic analysis is chal-
lenging. However, high performance kernels repeatedly execute the
same computations on millions of data items. By creating a forest
of expression trees, each tree calculating a single output value, we
use expression forest reconstruction to find a corresponding tree for
all the input-dependent control-flow paths.The forest of expression
trees shown in Figure 2(b) is extracted from execution traces of
Photoshop’s 2D blur filter code in Figure 2(a).
Identifying input-dependent control flow Some computations
such as image threshold filters update each pixel differently de-
pending on properties of that pixel. As we create our expression
trees by only considering data flow, we will obtain a forest of trees
that form multiple clusters without any pattern to identify cluster
membership. The complex control flow of these conditional updates
is interleaved with the control flow of the iteration ordering, and is
thus difficult to disentangle. We solve this problem, as described
in Section 4.6, by first doing a forward propagation of input data
values to identify instructions that are input-dependent and building
expression trees for the input conditions. Then, if a node in our
output expression tree has a control flow dependency on the input,
we can predicate that tree with the corresponding input condition.
During this forward analysis, we also mark address calculations that
depend on input values, allowing us to identify lookup tables during
backward analysis.

0xD3252A0

0xEA20131

0xEA20129

DC

>>

+

+

+

*

2

2

2

downcast from
32 to 8 bits

output

input

input

0xEA20130 input

2

0xD3252A1

0xEA20132

0xEA20130

DC

>>

+

+

+

2

2

*

2 0xEA20131

0xD325192

0xEA200230xEA20021

DC

>>

+

+

+

2

2

*

2 0xEA20022

0xD3252A3

0xEA20134

0xEA20132

DC

>>

+

+

+

*

2

2

2 0xEA20133

0xD3254B4

0xEA20343

0xEA20345

DC

>>

+

+

+

*2

2 0xEA20344

2

0xD3252A0

0xEA20129

0xEA20130

0xEA20131

DC

>>

+

*

2

2

2

0xD3252A1

0xEA20130

0xEA20131

0xEA20132

DC

>>

+

*

2

2

2

0xD325192

0xEA20021

0xEA20022

0xEA20023

DC

>>

+

*

2

2

2

0xD3252A3

0xEA20132

0xEA20133

0xEA20134

DC

>>

+

*

2

2

2

0xD3254B4

0xEA20343

0xEA20344

0xEA20345

DC

>>

+

*

2

2

2

*
2

2

output1(7,9)

DC

>>

+
2

input1(8,10)

input1(7,10)

input1(9,10)

*

2

2

output1(8,9)

DC

>>

+

2

input1(9,10)

input1(8,10)

input1(10,10)

*

2

2

output1(9,8)

DC

>>

+

2

input1(10,9)

input1(9,9)

input1(11,9)

*

2

2

output1(10,9)

DC

>>

+

2

input1(11,10)

input1(10,10)

input1(12,10)

*

2

2

output1(9,11)

DC

>>

+

2

input1(10,12)

input1(9,12)

input1(11,12)

output1(7,9)
output1(8,9)
output1(9,8)
output1(10,9)
output1(9,11)

input1(8,10)
input1(9,10)
input1(10,9)
input1(11,10)
input1(10,12)

input1(7,10)
input1(8,10)
input1(9,9)
input1(10,10)
input1(9,12)

input1(9,10)
input1(10,10)
input1(11,9)
input1(12,10)
input1(11,12)

DC

>>

+

*

2
2

2

#include <Halide.h>
#include <vector>
using namespace std;
using namespace Halide;

int main(){
 Var x_0;
 Var x_1;
 ImageParam input_1(UInt(8),2);
 Func output_1;
 output_1(x_0,x_1) =
 cast<uint8_t>(((((2+
 (2*cast<uint32_t>(input_1(x_0+1,x_1+1))) +
 cast<uint32_t>(input_1(x_0, x_1+1)) +
 cast<uint32_t>(input_1(x_0+2,x_1+1)))
 >> cast<uint32_t>(2))) & 255));
 vector<Argument> args;
 args.push_back(input_1);
 output_1.compile_to_file("halide_out_0",args);
 return 0;
}

*
2

2

DC

>>

+
2

output1(x0,x1)

input1(x0+2,x1+1)

input1(x0,x1+1)

input1(x0+1,x1+1)

algebraic operation

constant value

stored value

function value

symbolic function

commentabc

(b) Forest of
concrete trees

(a) Assembly instructions (e) Compound tree

(g) Symbolic tree (h) Generated Halide DSL code

(c) Forest of
canonicalized
concrete trees

(d) Forest of
abstract trees

push ebp
mov ebp, esp
sub esp, 0x10
mov eax, dword ptr [ebp+0x0c]
mov ecx, dword ptr [ebp+0x18]
push ebx
mov ebx, dword ptr [ebp+0x14]
sub dword ptr [ebp+0x1c], ebx
mov dword ptr [ebp+0x0c], eax
mov eax, dword ptr [ebp+0x08]
push esi
mov esi, eax
push edi
lea edi, [eax+ecx]
sub esi, ecx
lea edx, [ebx-0x02]
sub ecx, ebx
sub ebx, edx
inc eax
dec dword ptr [ebp+0x10]
mov dword ptr [ebp-0x0c], edi
mov dword ptr [ebp-0x10], edx
mov dword ptr [ebp+0x18], ecx
mov dword ptr [ebp+0x14], ebx
js 0x024d993f
push ebp
mov ebp, esp
sub esp, 0x10
mov eax, dword ptr [ebp+0x0c]
mov ecx, dword ptr [ebp+0x18]
push ebx
mov ebx, dword ptr [ebp+0x14]
sub dword ptr [ebp+0x1c], ebx
mov dword ptr [ebp+0x0c], eax
mov eax, dword ptr [ebp+0x08]
push esi
mov esi, eax
push edi
lea edi, [eax+ecx]
sub esi, ecx
lea edx, [ebx-0x02]
sub ecx, ebx
sub ebx, edx
inc eax
dec dword ptr [ebp+0x10]
mov dword ptr [ebp-0x0c], edi
mov dword ptr [ebp-0x10], edx
mov dword ptr [ebp+0x18], ecx
mov dword ptr [ebp+0x14], ebx
js 0x024d993f
jmp 0x024d9844
movzx ecx, byte ptr [eax-0x02]
add edx, eax
mov dword ptr [ebp+0x08], ecx
movzx ecx, byte ptr [eax-0x01]
mov dword ptr [ebp-0x08], edx
cmp eax, edx
jnb 0x024d98e7
lea esp, [esp+0x00]
movzx ebx, byte ptr [edi]
movzx edx, byte ptr [eax]
add ebx, edx
mov dword ptr [ebp-0x04], edx
movzx edx, byte ptr [esi]
lea ebx, [ebx+ecx*4+0x04]
add edx, ebx
add edx, dword ptr [ebp+0x08]
mov ebx, dword ptr [ebp+0x0c]
shr edx, 0x03
mov byte ptr [ebx], dl
movzx edx, byte ptr [eax+0x01]
mov ebx, dword ptr [ebp-0x04]
mov dword ptr [ebp+0x08], edx
movzx edx, byte ptr [edi+0x01]
add edx, ecx
movzx ecx, byte ptr [esi+0x01]
lea edx, [edx+ebx*4+0x04]
mov ebx, dword ptr [ebp+0x0c]
add ecx, edx
mov edx, dword ptr [ebp+0x08]
add ecx, edx
shr ecx, 0x03
mov byte ptr [ebx+0x01], cl
movzx edi, byte ptr [edi+0x02]
add edi, dword ptr [ebp-0x04]
movzx ebx, byte ptr [esi+0x02]
movzx ecx, byte ptr [eax+0x02]
lea edx, [edi+edx*4+0x04]
mov edi, dword ptr [ebp-0x0c]
add ebx, edx
mov edx, dword ptr [ebp+0x0c]
add ebx, ecx
shr ebx, 0x03
mov byte ptr [edx+0x02], bl
add edx, 0x03
mov dword ptr [ebp+0x0c], edx
mov edx, dword ptr [ebp-0x08]
add eax, 0x03
add edi, 0x03
add esi, 0x03
mov dword ptr [ebp-0x0c], edi
cmp eax, edx
jb 0x024d9860
movzx ebx, byte ptr [edi]
movzx edx, byte ptr [eax]
add ebx, edx
mov dword ptr [ebp-0x04], edx
movzx edx, byte ptr [esi]
lea ebx, [ebx+ecx*4+0x04]
add edx, ebx
add edx, dword ptr [ebp+0x08]
mov ebx, dword ptr [ebp+0x0c]
shr edx, 0x03
mov byte ptr [ebx], dl
movzx edx, byte ptr [eax+0x01]
mov ebx, dword ptr [ebp-0x04]
mov dword ptr [ebp+0x08], edx
movzx edx, byte ptr [edi+0x01]
add edx, ecx
movzx ecx, byte ptr [esi+0x01]
lea edx, [edx+ebx*4+0x04]
mov ebx, dword ptr [ebp+0x0c]
add ecx, edx
mov edx, dword ptr [ebp+0x08]
add ecx, edx
shr ecx, 0x03
mov byte ptr [ebx+0x01], cl
movzx edi, byte ptr [edi+0x02]
add edi, dword ptr [ebp-0x04]
movzx ebx, byte ptr [esi+0x02]
movzx ecx, byte ptr [eax+0x02]
lea edx, [edi+edx*4+0x04]
mov edi, dword ptr [ebp-0x0c]
add ebx, edx
mov edx, dword ptr [ebp+0x0c]
add ebx, ecx
shr ebx, 0x03
mov byte ptr [edx+0x02], bl
add edx, 0x03
mov dword ptr [ebp+0x0c], edx
mov edx, dword ptr [ebp-0x08]
add eax, 0x03
add edi, 0x03
add esi, 0x03
mov dword ptr [ebp-0x0c], edi
cmp eax, edx
jb 0x024d9860
add edx, dword ptr [ebp+0x14]
mov dword ptr [ebp-0x08], edx
cmp eax, edx
jz 0x024d9924
movzx edx, byte ptr [eax]
movzx ebx, byte ptr [edi]
add ebx, edx
mov dword ptr [ebp-0x04], edx
movzx edx, byte ptr [esi]
lea ebx, [ebx+ecx*4+0x04]
add edx, ebx
add edx, dword ptr [ebp+0x08]
inc eax
shr edx, 0x03
mov ebx, edx
mov edx, dword ptr [ebp+0x0c]
mov byte ptr [edx], bl
inc edx
inc esi
inc edi
mov dword ptr [ebp+0x08], ecx
mov ecx, dword ptr [ebp-0x04]
mov dword ptr [ebp+0x0c], edx
cmp eax, dword ptr [ebp-0x08]
jnz 0x024d98f1
mov ecx, dword ptr [ebp+0x18]
add edi, ecx
add esi, ecx
add eax, ecx
mov ecx, dword ptr [ebp+0x1c]
add dword ptr [ebp+0x0c], ecx
dec dword ptr [ebp+0x10]
mov dword ptr [ebp-0x0c], edi

jns 0x024d9841
mov edx, dword ptr [ebp-0x10]
movzx ecx, byte ptr [eax-0x02]
add edx, eax
mov dword ptr [ebp+0x08], ecx
movzx ecx, byte ptr [eax-0x01]
mov dword ptr [ebp-0x08], edx
cmp eax, edx
jnb 0x024d98e7
movzx ebx, byte ptr [edi]
movzx edx, byte ptr [eax]
add ebx, edx
mov dword ptr [ebp-0x04], edx
movzx edx, byte ptr [esi]
lea ebx, [ebx+ecx*4+0x04]
add edx, ebx
add edx, dword ptr [ebp+0x08]
mov ebx, dword ptr [ebp+0x0c]
shr edx, 0x03
mov byte ptr [ebx], dl
movzx edx, byte ptr [eax+0x01]
mov ebx, dword ptr [ebp-0x04]
mov dword ptr [ebp+0x08], edx
movzx edx, byte ptr [edi+0x01]
add edx, ecx
movzx ecx, byte ptr [esi+0x01]
lea edx, [edx+ebx*4+0x04]
mov ebx, dword ptr [ebp+0x0c]
add ecx, edx
mov edx, dword ptr [ebp+0x08]
add ecx, edx
shr ecx, 0x03
mov byte ptr [ebx+0x01], cl
movzx edi, byte ptr [edi+0x02]
add edi, dword ptr [ebp-0x04]
movzx ebx, byte ptr [esi+0x02]
movzx ecx, byte ptr [eax+0x02]
lea edx, [edi+edx*4+0x04]
mov edi, dword ptr [ebp-0x0c]
add ebx, edx
mov edx, dword ptr [ebp+0x0c]
add ebx, ecx
shr ebx, 0x03
mov byte ptr [edx+0x02], bl
add edx, 0x03
mov dword ptr [ebp+0x0c], edx
mov edx, dword ptr [ebp-0x08]
add eax, 0x03
add edi, 0x03
add esi, 0x03
mov dword ptr [ebp-0x0c], edi
cmp eax, edx
jb 0x024d9860
movzx edx, byte ptr [eax]
movzx ebx, byte ptr [edi]
add ebx, edx
mov dword ptr [ebp-0x04], edx
movzx edx, byte ptr [esi]
lea ebx, [ebx+ecx*4+0x04]
add edx, ebx
add edx, dword ptr [ebp+0x08]
inc eax
shr edx, 0x03
mov ebx, edx
mov edx, dword ptr [ebp+0x0c]
mov byte ptr [edx], bl
inc edx
inc esi
inc edi
mov dword ptr [ebp+0x08], ecx
mov ecx, dword ptr [ebp-0x04]
mov dword ptr [ebp+0x0c], edx
cmp eax, dword ptr [ebp-0x08]
jnz 0x024d98f1
mov ecx, dword ptr [ebp+0x18]
add edi, ecx
add esi, ecx
add eax, ecx
mov ecx, dword ptr [ebp+0x1c]
add dword ptr [ebp+0x0c], ecx
dec dword ptr [ebp+0x10]
mov dword ptr [ebp-0x0c], edi
jns 0x024d9841
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp
ret
dd esp, 0x20
mp 0x0170b07b
mov edx, dword ptr [ebp-0x10]
movzx ecx, byte ptr [eax-0x02]
add edx, eax
mov dword ptr [ebp+0x08], ecx
movzx ecx, byte ptr [eax-0x01]
mov dword ptr [ebp-0x08], edx
cmp eax, edx
jnb 0x024d98e7
lea esp, [esp+0x00]
movzx ebx, byte ptr [edi]
movzx edx, byte ptr [eax]
add ebx, edx
mov dword ptr [ebp-0x04], edx
movzx edx, byte ptr [esi]
lea ebx, [ebx+ecx*4+0x04]
add edx, ebx
add edx, dword ptr [ebp+0x08]
mov ebx, dword ptr [ebp+0x0c]
shr edx, 0x03
mov byte ptr [ebx], dl
movzx edx, byte ptr [eax+0x01]
mov ebx, dword ptr [ebp-0x04]
mov dword ptr [ebp+0x08], edx
movzx edx, byte ptr [edi+0x01]
add edx, ecx
movzx ecx, byte ptr [esi+0x01]
lea edx, [edx+ebx*4+0x04]
mov ebx, dword ptr [ebp+0x0c]
add ecx, edx
mov edx, dword ptr [ebp+0x08]
add ecx, edx
shr ecx, 0x03
mov byte ptr [ebx+0x01], cl
movzx edi, byte ptr [edi+0x02]
add edi, dword ptr [ebp-0x04]
movzx ebx, byte ptr [esi+0x02]
movzx ecx, byte ptr [eax+0x02]
lea edx, [edi+edx*4+0x04]
mov edi, dword ptr [ebp-0x0c]
add ebx, edx
mov edx, dword ptr [ebp+0x0c]
add ebx, ecx
shr ebx, 0x03
mov byte ptr [edx+0x02], bl
add edx, 0x03
mov dword ptr [ebp+0x0c], edx
mov edx, dword ptr [ebp-0x08]
add eax, 0x03
add edi, 0x03
add esi, 0x03
mov dword ptr [ebp-0x0c], edi
cmp eax, edx
jb 0x024d9860
add edx, dword ptr [ebp+0x14]
mov dword ptr [ebp-0x08], edx
cmp eax, edx
jz 0x024d9924

1
1
1
1
1

a1
a2
a3(((

(f) System of linear equations
for the 1st dimension

of the left-most leaf node

8
9
10
11
10

7
8
9
10
9

9
9
8
9
11

(((=

Figure 2. Stages of expression extraction for Photoshop’s 2D blur filter, reduced to 1D in this figure for brevity. We instrument assembly
instructions (a) to recover a forest of concrete trees (b), which we then canonicalize (c). We use buffer structure reconstruction to obtain
abstract trees (d). Merging the forest of abstract trees into compound trees (e) gives us linear systems (f) to solve to obtain symbolic trees (g)
suitable for generating Halide code (h).

Handling code duplication Many optimized kernels have inner
loops unrolled or some iterations peeled off to help optimize
the common case. Thus, not all data items are processed by the
same assembly instructions. Furthermore, different code paths may
compute the same output value using different combinations of
operations. We handle this situation by canonicalizing the trees and
clustering trees representing the same canonical expression during
expression forest reconstruction, as shown in Figure 2(c).
Identifying boundary conditions Some stencil kernels perform
different calculations at boundaries. Such programs often include
loop peeling and complex control flow, making them difficult to
handle. In Helium these boundary conditions lead to trees that are
different from the rest. By clustering trees (described in Section 4.8),
we separate the common stencil operations from the boundary
conditions.
Determining buffer dimensions and sizes Accurately extracting
stencil computations requires determining dimensionality and the
strides of each dimension of the input, intermediate and output
buffers. However, at the binary level, multi-dimensional arrays
appear to be allocated as one linear block. We introduce buffer
structure reconstruction, a method which creates multiple levels of
coalesced memory regions for inferring dimensions and strides
by analyzing data access patterns (Section 3.2). Many stencil
computations have ghost regions or padding between dimensions for
alignment or graceful handling of boundary conditions. We leverage
these regions in our analysis.
Recreating index expressions & generating Halide code Recre-
ating stencil computations requires reconstructing logical index
expressions for the multi-dimensional input, intermediate and out-
put buffers. We use access vectors from a randomly selected set of
expression trees to create a linear system of equations that can be
solved to create the algebraic index expressions, as in Figure 2(f).
Our method is detailed in Section 4.10. These algebraic index ex-
pressions can be directly transformed into a Halide function, as
shown in Figure 2(g)-(h).

3. Code Localization
Helium’s first step is to find the code that implements the kernel
we want to lift, which we term code localization. While the code
performing the kernel computation should be frequently executed,
Helium cannot simply assume the most frequently executed region
of code (which is often just memcpy) is the stencil kernel. More
detailed profiling is required.

However, performing detailed instrumentation on the entirety
of a large application such as Photoshop is impractical, due to
both large instrumentation overheads and the sheer volume of the
resulting data. Photoshop loads more than 160 binary modules, most
of which are unrelated to the filter we wish to extract. Thus the code
localization stage consists of a coverage difference phase to quickly
screen out unrelated code, followed by more invasive profiling
to determine the kernel function and the instructions reading and
writing the input and output buffers. The kernel function and set of
instructions are then used for even more detailed profiling in the
expression extraction stage (in Section 4).

3.1 Screening Using Coverage Difference
To obtain a first approximation of the kernel code location, our
tool gathers code coverage (at basic block granularity) from two
executions of the program that are as similar as possible except
that one execution runs the kernel and the other does not. The
difference between these executions consists of basic blocks that
only execute when the kernel executes. This technique assumes the
kernel code is not executed in other parts of the application (e.g.,
to draw small preview images), and data-reorganization or UI code

specific to the kernel will still be captured, but it works well in
practice to quickly screen out most of the program code (such as
general UI or file parsing code). For Photoshop’s blur filter, the
coverage difference contains only 3,850 basic blocks out of 500,850
total blocks executed.

Helium then asks the user to run the program again (including
the kernel), instrumenting only those basic blocks in the coverage
difference. The tool collects basic block execution counts, predeces-
sor blocks and call targets, which will be used to build a dynamic
control-flow graph in the next step. Helium also collects a dynamic
memory trace by instrumenting all memory accesses performed
in those basic blocks. The trace contains the instruction address,
the absolute memory address, the access width and whether the
access is a read or a write. The result of this instrumentation step
enables Helium to analyze memory access patterns and detect the
filter function.

3.2 Buffer Structure Reconstruction
Helium proceeds by first processing the memory trace to recover the
memory layout of the program. Using the memory layout, the tool
determines instructions that are likely accessing input and output
buffers. Helium then uses the dynamic control-flow graph to select
a function containing the highest number of such instructions.

We represent the memory layout as address regions (lists of
ranges) annotated with the set of static instructions that access them.
For each static instruction, Helium first coalesces any immediately-
adjacent memory accesses and removes duplicate addresses, then
sorts the resulting regions. The tool then merges regions of different
instructions to correctly detect unrolled loops accessing the input
data, where a single instruction may only access part of the input
data but the loop body as a whole covers the data. Next, Helium links
any group of three or more regions separated by a constant stride to
form a single larger region. This proceeds recursively, building larger
regions until no regions can be coalesced (see Figure 3). Recursive
coalescing may occur if e.g. an image filter accesses the R channel
of an interleaved RGB image with padding to align each scanline on
a 16-byte boundary; the channel stride is 3 and the scanline stride is
the image width rounded up to a multiple of 16.

Helium detects element size based on access width. Some
accesses are logically greater than the machine word size, such
as a 64-bit addition using an add/adc instruction pair. If a buffer
is accessed at multiple widths, the tool uses the most common
width, allowing it to differentiate between stencil code operating on
individual elements and memcpy-like code treating the buffer as a
block of bits.

Helium selects all regions of size comparable to or larger than
the input and output data sizes and records the associated candidate
instructions that potentially access the input and output buffers in
memory.

3.3 Filter Function Selection
Helium maps each basic block containing candidate instructions
to its containing function using a dynamic control-flow graph built
from the profile, predecessor, and call target information collected
during screening. The tool considers the function containing the
most candidate static instructions to be the kernel. Tail call optimiza-
tion may fool Helium into selecting a parent function, but this still
covers the kernel code; we just instrument more code than necessary.

The chosen function does not always contain the most frequently
executed basic block, as one might naïvely assume. For example,
Photoshop’s invert filter processes four image bytes per loop itera-
tion, so other basic blocks that execute once per pixel execute more
often.

Helium selects a filter function for further analysis, rather than
a single basic block or a set of functions, as a tradeoff between

2 1 2 1 2 3 2 1 2 1 2 3 2 1 2 1 2 5 1 2 1 2 1 2 1 2

22 13× 42 13× 2 2 13×

accessed data
memory

layout

1st-level
grouping

2nd-level
grouping

3rd-level
grouping

4× 1 2

4× 1 2222 13×3×

Figure 3. During buffer structure reconstruction, Helium groups the absolute addresses from the memory trace into regions, recursively
combining regions of the same size separated by constant stride.

capturing all the kernel code and limiting the instrumentation during
the expression extraction phase to a manageable amount of code.
Instrumenting smaller regions risks not capturing all kernel code,
but instrumenting larger regions generates more data that must
be analyzed during expression extraction and also increases the
likelihood that expression extraction will extract code that does not
belong to the kernel (false data dependencies). Empirically, function
granularity strikes a good balance. Helium localizes Photoshop’s
blur to 328 static instructions in 14 basic blocks in the filter function
and functions it calls, a manageable number for detailed dynamic
instrumentation during expression extraction.

4. Expression Extraction
In this phase, we recover the stencil computation from the filter func-
tion found during code localization. Stencils can be represented as
relatively simple data-parallel operations with few input-dependent
conditionals. Thus, instead of attempting to understand all control
flow, we focus on data flow from the input to the output, plus a small
set of input-dependent conditionals which affect computation, to
extract only the actual computation being performed.

For example, we are able to go from the complex unrolled static
disassembly listing in Figure 2 (a) for a 1D blur stencil to the simple
representation of the filter in Figure 2 (g) and finally to DSL code in
Figure 2 (h).

During expression extraction, Helium performs detailed instru-
mentation of the filter function, using the captured data for buffer
structure reconstruction and dimensionality inference, and then ap-
plies expression forest reconstruction to build expression trees suit-
able for DSL code generation.

4.1 Instruction Trace Capture and Memory Dump
During code localization, Helium determines the entry point of the
filter function. The tool now prompts the user to run the program
again, applying the kernel to known input data (if available), and
collects a trace of all dynamic instructions executed from that
function’s entry to its exit, along with the absolute addresses of
all memory accesses performed by the instructions in the trace. For
instructions with indirect memory operands, our tool records the
address expression (some or all of base+ scale× index+ disp).
Helium also collects a page-granularity memory dump of all memory
accessed by candidate instructions found in Section 3. Read pages
are dumped immediately, but written pages are dumped at the filter
function’s exit to ensure all output has been written before dumping.
The filter function may execute many times; both the instruction
trace and memory dump include all such executions.

4.2 Buffer Structure Reconstruction
Because the user ran the program again during instruction trace
capture, we cannot assume buffers have the same location as during
code localization. Using the memory addresses recorded as part of
the instruction trace, Helium repeats buffer structure reconstruction
(Section 3.2) to find memory regions with contiguous memory
accesses which are likely the input and output buffers.

4.3 Dimensionality, Stride and Extent Inference
Buffer structure reconstruction finds buffer locations in memory,
but to accurately recover the stencil, Helium must infer the buffers’
dimensionality, and for each dimension, the stride and extent. For
image processing filters (or any domain where the user can provide
input and output data), Helium can use the memory dump to recover
this information. Otherwise, the tool falls back to generic inference
that does not require the input and output data.
Inference using input and output data Helium searches the mem-
ory dump for the known input and output data and records the start-
ing and ending locations of the corresponding memory buffers. It
detects alignment padding by comparing against the given input and
output data. For example, when Photoshop blurs a 32× 32 image,
it pads each edge by one pixel, then rounds each scanline up to 48
bytes for 16-byte alignment. Photoshop stores the R, G and B planes
of a color image separately, so Helium infers three input buffers
and three output buffers with two dimensions. All three planes are
the same size, so the tool infers each dimension’s stride to be 48
(the distance between scanlines) and the extent to be 32. Our other
example image processing application, IrfanView, stores the RGB
values interleaved, so Helium automatically infers that IrfanView’s
single input and output buffers have three dimensions.
Generic inference If we do not have input and output data (as
in the miniGMG benchmark, which generates simulated input at
runtime), or the data cannot be recognized in the memory dump,
Helium falls back to generic inference based on buffer structure
reconstruction. The dimensionality is equal to the number of levels
of recursion needed to coalesce memory regions. Helium can infer
buffers of arbitrary dimensionality so long padding exists between
dimensions. For the dimension with least stride, the extent is equal to
the number of adjacent memory locations accessed in one grouping
and the stride is equal to the memory access width of the instructions
affecting this region. For all other dimensions, the stride is the
difference between the starting addresses of two adjacent memory
regions in the same level of coalescing and the extent is equal to the
number of independent memory regions present at each level.

If there are no gaps in the reconstructed memory regions, this
inference will treat the memory buffer as single-dimensional, re-
gardless of the actual dimensionality.

Inference by forward analysis We have yet to encounter a stencil
for which we lack input and output data and for which the generic
inference fails, but in that case the application must be handling
boundary conditions on its own. In this case, Helium could infer
dimensionality and stride by looking at different tree clusters
(Section 4.8) and calculating the stride between each tree in a cluster
containing the boundary conditions.
When inference is unnecessary If generic inference fails but the
application does not handle boundary conditions on its own, the
stencil is pointwise (uses only a single input point for each output
point). The dimensionality is irrelevant to the computation, so
Helium can assume the buffer is linear with a stride of 1 and extent
equal to the memory region’s size.

4.4 Input/Output Buffer Selection
Helium considers buffers that are read, not written, and not accessed
using indices derived from other buffer values to be input buffers. If
output data is available, Helium identifies output buffers by locating
the output data in the memory dump. Otherwise (or if the output
data cannot be found), Helium assumes buffers that are written to
with values derived from the input buffers to be output buffers, even
if they do not live beyond the function (e.g., temporary buffers).

4.5 Instruction Trace Preprocessing
Before analyzing the instruction trace, Helium preprocesses it by
renaming the x87 floating-point register stack using a technique
similar to that used in [13]. More specifically, we recreate the
floating point stack from the dynamic instruction trace to find the top
of the floating point stack, which is necessary to recover non-relative
floating-point register locations. Helium also maps registers into
memory so the analysis can treat them identically; this is particularly
helpful to handle dependencies between partial register reads and
writes (e.g., writing to eax then reading from ah).

4.6 Forward Analysis for Input-Dependent Conditionals
While we focus on recovering the stencil computation, we cannot
ignore control flow completely because some branches may be part
of the computation. Helium must distinguish these input-dependent
conditionals that affect what the stencil computes from the control
flow arising from optimized loops controlling when the stencil
computes.

To capture these conditionals, the tool first identifies which
instructions read the input directly using the reconstructed memory
layout. Next, Helium does a forward pass through the instruction
trace identifying instructions which are affected by the input data,
either directly (through data) or through the flags register (control
dependencies). The input-dependent conditionals are the input-
dependent instructions reading the flag registers (conditional jumps
plus a few math instructions such as adc and sbb).

Then for each static instruction in the filter function, Helium
records the sequence of taken/not-taken branches of the input-
dependent conditionals required to reach that instruction from the
filter function entry point. The result of the forward analysis is
a mapping from each static instruction to the input-dependent
conditionals (if any) that must be taken or not taken for that
instruction to be executed. This mapping is used during backward
analysis to build predicate trees (see Figure 5).

During the forward analysis, Helium flags instructions which
access buffers using indices derived from other buffers (indirect
access). These flags are used to track index calculation dependencies
during backward analysis.

4.7 Backward Analysis for Data-Dependency Trees
In this step, the tool builds data-dependency trees to capture the exact
computation of a given output location. Helium walks backwards

through the instruction trace, starting from instructions which
write output buffer locations (identified during buffer structure
reconstruction). We build a data-dependency tree for each output
location by maintaining a frontier of nodes on the leaves of the tree.
When the tool finds an instruction that computes the value of a leaf
in the frontier, Helium adds the corresponding operation node to the
tree, removes the leaf from the frontier and adds the instruction’s
sources to the frontier if not already present.

We call these concrete trees because they contain absolute
memory addresses. Figure 2 (b) shows a forest of concrete trees for
a 1D blur stencil.
Indirect buffer access Table lookups give rise to indirect buffer
accesses, in which a buffer is indexed using values read from an-
other buffer (buffer_1(input(x,y))). If one of the instructions
flagged during forward analysis as performing indirect buffer access
computes the value of a leaf in the frontier, Helium adds additional
operation nodes to the tree describing the address calculation ex-
pression (see Figure 4). The sources of these additional nodes are
added to the frontier along with the other source operands of the
instruction to ensure we capture both data and address calculation
dependencies.
Recursive trees If Helium adds a node to the data-dependency tree
describing a location from the same buffer as the root node, the tree
is recursive. To avoid expanding the tree, Helium does not insert
that node in the frontier. Instead, the tool builds an additional non-
recursive data-dependency tree for the initial write to that output
location to capture the base case of the recursion (see Figure 4). If
all writes to that output location are recursively defined, Helium
assumes that the buffer has been initialized outside the function.
Known library calls When Helium adds the return value of a
call to a known external library function (e.g., sqrt, floor) to
the tree, instead of continuing to expand the tree through that
function, it adds an external call node that depends on the call
arguments. Handling known calls specially allows Helium to emit
corresponding Halide intrinsics instead of presenting the Halide
optimizer with the library’s optimized implementation (which is
often not vectorizable without heroic effort). Helium recognizes
these external calls by their symbol, which is present even in stripped
binaries because it is required for dynamic linking.
Canonicalization Helium canonicalizes the trees during construc-
tion to cope with the vagaries of instruction selection and ordering.
For example, if the compiler unrolls a loop, it may commute some
but not all of the resulting instructions in the loop body; Helium
sorts the operands of commutative operations so it can recognize
these trees as similar in the next step. It also applies simplification
rules to these trees to account for effects of fix-up loops inserted
by the compiler to handle leftover iterations of the unrolled loop.
Figure 2 (c) shows the forest of canonicalized concrete trees.
Data types As Helium builds concrete trees, it records the sizes
and kinds (signed/unsigned integer or floating-point) of registers and
memory to emit the correct operation during Halide code generation
(Section 4.11). Narrowing operations are represented as downcast
nodes and overlapping dependencies are represented with full or
partial overlap nodes.
Predication Each time Helium adds an instruction to the tree,
if that instruction is annotated with one or more input-dependent
conditionals identified during the forward analysis, it records the tree
as predicated on those conditionals. Once it finishes constructing
the tree for the computation of the output location, Helium builds
similar concrete trees for the dependencies of the predicates the tree
is predicated on (that is, the data dependencies that control whether
the branches are taken or not taken). At the end of the backward
analysis, Helium has built a concrete computational tree for each
output location (or two trees if that location is updated recursively),
each with zero or more concrete predicate trees attached. During

+

1

output()

0

output(x0)

input(r0.x,r0.y)

output()

input(r0.x,r0.y)

(a) Recursive tree (b) Initial update tree (c) Generated Halide code

 Var x_0;
 ImageParam input(UInt(8),2);
 Func output;
 output(x_0) = 0;

 RDom r_0(input);
 output(input(r_0.x,r_0.y)) =
 cast<uint64_t>(output(input(r_0.x,r_0.y)) + 1);

Figure 4. The trees and lifted Halide code for the histogram computation in Photoshop’s histogram equalization filter. The initial update tree
(b) initializes the histogram counts to 0. The recursive tree (a) increments the histogram bins using indirect access based on the input image
values. The Halide code generated from the recursive tree is highlighted and indirect accesses are in bold.

cond2

value1

true true false

true false true false

false

value4

output

value2 value3

cond1

boolean
value

predicate
trees

computational trees

selector

Figure 5. Each computational tree (four right trees) has zero or
more predicate trees (two left trees) controlling its execution. Code
generated for the predicate trees controls the execution of the code
generated for the computational trees, like a multiplexer.

code generation, Helium uses predicate trees to generate code that
selects which computational tree code to execute (see Figure 5).

4.8 Tree Clustering and Buffer Inference
Helium groups the concrete computational trees into clusters, where
two trees are placed in the same cluster if they are the same,
including all predicate trees they depend on, modulo constants and
memory addresses in the leaves of the trees. (Recall that registers
were mapped to special memory locations during preprocessing.)
The number of clusters depends on the control dependency paths
taken during execution for each output location. Each control
dependency path will have its own cluster of computational trees.
Most kernels have very few input-dependent conditionals relative to
the input size, so there will usually be a small number of clusters
each containing many trees. Figure 5 shows an example of clustering
(only one computational tree is shown for brevity). For the 1D blur
example, there is only one cluster as the computation is uniform
across the padded image. For the threshold filter in Photoshop, we
get two clusters.

Next, our goal is to abstract these trees. Using the dimensions,
strides and extents inferred in 4.3, Helium can convert memory
addresses to concrete indices (e.g., memory address 0xD3252A0 to
output_1(7,9)). We call this buffer inference.

At this stage the tool also detects function parameters, assuming
that any register or memory location that is not in a buffer is
a parameter. After performing buffer inference on the concrete
computational trees and attached predicate trees, we obtain a set of
abstract computational and predicate trees for each cluster. Figure

2 (d) shows the forest of abstract trees for the 1D blur stencil. The
leaves of these trees are buffers, constants or parameters.

4.9 Reduction Domain Inference
If a cluster contains recursive trees, Helium must infer a reduction
domain specifying the range in each dimension for which the
reduction is to be performed. If the root nodes of the recursive
trees are indirectly accessed using the values of another buffer,
then the reduction domain is the bounds of that other buffer. If the
initial update tree depends on values originating outside the function,
Helium assumes the reduction domain is the bounds of that input
buffer.

Otherwise, the tool records the minimum and maximum buffer
indices observed in trees in the cluster for each dimension as the
bounds of the reduction domain. Helium abstracts these concrete in-
dices using the assumption that the bounds are a linear combination
of the buffer extents or constants. This heuristic has been sufficient
for our applications, but a more precise determination could be made
by applying the analysis to multiple sets of input data with varying
dimensions and solving the resulting set of linear equations.

4.10 Symbolic Tree Generation
At this stage, the abstract trees contain many relations between differ-
ent buffer locations (e.g., output(3,4) depends on input(4,4),
input(3,3), and input(3,4)). To convert these dependencies be-
tween specific index values into symbolic dependencies between
buffer coordinate locations, Helium assumes an affine relationship
between indices and solves a linear system. The rest of this section
details the procedure that Helium applies to the abstract computa-
tional and predicate trees to convert them into symbolic trees.

We represent a stencil with the following generic formulation.
For the sake of brevity, we use a simple addition as our example and
conditionals are omitted.

for x1 = . . .
. . .
for xD = . . .
output[x1] . . . [xD] =
buffer1[f1,1(x1, . . . , xD)] . . . [f1,k(x1, . . . , xD)]+
· · ·+ buffern[fn,1(x1, . . . , xD)] . . . [fn,k(x1, . . . , xD)]

where buffer refers to the buffers that appear in leaf nodes in an
abstract tree and output is the root of that tree. The functions
f1,1, . . . , fn,k are index functions that describe the relationship
between the buffer indices and the output indices. Each index
function is specific to a given leaf node and to a given dimension.
In our work, we consider only affine index functions, which covers
many practical scenarios. We also define the access vector ~x =
(x1, . . . xD).

For a D-dimensional output buffer at the root of the tree with
access vector ~x, a general affine index function for the leaf node
` and dimension d is f`,d(~x) = [~x; 1] · ~a where ~a is the (D + 1)-
dimensional vector of the affine coefficients that we seek to estimate.
For a single abstract tree, this equation is underconstrained but since
all the abstract trees in a cluster share the same index functions for
each leaf node and dimension, Helium can accumulate constraints
and make the problem well-posed. In each cluster, for each leaf node
and dimension, Helium formulates a set of linear equations with ~a
as unknown.

In practice, for data-intensive applications, there are always at
least D + 1 trees in each cluster, which guarantees that our tool can
solve for ~a. To prevent slowdown from a hugely overconstrained
problem, Helium randomly selects a few trees to form the system.
D + 1 trees would be enough to solve the system. but we use more
to detect cases where the index function is not affine. Helium checks
that the rank of the system is D + 1 and generates an error if it is
not. In theory, D + 2 random trees would be sufficient to detect
such cases with some probability; in our experiments, our tool uses
2D + 1 random trees to increase detection probability.

Helium solves similar sets of linear equations to derive affine
relationships between the output buffer indices and constant values
in leaf nodes.

As a special case, if a particular cluster’s trees have an index in
any dimension which does not change for all trees in that cluster,
Helium assumes that dimension is fixed to that particular value
instead of solving a linear system.

Once the tool selects a random set of abstract trees, a naïve
solution to form the systems of equations corresponding to each leaf
node and each dimension would be to go through all the trees each
time. However, all the trees in each cluster have the same structure.
This allows Helium to merge the randomly selected trees into a
single compound tree with the same structure but with extended
leaf and root nodes that contain all relevant buffers (Fig. 2(e)). With
this tree, generating the systems of equations amounts to a single
traversal of its leaf nodes.

At the end of this process, for each cluster, we now have a
symbolic computational tree possibly associated with symbolic
predicate trees as illustrated in Figure 2(g).

4.11 Halide Code Generation
The symbolic trees are a high-level representation of the algorithm.
Helium extracts only the necessary set of predicate trees, ignoring
control flow arising from loops. Our symbolic trees of data depen-
dencies between buffers match Halide’s functional style, so code
generation is straightforward.

Helium maps the computational tree in each cluster to a Halide
function predicated on the predicate trees associated with it. Kernels
without data-dependent control flow have just one computational
tree, which maps directly to a Halide function. Kernels with data-
dependent control flow have multiple computational trees that
reference different predicate trees. The predicate trees are lifted
to the top of the Halide function and mapped to a chain of select
expressions (the Halide equivalent of C’s ?: operator) that select
the computational tree code to execute.

If a recursive tree’s base case is known, it is defined as a Halide
function; otherwise, Helium assumes an initialized input buffer will
be passed to the generated code. The inferred reduction domain is
used to create a Halide RDom whose variables are used to define the
recursive case of the tree as a second Halide function. Recursive
trees can still be predicated as above.

5. Limitations
Lifting stencils with Helium is not a sound transformation. In
practice, Helium’s lifted stencils can be compared against the

original program on a test suite – validation equivalent to release
criteria commonly used in software development. Even if Helium
were sound, most stripped binary programs do not come with proofs
of correctness, so testing would still be required.

Some of Helium’s simplifying assumptions cannot always hold.
The current system can only lift stencil computations with few
input-dependent conditionals, table lookups and simple repeated
updates. Helium cannot lift filters with non-stencil or more complex
computation patterns. Because high performance kernels repeatedly
apply the same computation to large amounts of data, Helium
assumes the program input will exercise both branches of all input-
dependent conditionals. For those few stencils with complex input-
dependent control flow, the user must craft an input to cover all
branches for Helium to successfully lift the stencil.

Helium is only able to find symbolic trees for stencils whose tree
shape is constant. For trees whose shape varies based on a parameter
(for example, box blur), Helium can extract code for individual
values of the parameter, but the resulting code is not generic across
parameters.

Helium assumes all index functions are affine, so kernels with
more complex access functions such as radial indexing cannot be
recognized by Helium.

By design, Helium only captures computations derived from the
input data. Some stencils compute weights or lookup tables from
parameters; Helium will capture the application of those tables to
the input, but will not capture table computation.

6. Evaluation
6.1 Extraction Results
We used Helium to lift seven filters and portions of four more from
Photoshop CS 6 Extended, four filters from IrfanView 4.38, and the
smooth stencil from the miniGMG high-performance computing
benchmark into Halide code. We do not have access to Photoshop
or IrfanView source code; miniGMG is open source.
Photoshop We lifted Photoshop’s blur, blur more, sharpen,
sharpen more, invert, threshold and box blur (for radius 1 only)
filters. The blur and sharpen filters are 5-point stencils; blur more,
sharpen more and box blur are 9-point stencils. Invert is a pointwise
operation that simply flips all the pixel bits. Threshold is a pointwise
operation containing an input-dependent conditional: if the input
pixel’s brightness (a weighted sum of its R, G and B values) is
greater than the threshold, the output pixel is set to white, and
otherwise it is set to black.

We lifted portions of Photoshop’s sharpen edges, despeckle, his-
togram equalization and brightness filters. Sharpen edges alternates
between repeatedly updating an image-sized side buffer and updat-
ing the image; we lifted the side buffer computation. Despeckle
is a composition of blur more and sharpen edges. When run on
despeckle, Helium extracts the blur more portion. From histogram
equalization, we lifted the histogram calculation, but cannot track
the histogram through the equalization stage because equalization
does not depend on the input or output images. Brightness builds
a 256-entry lookup table from its parameter, which we cannot cap-
ture because it does not depend on the images, but we do lift the
application of the filter to the input image.

Photoshop contains multiple variants of its filters optimized for
different x86 instruction sets (SSE, AVX etc.). Our instrumentation
tools intercept the cpuid instruction (which tests CPU capabilities)
and report to Photoshop that no vector instruction sets are supported;
Photoshop falls back to general-purpose x86 instructions.We do
this for engineering reasons, to reduce the number of opcodes
our backward analysis must understand; this is not a fundamental
limitation. The performance comparisons later in this section do not
intercept cpuid and thus use optimized code paths in Photoshop.

Filter total BB diff BB filter func BB static ins. count mem dump dynamic ins. count tree size
Invert 490663 3401 11 70 32 MB 5520 3
Blur 500850 3850 14 328 32 MB 64644 13
Blur More 499247 2825 16 189 38 MB 111664 62
Sharpen 492433 3027 30 351 36 MB 79369 31
Sharpen More 493608 3054 27 426 37 MB 105374 55
Threshold 491651 2728 60 363 36 MB 45861 8/6/19
Box Blur (radius 1) 500297 3306 94 534 28 MB 125254 253
Sharpen Edges 499086 2490 11 63 46 MB 80628 33
Despeckle 499247 2825 16 189 38 MB 111664 62
Equalize 501669 2771 47 198 8 MB 38243 6
Brightness 499292 3012 10 54 32 MB 21645 3

Figure 6. Code localization and extraction statistics for Photoshop filters, showing the total static basic blocks executed, the static basic
blocks surviving screening (Section 3.1), the static basic blocks in the filter function selected at the end of localization (Section 3.3), the
number of static instructions in the filter function, the memory dump size, the number of dynamic instructions captured in the instruction trace
(Section 4.1), and the number of nodes per concrete tree. Threshold has two computational trees with 8 and 6 nodes and one predicate tree
with 19 nodes. The filters below the line were not entirely extracted; the extracted portion of despeckle is the same as blur more. The total
number of basic blocks executed varies due to unknown background code in Photoshop.

Figure 6 shows statistics for code localization, demonstrating
that our progressive narrowing strategy allows our dynamic analysis
to scale to large applications.

All but one of our lifted filters give bit-identical results to Pho-
toshop’s filters on a suite of photographic images, each consisting
of 100 megapixels. The lifted implementation of box blur, the only
filter we lifted from Photoshop that uses floating-point, differs in
the low-order bits of some pixel values due to reassociation.
IrfanView We lifted the blur, sharpen, invert and solarize filters
from IrfanView, a batch image converter. IrfanView’s blur and
sharpen are 9-point stencils. Unlike Photoshop, IrfanView loads
the image data into floating-point registers, computes the stencil in
floating-point, and rounds the result back to integer. IrfanView has
been compiled for maximal processor compatibility, which results in
unusual code making heavy use of partial register reads and writes.

Our lifted filters produce visually identical results to IrfanView’s
filters. The minor differences in the low-order bits are because we
assume floating-point addition and multiplication are associative
and commutative when canonicalizing trees.
miniGMG To demonstrate the applicability of our tool beyond
image processing, we lifted the Jacobi smooth stencil from the
miniGMG high-performance computing benchmark. We added a
command-line option to skip running the stencil to enable coverage
differencing during code localization. Because we do not have input
and output image data for this benchmark, we manually specified
an estimate of the data size for finding candidate instructions during
code localization and we used the generic inference described in sec-
tion 4.3 during expression extraction. We set OMP_NUM_THREADS=1
to limit miniGMG to one thread during analysis, but run using full
parallelism during evaluation.

Because miniGMG is open source, we were able to check that
our lifted stencil is equivalent to the original code using the SymPy1

symbolic algebra system. We also checked output values for small
data sizes.

6.2 Experimental Methodology
We ran our image filter experiments on an Intel Core i7 990X with
6 cores (hyperthreading disabled) running at 3.47GHz with 8 GB
RAM and running 64-bit Windows 7. We used the Halide release
built from git commit 80015c.
Helium We compiled our lifted Halide code into standalone exe-
cutables that load an image, time repeated applications of the filter,

1 http://sympy.org

and save the image for verification. We ran 10 warmup iterations
followed by 30 timing iterations. We tuned the schedules for our
generated Halide code for six hours each using the OpenTuner-based
Halide tuner [4]. We tuned using a 11267 by 8813 24-bit truecolor
image and evaluated with a 11959 by 8135 24-bit image.

We cannot usefully compare the performance of the four Photo-
shop filters that we did not entirely lift this way; we describe their
evaluation separately in Section 6.5.

Photoshop We timed Photoshop using the ExtendScript API2 to
programmatically start Photoshop, load the image and invoke filters.
While we extracted filters from non-optimized fallback code for
old processors, times reported in this section are using Photoshop’s
choice of code path. In Photoshop’s performance preferences, we set
the tile size to 1028K (the largest), history states to 1, and cache tiles
to 1. This amounts to optimizing Photoshop for batch processing,
improving performance by up to 48% over default settings while
dramatically reducing measurement variance. We ran 10 warmup
iterations and 30 evaluation iterations.

IrfanView IrfanView does not have a scripting interface allowing
for timing, so we timed IrfanView running from the command line
using PowerShell’s Measure-Command. We timed 30 executions of
IrfanView running each filter and another 30 executions that read
and wrote the image without operating on it, taking the difference
as the filter execution time.

miniGMG miniGMG is open source, so we compared unmodified
miniGMG performance against a version with the loop in the
smooth stencil function from the OpenMP-based Jacobi smoother
replaced with a call to our Halide-compiled lifted stencil. We
used a generic Halide schedule template that parallelizes the outer
dimension and, when possible, vectorizes the inner dimension. We
compared performance against miniGMG using OpenMP on a
2.4GHz Intel Xeon E5-2695v2 machine running Linux with two
sockets, 12 cores per socket and 128GB RAM.

6.3 Lifted Filter Performance Results
Photoshop Figure 7 compares Photoshop’s filters against our
standalone executable running our lifted Halide code. We obtain an
average speedup of 1.75 on the individual filters (1.90 excluding
box blur).

Profiling using Intel VTune shows that Photoshop’s blur filter is
not vectorized. Photoshop does parallelize across all the machine’s

2 https://www.adobe.com/devnet/photoshop/scripting.html

Filter Photoshop Helium speedup
Invert 102.23 ± 1.65 58.74 ± .52 1.74x
Blur 245.87 ± 5.30 93.74 ± .78 2.62x
Blur More 317.97 ± 2.76 283.92 ± 2.52 1.12x
Sharpen 270.40 ± 5.80 110.07 ± .69 2.46x
Sharpen More 305.50 ± 4.13 147.01 ± 2.29 2.08x
Threshold 169.83 ± 1.37 119.34 ± 8.06 1.42x
Box Blur 273.87 ± 2.42 343.02 ± .59 .80x

Filter IrfanView Helium speedup
Invert 215.23 ± 37.98 105.94 ± .78 2.03x
Solarize 220.51 ± 46.96 102.21 ± .55 2.16x
Blur 3129.68 ± 17.39 359.84 ± 3.96 8.70x
Sharpen 3419.67 ± 52.56 489.84 ± 7.78 6.98x

Figure 7. Timing comparison (in milliseconds) between Photoshop
and IrfanView filters and our lifted Halide-implemented filters on a
11959 by 8135 24-bit truecolor image.

hardware threads, but each thread only achieves 10-30% utiliza-
tion. Our lifted filter provides better performance by blocking and
vectorizing in addition to parallelizing.

Photoshop implements box blur with a sliding window, adding
one pixel entering the window and subtracting the pixel leaving the
window. Our lifted implementation of box blur is slower because He-
lium cancels these additions and subtractions when canonicalizing
the tree, undoing the sliding window optimization.
IrfanView Figure 7 compares IrfanView’s filters against our
Halide applications. We obtain an average speedup of 4.97.
miniGMG For miniGMG, we measure the total time spent in the
stencil we translate across all iterations of the multigrid invocation.
Unmodified miniGMG spends 28.5 seconds in the kernel, while
miniGMG modified to use our lifted Halide smooth stencil finishes
in 6.7 seconds for a speedup of 4.25.

6.4 Performance of Filter Pipelines
We also compare filter pipelines to demonstrate how lifting to a very
high-level representation enables additional performance improve-
ments through stencil composition. For Photoshop, our pipeline
consists of blur, invert and sharpen more applied consecutively,
while for IrfanView we ran a pipeline of sharpen, solarize and blur.

We obtain a speedup of 2.91 for the Photoshop pipeline. Pho-
toshop blurs the entire image, then inverts it, then sharpens more,
which has poor locality. Halide inlines blur and invert inside the
loops for sharpen more, improving locality while maintaining vec-
torization and parallelism.

We obtain a speedup of 5.17 for the IrfanView pipeline. Irfan-
View improves when running the filters as a pipeline, apparently by
amortizing the cost of a one-time preparation step, but our Halide
code improves further by fusing the actual filters.

6.5 In Situ Replacement Photoshop Performance
To evaluate the performance impact of the filters we partially
extracted from Photoshop, we replaced Photoshop’s implementation
with our automatically-generated Halide code using manually-
implemented binary patches. We compiled all our Halide code into
a DLL that patches specific addresses in Photoshop’s code with
calls to our Halide code. Other than improved performance, these
patches are entirely transparent to the user. The disadvantage of this
approach is that the patched kernels are constrained by optimization
decisions made in Photoshop, such as the granularity of tiling, which
restricts our ability to fully optimize the kernels.

When timing the replacements for filters we entirely lift, we
disabled Photoshop’s parallelism by removing MultiProcessor

650.5 ms

496.3 ms

299.4 ms

223.3 ms

sharpenmore
invert
blur

Photoshop

replaced

standalone
separate

standalone
fused

6771 ms

3708 ms

951.8 ms
717.0 ms

IrfanView

IrfanView
pipeline

standalone
separate

standalone
fused

sharpen
solarize
blur

Figure 8. Performance comparison of Photoshop and IrfanView
pipelines. Left-to-right, the left graph shows Photoshop running the
filters in sequence, Photoshop hosting our lifted implementations
(Section 6.5), our standalone Halide executable running the filters
in sequence, and our Halide executable running the fused pipeline.
The right graph shows IrfanView running the filters in sequence, Ir-
fanView running the filters as a pipeline (in one IrfanView instance),
our Halide executable running the filters in sequence, and our Halide
executable running the fused pipeline.

Support.8BX from the Photoshop installation, allowing our Halide
code to control parallelism subject to the granularity limit imposed
by Photoshop’s tile size. When timing the filters we only partially
lift, we removed parallelism from the Halide schedule and allow
Photoshop to parallelize around our Halide code. While we would
prefer to control parallelism ourselves, enough Photoshop code
is executing outside the regions we replaced to make disabling
Photoshop’s parallelism a large performance hit.

Figure 9 compares unmodified Photoshop (same numbers as
in the previous section) with Photoshop after in situ replacement.
For the fully-lifted filters, we are still able to improve performance
even while not fully in control of the environment. Our replacement
for box blur is still slower for the reason described in Section 6.3.
The portions of histogram equalization and brightness we lift are
too simple to improve, but the replaced sharpen edges is slightly
faster, demonstrating that even when Helium cannot lift the entire
computation, it can still lift a performance-relevant portion.

7. Related Work
Binary static analysis Phoenix [23], BitBlaze [24], BAP [9], and
other tools construct their own low-level IR (e.g., register transfer
language (RTL)) from binaries. These low-level IRs allow only
limited analysis or low-level transformations.

Filter Photoshop replacement speedup
Invert 102.23 ± 1.65 93.20 ± .71 1.10x
Blur 245.87 ± 5.30 191.83 ± 1.12 1.28x
Blur More 317.97 ± 2.76 310.70 ± .88 1.02x
Sharpen 270.40 ± 5.80 194.80 ± .66 1.39x
Sharpen More 305.50 ± 4.13 210.20 ± .71 1.45x
Threshold 169.83 ± 1.37 124.10 ± .76 1.37x
Box Blur 273.87 ± 2.42 395.40 ± .72 .69x
Sharpen Edges 798.43 ± 1.45 728.63 ± 1.85 1.10x
Despeckle 763.87 ± 1.59 756.40 ± 1.59 1.01x
Equalize 405.50 ± 1.45 433.87 ± .90 .93x
Brightness 498.00 ± 1.31 503.47 ± 1.17 .99x

Figure 9. Timing comparison (in milliseconds) between Photoshop
filters and in situ replacement with our lifted Halide-implemented
filters on a 11959 by 8135 24-bit truecolor image.

Other static analysis aims for high-level representations of
binaries. Value set analysis [6] is a static analysis that tracks the
possible values of pointers and indices to analyze memory access in
stripped binaries; instead of a complicated static analysis, Helium
recovers buffer structure from actual program behavior captured in
traces. SecondWrite [3], [13] decompiles x86 binaries to LLVM IR;
while the resulting IR can be optimized and recompiled, this IR is too
low-level to get more than minor speedup over existing optimized
binaries. [18] uses SecondWrite for automatic parallelization of
affine loops, but must analyze existing loop structure and resolve
aliasing, while we lift to Halide code expressing only the algorithm.
McSema [2] also decompiles x86 to LLVM IR for analysis. The
Hex-Rays decompiler [1] decompiles to a C-like pseudocode which
cannot be recompiled to binaries. SmartDec [14] is a binary to C++
decompiler that can extract class hierarchies and try/catch blocks;
we extract high-level algorithms independent of particular language
constructs.
Dynamic translation and instrumentation Binary translation sys-
tems like QEMU [7] translate machine code between architectures
using RISC-like IR; RevNIC [11] and S2E [12] translate programs
from x86 to LLVM IR by running them in QEMU. Dynamic instru-
mentation systems like Valgrind [20] present a similar RISC-like IR
for analysis and instrumentation, then generate machine code for
execution. These IRs retain details of the original binary and do not
provide enough abstraction for high-level transformations.
Microarchitecture-level dynamic binary optimization Some sys-
tems improve the performance of existing binaries through micro-
architecture-level optimizations that do not require building IR. Dy-
namo [5] improves code locality and applies simple optimizations
on frequently-executed code. Ubiquitous memory introspection [33]
detects frequently-stalling loads and adds prefetch instructions. [19]
translates x86 binaries to x86-64, using the additional registers to
promote stack variables. We perform much higher-level optimiza-
tions on our lifted stencils.
Automatic parallelization Many automatic parallelization sys-
tems use dynamic analysis to track data flow to analyze commu-
nication to detect parallelization opportunities, but these systems
require source code access (often with manual annotations). [27]
uses dynamic analysis to track communication across programmer-
annotated pipeline boundaries to extract coarse-grained pipeline
parallelism. Paralax [28] performs semi-automatic parallelization,
using dynamic dependency tracking to suggest programmer anno-
tations (e.g., that a variable is killed). HELIX [10] uses a dynamic
loop nesting graph to select a set of loops to parallelize. [29] uses
dynamic analysis of control and data dependencies as input to a
trained predictor to autoparallelize loops, relying on the user to
check correctness.

Pointer and shape analysis Pointer analyses have been written for
assembly programs [15]. Shape analyses [30] analyze programs stat-
ically to determine properties of heap structures. [32] uses dynamic
analysis to identify pointer-chasing that sometimes exhibits strides
to aid in placing prefetch instructions. Because we analyze concrete
memory traces for stencils, our buffer structure reconstruction and
stride inference is indifferent to aliasing and finds regular access
patterns.

8. Conclusion
Most legacy high-performance applications exhibit bit rot during
the useful lifetime of the application. We can no longer rely on
Moore’s Law to provide transparent performance improvements
from clock speed scaling, but at the same time modern hardware pro-
vides ample opportunities to substantially improve performance of
legacy programs. To rejuvenate these programs, we need high-level,
easily-optimizable representations of their algorithms. However,
high-performance kernels in these applications have been heavily
optimized for a bygone era, resulting in complex source code and
executables, even though the underlying algorithms are mostly very
simple. Current state-of-the-art techniques are not capable of extract-
ing the simple algorithms from these highly optimized programs.
We believe that fully dynamic techniques, introduced in Helium,
are a promising direction for lifting important computations into
higher-level representations and rejuvenating legacy applications.

Helium source code is available at http://projects.csail.
mit.edu/helium.

Acknowledgments
We would like to thank Vladimir Kiriansky, Derek Bruening, and the
DynamoRIO user group for invaluable help debugging DynamoRIO
clients and Sarah Kong, Chris Cox, Joseph Hsieh, Alan Erickson,
and Jeff Chien of the Photoshop team for their helpful input.
This material is based upon work supported by DOE awards DE-
SC0005288 and DE-SC0008923 and DARPA agreement FA8750-
14-2-0009. Charith Mendis was supported by a MITEI fellowship.

References
[1] Idapro, hexrays. URL http://www.hex-rays.com/idapro/.
[2] Mcsema: Static translation of x86 into llvm. 2014.
[3] K. Anand, M. Smithson, K. Elwazeer, A. Kotha, J. Gruen, N. Giles,

and R. Barua. A compiler-level intermediate representation based
binary analysis and rewriting system. In Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys ’13, pages 295–
308, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1994-2. .
URL http://doi.acm.org/10.1145/2465351.2465380.

[4] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe. Opentuner: An extensible
framework for program autotuning. In International Conference on
Parallel Architectures and Compilation Techniques, Edmonton, Canada,
August 2014.

[5] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent
dynamic optimization system. In Proceedings of the ACM SIGPLAN
2000 Conference on Programming Language Design and Implementa-
tion, PLDI ’00, pages 1–12, New York, NY, USA, 2000. ACM. ISBN
1-58113-199-2. . URL http://doi.acm.org/10.1145/349299.
349303.

[6] G. Balakrishnan and T. Reps. Analyzing memory accesses in x86
executables. In E. Duesterwald, editor, Compiler Construction, volume
2985 of Lecture Notes in Computer Science, pages 5–23. Springer
Berlin Heidelberg, 2004. ISBN 978-3-540-21297-3. .

[7] F. Bellard. QEMU, a fast and portable dynamic translator. In
Proceedings of the Annual Conference on USENIX Annual Technical
Conference, ATEC ’05, pages 41–41, Berkeley, CA, USA, 2005.
USENIX Association. URL www.qemu.org.

[8] D. Bruening, Q. Zhao, and S. Amarasinghe. Transparent dynamic
instrumentation. In Proceedings of the 8th ACM SIGPLAN/SIGOPS
Conference on Virtual Execution Environments, VEE ’12, pages 133–
144, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1176-2. .
URL http://doi.acm.org/10.1145/2151024.2151043.

[9] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz. BAP: A binary
analysis platform. In Proceedings of the 23rd International Conference
on Computer Aided Verification, CAV’11, pages 463–469, Berlin,
Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-22109-5. URL
http://dl.acm.org/citation.cfm?id=2032305.2032342.

[10] S. Campanoni, T. Jones, G. Holloway, V. J. Reddi, G.-Y. Wei, and
D. Brooks. HELIX: Automatic parallelization of irregular programs
for chip multiprocessing. In Proceedings of the Tenth International
Symposium on Code Generation and Optimization, CGO ’12, pages
84–93, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1206-6. .
URL http://doi.acm.org/10.1145/2259016.2259028.

[11] V. Chipounov and G. Candea. Reverse engineering of binary device
drivers with RevNIC. In Proceedings of the 5th European Conference
on Computer Systems, EuroSys ’10, pages 167–180, New York, NY,
USA, 2010. ACM. ISBN 978-1-60558-577-2. . URL http://doi.
acm.org/10.1145/1755913.1755932.

[12] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for
in-vivo multi-path analysis of software systems. In Proceedings of
the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XVI, pages
265–278, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0266-1.
. URL http://doi.acm.org/10.1145/1950365.1950396.

[13] K. ElWazeer, K. Anand, A. Kotha, M. Smithson, and R. Barua. Scalable
variable and data type detection in a binary rewriter. In Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, pages 51–60, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-2014-6. . URL http:
//doi.acm.org/10.1145/2491956.2462165.

[14] A. Fokin, E. Derevenetc, A. Chernov, and K. Troshina. Smartdec:
Approaching c++ decompilation. In Proceedings of the 2011 18th
Working Conference on Reverse Engineering, WCRE ’11, pages 347–
356, Washington, DC, USA, 2011. IEEE Computer Society. ISBN
978-0-7695-4582-0. . URL http://dx.doi.org/10.1109/WCRE.
2011.49.

[15] B. Guo, M. Bridges, S. Triantafyllis, G. Ottoni, E. Raman, and D. Au-
gust. Practical and accurate low-level pointer analysis. In Code Gener-
ation and Optimization, 2005. CGO 2005. International Symposium
on, pages 291–302, March 2005. .

[16] R. N. Horspool and N. Marovac. An approach to the problem of
detranslation of computer programs. The Computer Journal, 23(3):
223–229, 1980.

[17] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An auto-tuning
framework for parallel multicore stencil computations. In Parallel
Distributed Processing (IPDPS), 2010 IEEE International Symposium
on, pages 1–12, April 2010. .

[18] A. Kotha, K. Anand, M. Smithson, G. Yellareddy, and R. Barua.
Automatic parallelization in a binary rewriter. In Proceedings of
the 2010 43rd Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO ’43, pages 547–557, Washington, DC, USA,
2010. IEEE Computer Society. ISBN 978-0-7695-4299-7. . URL
http://dx.doi.org/10.1109/MICRO.2010.27.

[19] J. Li, C. Wu, and W.-C. Hsu. Dynamic register promotion of stack
variables. In Proceedings of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO ’11, pages
21–31, Washington, DC, USA, 2011. IEEE Computer Society. ISBN
978-1-61284-356-8. URL http://dl.acm.org/citation.cfm?
id=2190025.2190050.

[20] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 2007 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’07, pages 89–100, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-633-2. . URL http://doi.acm.org/10.1145/
1250734.1250746.

[21] S. Paris. Adobe systems. personal communication, 2014.

[22] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Ama-
rasinghe. Halide: A language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines. In Pro-
ceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, 2013. . URL
http://doi.acm.org/10.1145/2491956.2462176.

[23] M. Research. Phoenix compiler and shared source common lan-
guage infrastructure. URL http://www.research.microsoft.
com/phoenix.

[24] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena. BitBlaze: A new
approach to computer security via binary analysis. In Proceedings
of the 4th International Conference on Information Systems Security.
Keynote invited paper., Hyderabad, India, Dec. 2008.

[25] K. Stock, M. Kong, T. Grosser, L.-N. Pouchet, F. Rastello, J. Ramanu-
jam, and P. Sadayappan. A framework for enhancing data reuse via
associative reordering. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’14, pages 65–76, New York, NY, USA, 2014. ACM. ISBN 978-
1-4503-2784-8. . URL http://doi.acm.org/10.1145/2594291.
2594342.

[26] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E.
Leiserson. The pochoir stencil compiler. In Proceedings of the
Twenty-third Annual ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’11, pages 117–128, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0743-7. . URL http://doi.acm.
org/10.1145/1989493.1989508.

[27] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical approach
to exploiting coarse-grained pipeline parallelism in c programs. In
Proceedings of the 40th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 40, pages 356–369, Washington, DC,
USA, 2007. IEEE Computer Society. ISBN 0-7695-3047-8. . URL
http://dx.doi.org/10.1109/MICRO.2007.7.

[28] H. Vandierendonck, S. Rul, and K. De Bosschere. The paralax in-
frastructure: Automatic parallelization with a helping hand. In Pro-
ceedings of the 19th International Conference on Parallel Architec-
tures and Compilation Techniques, PACT ’10, pages 389–400, New
York, NY, USA, 2010. ACM. ISBN 978-1-4503-0178-7. . URL
http://doi.acm.org/10.1145/1854273.1854322.

[29] Z. Wang, G. Tournavitis, B. Franke, and M. F. P. O’boyle. Integrat-
ing profile-driven parallelism detection and machine-learning-based
mapping. ACM Trans. Archit. Code Optim., 11(1):2:1–2:26, Feb.
2014. ISSN 1544-3566. . URL http://doi.acm.org/10.1145/
2579561.

[30] R. Wilhelm, M. Sagiv, and T. Reps. Shape analysis. In D. Watt,
editor, Compiler Construction, volume 1781 of Lecture Notes in
Computer Science, pages 1–17. Springer Berlin Heidelberg, 2000.
ISBN 978-3-540-67263-0. . URL http://dx.doi.org/10.1007/
3-540-46423-9_1.

[31] S. Williams, D. D. Kalamkar, A. Singh, A. M. Deshpande,
B. Van Straalen, M. Smelyanskiy, A. Almgren, P. Dubey, J. Shalf, and
L. Oliker. Optimization of geometric multigrid for emerging multi-and
manycore processors. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis,
page 96. IEEE Computer Society Press, 2012.

[32] Y. Wu. Efficient discovery of regular stride patterns in irregular
programs and its use in compiler prefetching. In Proceedings of
the ACM SIGPLAN 2002 Conference on Programming Language
Design and Implementation, PLDI ’02, pages 210–221, New York,
NY, USA, 2002. ACM. ISBN 1-58113-463-0. . URL http:
//doi.acm.org/10.1145/512529.512555.

[33] Q. Zhao, R. Rabbah, S. Amarasinghe, L. Rudolph, and W.-F.
Wong. Ubiquitous memory introspection. In International Sym-
posium on Code Generation and Optimization, San Jose, CA, Mar
2007. URL http://groups.csail.mit.edu/commit/papers/
07/zhao-cgo07-umi.pdf.

