
Simit: A Language for Physical Simulation

FREDRIK KJOLSTAD

Massachusetts Institute of Technology

SHOAIB KAMIL

Adobe

JONATHAN RAGAN-KELLEY

Stanford University

DAVID I.W. LEVIN

Disney Research

SHINJIRO SUEDA

California Polytechnic State University

DESAI CHEN

Massachusetts Institute of Technology

ETIENNE VOUGA

University of Texas at Austin

DANNY M. KAUFMAN

Adobe

and

GURTEJ KANWAR, WOJCIECH MATUSIK, and SAMAN AMARASINGHE

Massachusetts Institute of Technology

Using existing programming tools, writing high-performance simulation

code is labor intensive and requires sacrificing readability and portability. The

alternative is to prototype simulations in a high-level language like Matlab,

thereby sacrificing performance. The Matlab programming model naturally

describes the behavior of an entire physical system using the language of

linear algebra. However, simulations also manipulate individual geometric

elements, which are best represented using linked data structures like meshes.

Translating between the linked data structures and linear algebra comes at

significant cost, both to the programmer and the machine. High-performance

implementations avoid the cost by rephrasing the computation in terms of

linked or index data structures, leaving the code complicated and monolithic,

often increasing its size by an order of magnitude.

In this paper, we present Simit, a new language for physical simulations

that lets the programmer view the system both as a linked data structure in

the form of a hypergraph, and as a set of global vectors, matrices and tensors

depending on what is convenient at any given time. Simit provides a novel

assembly construct that makes it conceptually easy and computationally effi-

cient to move between the two abstractions. Using the information provided

by the assembly construct, the compiler generates efficient in-place computa-

tion on the graph. We demonstrate that Simit is easy to use: a Simit program

is typically shorter than a Matlab program; that it is high-performance:

a Simit program running sequentially on a CPU performs comparably to

hand-optimized simulations; and that it is portable: Simit programs can

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
c© 2015 Copyright held by the owner/author(s). $15.00
DOI: XXXX

be compiled for GPUs with no change to the program, delivering 4-20x

speedups over our optimized CPU code.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-

Dimensional Graphics and Realism—Animation

Additional Key Words and Phrases: Graph, Matrix, Tensor, Simulation

1. INTRODUCTION

Efficient computer simulations of physical phenomena are notori-
ously difficult to engineer, requiring careful optimization to achieve
good performance. This stands in stark contrast to the elegance of
the underlying physical laws; for example, the behavior of an elastic
object, modeled (for ease of exposition) as a network of masses
connected by springs, is determined by a single quadratic equation,
Hooke’s law, applied homogeneously to every spring in the network.
While Hooke’s law describes the local behavior of the mass-spring
network, it tells us relatively little about its global, emergent behav-
ior. This global behavior, such as how an entire object will deform,
is also described by simple but coupled systems of equations.

Each of these two aspects of the physical system—its local interac-
tions and global evolution laws—admit different useful abstractions.
The local behavior of the system can be naturally encoded in a graph,
with the degrees of freedom stored on vertices, and interactions be-
tween degrees of freedom represented as edges. These interactions
are described by local physical laws (like Hooke’s law from above),
applied uniformly, like a stencil, over all of the edges. However,
this stencil interpretation is ill-suited for representing the coupled
equations which describe global behaviors. Once discretized and lin-
earized, these global operations are most naturally expressed in the

ACM Transactions on Graphics, Vol. XXXX, No. XXXX, Article XXXX, Publication date: XXXX 2015.



2 • F. Kjolstad et al.

Simit GPU

Simit CPU

ms per frame

Source lines

1080

16,080

213,797

110

Matlab

Eigen

Vega

interactive

Matlab Vec

2,268

1,025
901

363293234154

Fig. 1: Scatter plot that shows the relationship between the code size and

runtime of a Neo-Hookean FEM simulation implemented using (Vectorized)

Matlab, the optimized Eigen Linear Algebra library, the hand-optimized Vega

FEM framework, and Simit. The runtimes are for a dragon with 160,743

tetrahedral elements. The trend is that you get more performance by writing

more code, however, with Simit you get both performance and productivity.

Simit requires fewer lines of code than the Matlab implementation and runs

faster than the hand-optimized Vega library on a single-threaded CPU. On a

GPU, the Simit implementation runs 6× faster with no code changes.

language of linear algebra, where all of the system data is aggregated
into huge but sparse matrices and vectors.

The easiest way for a programmer to reason about a physical
simulation, and hence a common idiom when implementing one, is
to swap back and forth between the global and local abstractions.
First, a graph or mesh library might be used to store a mass spring
system. Local forces and force Jacobians are computed with uniform,
local stencils on the mesh and copied into large sparse matrices and
vectors, which are then handed off to optimized sparse linear algebra
libraries to calculate the updated global state of the simulation.
Finally this updated state is copied back onto the mesh.

While straightforward to conceptualize, the strategy of copying
data back and forth between the graph and matrix representations
incurs high performance costs as a result of data translation, and
the inability to optimize globally across linear algebra operations.
To overcome this inefficiency, highly-optimized simulations, like
those used for games and other real-time applications, are built as
monolithic codes that perform assembly and linear algebra on a sin-
gle set of data structures, often by computing in-place on the mesh.
Building such a monolithic code requires enormous programmer ef-
fort and expertise. Doing so while keeping the system maintainable
and extensible, or allowing retargeting of the same code to multiple
architectures such as GPUs and CPUs, is nearly impossible.

The Simit Language

To let users take advantage of implicit local-global structure without
the performance pitfalls described above, we propose a new pro-
gramming language called Simit that natively supports switching
between graph and matrix views of the simulation. Because Simit

is aware of the local-global duality at the language level, it lets
simulation codes be concise, fast (see Figure 1), and portable (com-
piling to both CPU and GPU with no source code change). Simit
makes use of three key abstractions: first, the local view is defined
using a hypergraph data structure, where nodes represent degrees of
freedom and hyperedges relationships such as force stencils, finite
elements, and joints. Hyperedges are used instead of regular edges
to support relationships between more than two vertices. Second,
the local operations to be performed are encoded as functions acting
on neighborhoods of the graph (such as Hooke’s law). Lastly, and
most importantly, the user specifies how global vectors and matri-
ces are related to the hypergraph and local functions. For instance,
the user might specify that the global force vector is to be built
by applying Hooke’s law to each spring and summing the forces
acting on each mass. The key point is that defining a global matrix
in this way is not an imperative instruction for Simit to materialize
a matrix in memory: rather, it is an abstract definition of the matrix
(much as one would define the matrix in a mathematical paper). The
programmer can then operate on that abstract matrix using linear
algebra operations; Simit analyzes these operations and translates
them into operations on the hypergraph. Because Simit understands
the mapping from the graph to the matrix, it can globally optimize
the code it generates while still allowing the programmer to reason
about the simulation in the most natural way: as both local graph
operations and linear algebra on sparse matrices.

Simit’s performance comes from its design and is made possible
by Simit’s careful choice of abstractions. Three features (Section 9)
come together to yield the surprising performance shown in Figure 1:

In-place Computation is made possible by the tensor assembly
construct that lets the compiler understand the relationship between
global operations and the graph and turn global linear algebra into
in-place local operations on the graph structure. This means that
Simit does not need to generate sparse matrix index structures or
allocate matrix and vector memory at runtime;

Index Expression Fusion is used to fuse linear algebra operations,
yielding loops that perform multiple operations at once. Further, due
to in-place computation even sparse operations can be fused; and

Simit’s Type System with natively blocked vectors, matrices and
tensors, lets it perform efficient dense block computation by emitting
dense loops as sub-computations of sparse operations.

Simit’s performance can be enhanced even further by emitting vector
instructions or providing multi-threaded CPU execution, optimiza-
tions that are planned for a future version of the compiler.

Scope

Simit is designed for algorithms where local stencils are applied
to a graph of fixed topology to form large, global matrices and
vectors, to which numerical algorithms are applied and the results
written back onto the graph. This abstraction perfectly fits many
physical simulation problems such as mass-spring networks (where
hyperedges are the springs), cloth (the bending and stretching force
stencils), viscoelastic deformable bodies (the finite elements), etc.
At this time the Simit language does not natively support changing
the graph topology (such as occurs with fracture or penalty-based
impact forces) or simulation components that do not fit the graph
abstraction (such as collision detection spatial data structures, semi-
Lagrangian advection of fluids). However, as discussed in Section 5,
Simit is interoperable with C++ code and libraries, which can be
used to circumvent some of these limitations. For example, the
graph topology can be changed using Simit’s C++ library between
timesteps, and Simit will recompute necessary indices.

ACM Transactions on Graphics, Vol. XXXX, No. XXXX, Article XXXX, Publication date: XXXX 2015.



Simit: A Language for Physical Simulation • 3

The target audience for Simit is researchers, practitioners, and
educators who want to develop physical simulation code that is more
readable, maintainable, and retargetable than Matlab or C++, while
also being significantly more efficient (comparable to optimized
physics libraries like SOFA). Simit programs will not outperform
hand-tuned CUDA code, or be simpler to use than problem-specific
tools like FreeFem++, but Simit occupies a sweet spot balancing
these goals (see Figure 1 and benchmarks in Section 8) that is ideal
for a general-purpose physical simulation language.

Contributions

Simit is the first system that allows the development of physics code
that is simultaneously:

Concise The Simit language has Matlab-like syntax that lets
algorithms be implemented in a compact, readable form that closely
mirrors their mathematical expression. In addition, Simit matrices
assembled from hypergraphs are indexed by hypergraph elements
like vertices and edges rather than by raw integers, significantly
simplifying indexing code and eliminating bugs.

Expressive The Simit language consists of linear algebra oper-
ations augmented with control flow that let developers implement
a wide range of algorithms ranging from finite elements for de-
formable bodies, to cloth simulations and more. Moreover, the pow-
erful hypergraph abstraction allows easy specification of complex
geometric data structures.

Fast The Simit compiler produces high-performance executable
code comparable to that of hand-optimized end-to-end libraries and
tools, as validated against the state-of-the-art SOFA [Faure et al.
2007] and Vega [Sin et al. 2013] real-time simulation frameworks.
Simulations can now be written as easily as a traditional prototype
and yet run as fast as a high performance implementation without
manual optimization.

Performance Portable A Simit program can be compiled to both
CPUs and GPUs with no additional programmer effort, while gen-
erating efficient code for each architecture. Where Simit delivers
performance comparable to hand-optimized CPU code on the same
processor, the same simple Simit program delivers roughly an or-
der of magnitude higher performance on a modern GPU in our
benchmarks, with no changes to the program.

Interoperable Simit hypergraphs and program execution are ex-
posed as C++ APIs, so developers can seamlessly integrate with
existing C++ programs, algorithms and libraries.

2. RELATED WORK

The Simit programming model draws on ideas from programming
systems, numerical and simulation libraries, and physical and math-
ematical frameworks.

Hand-Optimized Physical Simulations

Researchers have explored many techniques to optimize simulation
problems for CPUs and GPUs. These codes tend to be memory
bound so much of this work has gone into optimizing data layout
and data access patterns. For implicit codes, most of the time is spent
assembling and solving sparse systems of linear equations, and the
most important consideration is the choice of solver algorithm and
implementation. Popular solvers are the Conjugate Gradient method
(CG), e.g. [Faure et al. 2007]; Projected CG (PCG), e.g. [Weber
et al. 2013]; and Multigrid (MG), e.g. [McAdams et al. 2011; Dick
et al. 2011]. Since these solvers are iterative most of the time is

spent in sparse matrix-vector multiplications (SpMV) or equivalent
operation, and an efficient sparse matrix representation is essential.

SOFA [2007] encapsulates SpMV operations used in iterative
solves as the application of a force field. The SOFA mass-spring
force field is completely matrix-free; no part of the global sparse
matrix is stored and the matrix blocks are computed on demand
in the SpMV. The SOFA FEM force field is only partly matrix-
free. Because it is expensive to compute FEM element stiffness
matrices, they should not be recomputed each CG iteration. The
FEM therefore consists of an assembly stage that computes element
stiffness matrices, and stores them on the elements. The global
stiffness matrix is thus stored in partly assembled form, prior to the
summation of the element stiffness matrices that affect each vertex.

The Hexahedral Corotational FEM implementation of Dick et
al. [2011] goes one step further and stores element stiffness matrices
in their final assembled form on the mesh vertices. This is equivalent
to storing them in a BCSR format, where each matrix row is stored
on the corresponding vertex, but without the need to store an explicit
matrix index since the mesh is effectively the matrix’s index.

In the work of Weber et al. [2013] they explore a new general
matrix storage format they call BIN-CSR. Unlike the (partly) matrix-
free approaches above, they store matrix indices instead of using the
mesh data structure. To speed up GPU execution they divide matrix
rows into bins that store data using the ELLPACK format [1989].

The current Simit compiler produces code that uses the same
storage scheme as Dick et al. for global matrices. That is, matrix
blocks are stored in their final assembled form on the vertices. Fur-
ther, similar to the approach of Dick et al., compiled Simit code uses
graph neighbor indices as the index of all non-diagonal assembled
matrices (diagonal matrices do not need indices). However, Simit
is a high-level language where the user does not have to implement
these optimization choices; rather the compiler takes care of it. A
Simit implementation of the Dick et al. application does not yet
get as good performance as their hand-optimized implementation,
but the user writes an order of magnitude less code and gets much
better performance than a naive C++ implementation. Further, the
code is high-level linear algebra physics code, rather than optimized
C++ and CUDA kernels. Finally, Simit can compile the same ap-
plication to multiple architectures, such as CPUs and GPUs, and as
new architectures such as the Xeon Phi become available, the Simit
compiler can target them thus removing the need to reimplement
Simit applications. See Section 8.8 for more details.

Direct solvers are an important alternative to iterative solvers that
often perform better [Botsch et al. 2005]. However, in this work
we focus on iterative solvers due to their low memory consump-
tion and popularity for physical simulation. We leave support for
implementing direct solvers in Simit as future work.

Libraries for Physical Simulation

A wide range of libraries for the physical simulation of deformable
bodies with varying degrees of generality are available [Pommier
and Renard 2005; Faure et al. 2007; Dubey et al. 2011; Sin et al.
2013; Comsol 2005; Hibbett et al. 1998; Kohnke 1999], while still
others specifically target rigid and multi-body systems with domain
specific custom optimizations [Coumans et al. 2006; Smith et al.
2005; Liu 2014]. These simulation codes are broad and many serve
double duty as both production codes and algorithmic testbeds.
As such they often provide collections of algorithms rather than
customizations suited to a particular timestepping and/or spatial
discretization model. With broad scope comes convenience but even
so inter-library communication is often hampered by data conversion
while generality often limits the degree of optimization.

ACM Transactions on Graphics, Vol. XXXX, No. XXXX, Article XXXX, Publication date: XXXX 2015.



4 • F. Kjolstad et al.

Mesh Data Structures

Simulation codes often use third-party libraries that support higher-
level manipulation of the simulation mesh. A half-edge data struc-
ture [Eastman and Weiss 1982] (from, e.g., the OpenMesh li-
brary [Botsch et al. 2002]) is one popular method for describ-
ing a mesh which allows efficient connectivity queries and neigh-
borhood circulation. Alternatives that target different application
requirements (manifold vs. nonmanifold, oriented vs unoriented,
etc.) abound, such as winged-edge [Baumgart 1972] or quad-
edge [Guibas and Stolfi 1985] data structures. Modern software
packages like CGAL [CGAL 2015] provide sophisticated tools on
top of many of these data structures for performing common geome-
try operations. Simit’s hierarchical hyper-edges provide sufficient
expressiveness to let users build semantically rich data structures
like meshes, while not limiting the user to meshes.

DSLs for Computer Graphics

Graphics has a long history of using domain-specific languages and
abstractions to provide high performance, and performance portabil-
ity, from relatively simple code. Most visible are shading languages
and the graphics pipeline [Hanrahan and Lawson 1990; Segal and
Akeley 1994; Mark et al. 2003; Blythe 2006; Parker et al. 2010].
Image processing languages also have a long history [Holzmann
1988; Elliott 2001; Ragan-Kelley et al. 2012], and more recently
domain-specific languages have been proposed for new domains like
3D printing [Vidimče et al. 2013]. In physical simulation, Guenter
et al. built the D∗ system for symbolic differentiation, and demon-
strated its application to modeling and simulation [Guenter and Lee
2009]. D∗ is an elegant abstraction, but its implementation focuses
less on optimized simulation performance, and its model cannot
express features important to many of our motivating applications.

Graph Programming Models

A number of programming systems address computation over graphs
or graph-like data structures, including GraphLab [Low et al. 2010],
Galois [Pingali et al. 2011], Liszt [DeVito et al. 2011], SociaLite [Ji-
won Seo 2013], and GreenMarl [Sungpack Hong and Olukotun
2012]. In these systems, programs are generally written as explicit
in-place computations using stencils on the graph, providing a much
lower level of abstraction than linear algebra over whole systems. Of
these, GraphLab and SociaLite focus on distributed systems, while
we currently focus on single-node/shared memory execution. So-
ciaLite and GreenMarl focus on scaling traditional graph algorithms
(e.g., breadth-first search and betweenness centrality) to large graphs.
Liszt exposes a programming model over meshes. Computations
are written in an imperative fashion, but must look like stencils,
so it only allows element-wise operations and reductions. This is
similar to the programming model used for assembly in Simit, but
it has no corollary to Simit’s linear algebra for easy operation on
whole systems. Galois exposes explicit in-place programming via a
similarly low-level, but very dynamic programming model, which
inhibits compiler analysis and optimization.

Programming Systems for Linear Algebra

Our linear algebra syntax is inspired by Matlab [2014], the most
successful high-productivity tool in this domain. However, the ten-
sor assembly map operator, together with coordinate-free indexing
and hierarchically blocked tensors, dramatically reduces indexing
complexity during matrix assembly, and exposes structure critical
to our compiler optimizations. Eigen [Guennebaud et al. 2010] is

a C++ library for linear algebra which uses aggressive template
metaprogramming to specialize and optimize linear algebra com-
putations at compile time, including fusion of multiple operations
and vectorization. It does an impressive job exposing linear algebra
operations to C++, and aggressive vectorization delivers impressive
inner-loop performance, but assembly is still both challenging for
programmers and computationally expensive during execution.

3. FINITE ELEMENT METHOD EXAMPLE

To make things concrete, we start by discussing an example of
a paradigmatic Simit program: a Finite Element Method (FEM)
statics simulation that uses Newton’s method to compute the final
configuration of a deforming object. Figure 2 shows the source code
for this example. The implementation of compute_tet_stiffness
and compute_tet_force depends on the material model chosen by
the user and are omitted. In this section we introduce Simit concepts
with respect to the example, but we will come back to them in
Section 4 with rigorous definitions.

As is typical, this Simit application consists of five parts: (1) graph
definitions, (2) functions that are applied to each graph vertex or
edge to compute new values based on neighbors, (3) functions that
compute local contributions of vertices and edges to global vectors
and matrices, (4) assemblies that aggregate the local contributions
into global vectors and matrices, and (5) code that computes with
vectors and matrices.

Step 1 is to define a graph data structure. Graphs consist of el-
ements (objects) that are organized in vertex sets and edge sets.
Lines 1–16 define a Simit graph where edges are tetrahedra and
vertices their degrees of freedom. Lines 1–5 define an element of
type Vertex that represents a tetrahedron’s degrees of freedom. It
has three fields: a coordinate x, a velocity v, and an external force
fe. Next, lines 7–12 define a Tet element that represents an FEM
tetrahedron with four fields: shear modulus u, Lame’s first parameter
l, volume W, and the strain-displacement 3 × 3 matrix B. Finally,
lines 15–16 define a vertex set verts with Vertex elements, and
a edge set tets with Tet elements. Since tets is an edge set, its
definition lists the sets containing the edge endpoints; a tetrahedron
connects four vertices (see Figure 3). Simit graphs are hypergraphs,
which means that edges can connect any fixed number of vertices.

Step 2 is to define and apply a function precompute_vol to pre-
compute the the volume of every tetrahedron. In Simit this can be
done by defining the stencil function precompute_vol shown on
lines 19–22. Simit stencil functions are similar to the update func-
tions of data-graph libraries such as GraphLab [Low et al. 2010]
and can be applied to every element of a set (tets) and its endpoints
(verts). Stencil functions define one or more inout parameters that
have pass-by-reference semantics and that can be modified. Lines
24–26 shows the Simit function init that can be called from C++
to precompute volumes. The exported function contains a single
statement that applies the stencil function to every tetrahedron in
tets.

Step 3 defines functions that compute the local contributions of a
vertex or an edge to global vectors and matrices. Lines 29–34 define
tet_force which computes the forces exerted by a tetrahedron on
its vertices. The function takes two arguments, the tetrahedron and a
tuple containing its vertices. It returns a global vector f that contains
the local force contributions of the tetrahedron. Line 32 computes
the tetrahedron forces and assigns them to f. Since tet_force only
has access to the vertices of one tetrahedron, it can only write to
four locations in the global vector. This is sufficient, however, since
a tetrahedron only directly influences its own vertices.

ACM Transactions on Graphics, Vol. XXXX, No. XXXX, Article XXXX, Publication date: XXXX 2015.







Simit: A Language for Physical Simulation • 7

results in the 3 × 4 grey block matrix. If we index into the ma-
trix block, C(v2,u2)(2, 2) we locate the dark grey component. In
addition to being convenient for the programmer, blocked tensors
let Simit produce efficient code. By knowing that a sparse matrix
consists of dense inner blocks, Simit can emit dense inner loops for
sparse matrix-vector multiplies with that matrix.

4.3 Tensor Assembly using Maps

A tensor assembly is a map from the triple (S, f, r) to one or more
tensors, where S is a hypergraph set, f an assembly function, and
r an associative and commutative reduction operator. The tensor
assembly applies the assembly function to every element in the
hypergraph set, producing per-element tensor contributions. The
tensor assembly then aggregates these tensor contributions into a
global tensor, using the reduction operator to combine values. The
result of the tensor assembly is one or more global tensors, whose
dimensions can be the set S or any of its endpoints. The diagram in
Figure 7 shows this process. On the left is a graph where the edges
E = {e1, e2} connect the vertices V = {v1, v2, v3}. The function f

is applied to every edge to compute contributions to the global V ×V
matrix. The contributions are shown in grey and the tensor assembly
aggregates them by adding the per-edge contribution matrices.

Assembly functions are pure functions whose arguments are an
element and its endpoints, and that return one or more tensors that
contain the element’s global tensor contributions. The arguments
of an assembly function are supplied by a tensor assembly as it
applies the function to every element of a hypergraph set, and the
same tensor assembly combines the contributions of every assembly
function application. The center of Figure 7 shows code for f: a
typical assembly function that computes the global matrix contri-
butions of a 2-edge and its vertex endpoints. The function takes as
arguments an edge e of type Edge, and a tuple v that contains e’s two
Vertex endpoints. The result is a V × V matrix with 3× 3 blocks
as shown in the figure. Notice that f can only write to four loca-
tion in the resulting V × V matrix, since it has access to only two
vertices. In general, an assembly function that maps a c-edge to an
n-dimensional tensor, can write to exactly cn locations in the tensor.
We call this property coordinate-free indexing, since each assem-
bly function locally computes and writes its matrix contributions to
the global matrix using opaque indices (the vertices) without regards
to where in the matrix those those contributions end up. Further,
since the global matrix is blocked, the 3× 3 matrix k can be stored
into it with one assignment, by only specifying block coordinates
and not intra-block coordinates. As described in Section 4.2 we call
this property hierarchical indexing, and the resulting coordinate-free
hierarchical indexing removes a large class of indexing bugs, and
makes assembly functions easy to write and read.

We have so far discussed the functional semantics of tensor as-
semblies, but it is also important to consider their performance
semantics. The way they are defined above, if executed literally,
would result in very inefficient code where ultra-sparse tensors are
created for every edge, followed by a series of tensor additions.
However, as discussed in Section 6, the tensor assembly abstraction
lets Simit’s compiler produce code that stores tensor blocks on the
graph elements corresponding to one of the tensor dimensions. Thus,
memory can be pre-allocated and indexing structures pre-built, and
assembly becomes as cheap as computing and storing blocks in a
contiguous array. As discussed in Section 9, the tensor assembly
construct lets the Simit compiler know where global vectors and
matrices come from, which lets it emit fast in-place code.

4.4 Tensor Computation using Index Expressions

So far, we have used linear algebra to compute with scalars, vectors
and matrices. Linear algebra is familiar and intuitive for program-
mers, so we provide it in the Simit language, but it has two important
drawbacks. First, it does not extend to higher-order tensors. Second,
it is riddled with operators that have different meanings depending
on the operands, and does not let us cleanly express computations
that perform multiple operations simultaneously. This makes linear
algebra ill-suited as compute operators in the Simit programming
model. Instead we use index expressions, which are a generalization
of tensor index notation [Ricci-Curbastro and Levi-Civita 1901] in
expression form. Index expressions have all of the properties we
seek, and as an added benefit we can build all the basic linear algebra
operations on top of them. Thus, programmers can work with fa-
miliar linear algebra when that is convenient, and the linear algebra
can be lowered to index expressions that are easier to optimize and
generate efficient code from (see Section 7).

An index expression computes a tensor and consists of a scalar ex-
pression and one or more index variables. Index variables are used
to index into tensor operands. There are two types: free variables
and reduction variables. Free variables determine the dimensions
of the tensor resulting from the index expression, while reduction
variables combine values. Thus, an index expression has the form:

(free-variable*) reduction-variable* scalar-expression

where scalar-expression is a normal scalar expression, whose
operands that are typically indexed tensors.

Free index variables are variables that can take the values of a
tensor dimension: an integer range, a hypergraph set, or a hierar-
chical set as shown in Figure 6. The values an index variable can
take are called its range. The range of the free index variables of an
index expression determine the dimensions of the resulting tensor.
To compute the value of one component of this tensor the index
variables are bound to the component’s coordinate, and the index
expression is evaluated. To compute every component of the result-
ing tensor, the index expression is evaluated for every value of the
set product of the free variables’ ranges. For example, consider an
index expression that computes a vector addition:

(i) a(i) + b(i)

In this expression i is a free index variable whose range is implicitly
determined by the dimensions of the vectors a and b. Note that an
index variable can only be used to index into a tensor dimension
that is the same as its range. Thus, the vector addition requires that
the dimensions of a and b are the same. Further, the result of this
index expression is also a vector whose dimension is the range of i.
Next, consider a matrix transpose:

(i,j) A(j,i)

Here i and j are free index variables whose ranges are determined
by the second and first dimensions of A respectively. As expected,
the dimensions of the resulting matrix are the reverse of A’s, since
the order of the free index variables in the list determines the order
of the result dimensions. Finally, consider an index expression that
adds A and BT :

(i,j) A(i,j) + B(j,i)

Since index variables ranges take on the values of the dimensions
they index, this expression requires that the first and second dimen-
sions of A are the same as the second and first dimensions of B

respectively. This example shows how one index expression can
simultaneously evaluate multiple linear algebra operations.

ACM Transactions on Graphics, Vol. XXXX, No. XXXX, Article XXXX, Publication date: XXXX 2015.





Simit: A Language for Physical Simulation • 9

// create a pyramid from two tetrahedra
Array<ElementRef> v = verts.add(5);
ElementRef t0 = tets.add(v(0), v(1), v(2), v(4));
ElementRef t1 = tets.add(v(1), v(2), v(3), v(4));

// initialize fields
x(v0) = {0.0, 1.0, 0.0};
// ...

First, we create the verts vertex set and tets edge set, whose
tetrahedron edges each connects four verts vertices. We then add
to the verts and tets sets the fields from the running example
in Section 3. The Set::addField method is a variadic template
method whose template parameters describe the tensors stored at
each set element. The first template parameter is the tensor field’s
component type (double, int, or boolean), followed by one integer
literal per tensor dimension. The integers describe the size of each
tensor dimension; since the x field above is a position vector there
is only one integer. To add a 3 × 4 matrix field we would write:
addField<double,3,4>. Finally, we create five vertices and the two
tetrahedra that connect them together, and initialize the fields.

5.2 Program API

Once a hypergraph has been built (Section 5.1) and a Simit program
written (Sections 3 and 4), the Program API can be used to compile
and run the program on the hypergraph. To do this, the programmer
creates a Program object, loads Simit source code into it, and com-
piles an exported func in the source code to a Function object. Next,
the programmer binds hypergraph sets to externs in the Function

objects’ Simit program, and the Function::run method is called to
execute the program on the bound sets.

The following code shows how to load the FEM code in Figure 2,
and run it on tetrahedra we created in Section 5.1:

Program program;
program.loadFile("fem_statics.sim");

Function func = program.compile("main");
func.bind("verts", &verts);
func.bind("tets", &tets);

func.runSafe();

In this example we use the Function::runSafe method, which lazily
initializes the function. For more performance the initialization and
running of a function can be split into a call to Function::init

followed by one or more calls to Function::run.

6. RUNTIME DATA LAYOUT AND EXECUTION

In Sections 3 and 4 we described the language and abstract data
structures (hypergraphs and tensors) that a Simit programmer works
with. Since the abstract data structures are only manipulated through
global operations (tensor assemblies and index expressions) the
Simit system is freed from implementing them literally, an impor-
tant property called physical data separation [Codd 1970]. Simit
exploits this separation to compile global operations to efficient
local operations on compact physical data structures that look very
different from the graphs and tensors the programmer works with.
In the rest of this section we go into detail on how the current Simit
implementation lays out data in memory and what kind of code it
emits. This is intended to give interested readers a sense of how the
physical data separation lets Simit pin global vectors and matrices
to graph vertices and edges for in-place computation. It also demon-
strates how the tensor assembly construct lets Simit use the graph as
the index for matrices, and how the blocked matrix types let Simit
emit dense inner loops when computing with sparse matrices.

0

verts.x verts.v

verts

4

3

2

1

fverts.fe K index K

0 1 2 3 4

0 1 2 4

1 2 3 4

0 1 2 3 4

0 1 2 3 4

tets
0

endpointstets.ltets.u tets.W tets.B

0 1 2 4

1 2 3 41

K

0

1

2

3

0

4

9

14

…

0

1

2

3

4

5

6

1

3

2

0

2

1

3

4

7

8

4 19

23

0

…

0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

2,2

0,0

0,1

0,2

K index

Fig. 8: All the data stored for the two tets tetrahedra constructed in Sec-

tion 5.1. The global vector f and matrix K from Figure 2 are stored on

the verts set, since verts is their first dimension. The table is stored by

columns (struct of arrays) and matrix blocks are stored row major. K is sparse

so it is stored as a segmented array (top right), consisting of an array of row

vertices, an array of column indices, and a value array. K is assembled from

the tets set so its sparsity is known. The K index is therefore precomputed

and is shared with other matrices assembled from the same edge set.

6.1 Storage

As described in Section 4, Simit graphs consist of vertex sets and
edge sets, which are the same except that edges have endpoints. A
Simit set stores its size (one integer) and field data. In addition, edge
sets store a pointer to each of its n endpoint sets and for each edge,
n integer indices to the edge’s endpoints within those endpoint sets.
Figure 8 (top) shows all the data stored on each Tet in the tets

set we built in Section 5.1 for the FEM example in Figure 2. Each
Tet stores the fields u, l, W, and B, as well as an endpoints array
of integer indexes into the verts set. The set elements and their
fields form a table that can be stored by rows (arrays of structs) or
by columns (structs of arrays). The current Simit implementation
stores this table by columns, so each field is stored separately as
a contiguous array with one scalar, vector, dense matrix or dense
tensor per element. Furthermore, dense matrices and tensors are
stored in row-major order within the field arrays.

Global vectors and matrices are also stored as fields of sets. Specif-
ically, a global vector is stored as a field of its dimension set, while
a global matrix is stored as a field of one of its dimension sets. That
is, either matrix rows are stored as a field of the first matrix dimen-
sion or matrix columns are stored as a field of the second matrix
dimension. This shows the equivalence in Simit of a set field and
global vector whose dimension is a set— a key organizing prop-
erty. Figure 8 (bottom) shows all the data stored on each Vertex

in the verts set, including the global vector f and global matrix
K from the newton_method function in Figure 2. Since K is sparse,
its rows can have different sizes and each row is therefore stored
as an array of column indices (K index) and a corresponding array
of data (K). The column indices of K are the verts vertices that
each row vertex can reach through non-empty matrix components.
Since the K matrix was constructed from a tensor assembly over
the tets edge set, the neighbors through the matrix are the same as
the neighbors through tets and can be precomputed. Since global
matrix indices and values are set fields with a different number of

ACM Transactions on Graphics, Vol. XXXX, No. XXXX, Article XXXX, Publication date: XXXX 2015.



10 • F. Kjolstad et al.

p1
p2
p3
p4

0

1

2

3

4

6

5

p2
p1

p2
7

8

9

p3
p2

p4

locate
(p2,p4)

p3p1 p2 p4

p3

p1

p2

p4

Graph
Matrix

Assembly

p3

p1

p2

p4

p1

p2

p3

p4

b

p1

p2

p3

p4

points.b

p1

p2

p3

p4

points.c

Write back to points.c

edges.m

e1
e2
e3

elems

p1
p2
p3
p4

0

2

6

8

10

elem_nbrs p1

p2

p3

p4

A× b
Matrix

Assembly A

A(p2, p4) ∗ b(p4)

Assemble

A(p2, p4)

A× bA

Physical Data

Structures

p1

p2

p3

p4

c

Physical Data Structures

Abstract Data Structures

p1
p2p3
p4p2

p2

endpoints

e1
e2
e3

p1

p2

p3

p4

p1

p2

p2

p3

p2

p4

p3

p1

Read points.b

p2

p4

corresponding locations

Fig. 9: Top: a tensor assembly assembles the abstract matrix A. The field

points.b is read from the points set and multiplied by A, into c. Finally, c is

written to field points.c. Bottom: the neighbor index structure rowstart

and neighbors arrays are used to store A’s values to a segmented array.

The array is then multiplied in-place by points.b to compute points.c.

entries per set element, they are stored in a segmented array, as
shown for K in Figure 8 (upper right). Thus, Simit matrix storage is
equivalent to Blelloch’s segmented vectors [Blelloch 1990] and the
BCSR (Blocked Compressed Sparse Row) matrix storage format.

6.2 Execution

A Simit tensor assembly map statement is compiled into a loop
that computes the tensor values and stores them in the global
tensor data structures. The loop iterates over the map’s target
set and each loop iteration computes the local contributions of
one target set element using the map function, which is in-
lined for efficiency. Equivalent sequential C code to the machine
code generated for the map statement on line 50 of Figure 2 is:

for (int t=0; t<tets.len; t++) {
for (int i=0; i<4; i++) {
double[3] tmp = compute_tet_force(t,v,i); // inlined
for (int j=0; j<3; j++) {
f[tets.endpoints[t*4 + i]*3 + j] += tmp[j];

}
}

}

The outer loop comes from the map statement itself and iterates
over the tetrahedra. Its loop body is the inlined tet_force func-
tion, which iterates over the four endpoints of the tetrahedra and
for each endpoint computes a tet force that is stored in the f vector.
A global matrix is assembled similarly with the exception that the
location of a matrix component must be computed from the ma-
trix’s index array as follows (taken from the Simit runtime library):

int loc(int v0, int v1, int *elems, int *elem_nbrs) {
int l = elems[v0];
while(elem_nbrs[l] != v1) l++;
return l;

}

The loc function turns a two-dimensional coordinate into a one-
dimensional array location, given a matrix index consisting of the
arrays elems and elem_nbrs. It does this by looking up the location
in elem_nbrs where the row (or column) v0 starts. That is, it finds
the correct segment of v0 in the segmented array elem_nbrs. It then
scans down this segment to find the location of the element neighbor
v1, which is then returned.

Figure 9 shows an end-to-end example where a matrix is assem-
bled from a normal graph and multiplied by a vector field of the
same graph. The top part shows the abstract data structure views that
the programmer works with, which were described in Section 4. The
arrows shows how data from the blue edge is put into the matrix on
matrix assembly, how data from the p4 vertex becomes the p4 block
of the b vector, and how the block in the (p2,p4) matrix component
is multiplied with the block in the p4 b vector component to form
the p2 c vector component when the A matrix is multiplied with
b. The bottom part shows the physical data structures; the vertex
set has a field points.b and the edge set has a field edges.m. The
stippled arrows show how the loc function is used to find the correct
location in the array of A values when storing matrix contributions
of the blue edge. The full arrows show how the edges.m field is
used to fill in values in the (p2,p4) matrix component (the sixth
block of the A array), and how this block is multiplied directly with
the p4 points.b vector component to form the p2 points.c vector
component when A is multiplied with b.

Index expressions are compiled to loop nests. For the matrix-
vector multiplication in Figure 9 the following code is emitted:

for (int i=0; i<points.len; i++) {
for (int ij=elems[i]; ij<elems[i+1]; ij++) {
int j = elems_nbrs[ij];
for (int ii=0; ii<3; ii++) {
int tmp = 0;
for (int jj=0; jj<3; jj++) {
tmp += A[ij*9 + ii*3 + jj] * points.b[j*3 + jj];

}
points.c[i*3 + ii] += tmp;

}
}

}

This code is equivalent to the standard BCSR matrix-vector mul-
tiplication. Two sparse outer loop iterate over A’s index structure
and the two inner loops iterate over the blocks. In the innermost
block a (3× 3) block of A is retrieved using the ij variable, which
corresponds to a matrix location.

ACM Transactions on Graphics, Vol. XXXX, No. XXXX, Article XXXX, Publication date: XXXX 2015.



Simit: A Language for Physical Simulation • 11

z = x + y;

!"#!"

!!#!$!%&

!!!"#!'

!!!!#!($!)*"+',!-!.*',&

!!$%&

!!/*",!$!0*",!(!#&

$%&

zi = xi + (Aikbk)

!"#!1

!!2*1,!$!%&

!!!"#!'

!!!!2*1,!($!)*1+',-.*',&

!!$%&

$%&

!"#!"

!!/*",!$!0*",!(!2*",&

$%&

Lower to 
Index

Expression

Lower to 
Loop Nests

Lower to 
Loop Nests

Fuse

Index Expressions Code

zi = xi + yi

yj = Ajkbky = Ab

Linear Algebra

Fig. 10: Code generation from index expressions. First, linear algebra opera-

tions are parsed into index expressions (left). These can be directly converted

to loops (top) or they can be fused (bottom). Fusing index expressions results

in fewer loop nests and fewer temporary variables (the y vector is replaced

by the scalar temporary t).

6.3 Graph Changes

As discussed in Section 1, certain features require the graph topology
to change between time steps, for example to implement collisions,
cuts or remeshing. When graphs change, neighbor indices neces-
sarily have to be updated. This is true for any system, but a system
like Simit permits indices to only be updated when necessary and
as much as necessary, and it also allows several assembled matrices
to share the same index. With the current Simit implementation
indices are recomputed if the graph topology changes, but future
work includes incrementally updating indices.

7. COMPILER OVERVIEW

The Simit compiler is implemented as a C++ library. Below we list
stages that Simit code goes through before it is emitted as binary
code using LLVM. During parsing, an internal compiler representa-
tion containing maps, index expressions and control flow constructs
is built. As discussed in Section 4.4, index expressions are Simit’s
way to represent computation on tensors and is similar to tensor
index notation [Ricci-Curbastro and Levi-Civita 1901]. Linear al-
gebra expressions are turned into index expressions during parsing.
Figure 10 shows a linear algebra expression that adds the vectors x
and y = Ab. This linear algebra is first lowered to two index expres-
sions, the first of which is yj = Ajkbk, where j is a free variable
and k is a reduction variable that sums the product of Ajk and bk
for each k. This example uses the Einstein convention [Einstein
1916], where variables repeated within a term are implicitly sum
reductions.

A Simit program goes through four major transformation phases
before it is turned into machine code using the LLVM compiler
infrastructure. Parallel GPU code generation requires one additional
phase. The idea behind these phases is to lower high-level constructs
like assembly maps, index expressions and multidimensional tensor
accesses to simple loops with 1D array accesses that are easy to
emit as low level code.

Index Expression Fusing. Index expressions are fused when
possible to combine operations that would otherwise require tensor
intermediates. Figure 10 shows an example of this phase in action;
the lower portion of the figure shows how fused index expressions
lead to fused loops. Without the use of index expressions, this kind
of optimization requires using heuristics to determine when and

how linear algebra operations can be combined. Simit can easily
eliminate tensor intermediates and perform optimizations that are
difficult to do in the traditional linear algebra library approach, even
with the use of expression templates.

Map Lowering. Next, the compiler lowers map statements by
inlining the mapped functions into loops over the target set of the
map. In this process, the Simit compiler uses the reduction operator
specified by the map to combine sub-blocks from different elements.
Thus, the map is turned into inlined statements that build a sparse
system matrix (shown in Figure 9) from local operations.

Index Expression Lowering. In this phase, all index expres-
sions are transformed into loops. For every index expression, the
compiler replaces each index variable with a corresponding dense or
sparse loop. The index expression is then inserted at the appropriate
places in the loop nest, with index variables replaced by loop vari-
ables. This process is demonstrated in the middle and right panes
of Figure 10.

Lowering Tensor Accesses. In the next phase, tensor accesses
are lowered. The compiler takes statements that refer to multidimen-
sional tensor locations and turns them into concrete array loads and
stores. A major optimization in this phase is to use context infor-
mation about the surrounding loops to make sparse matrix indexing
more efficient. For example, if the surrounding loop is over the
same sets as the sparse system matrix, we can use existing generated
variables to index into the sparse matrix instead of needing to iterate
through the column index of the neighbor data structure for each
read or write.

Code Generation. After the transformation phases, a Simit pro-
gram consists of imperative code, with explicit loops, allocations
and function calls that are easy to turn into low-level code. The code
generation phase turns each Simit construct into the corresponding
LLVM operations, using information about sets and indices to assist
in generating efficient code. Currently, the backend calls LLVM
optimization passes to perform inter-procedural optimization on the
Simit program, as well as other standard compiler optimizations.
Only scalar code is generated; we have not yet implemented vector-
ization or parallelism, and LLVM’s auto-vectorization passes cannot
automatically transform our scalar code into vector code. Future
work will implement these optimizations during code generation,
prior to passing the generated code to LLVM’s optimization passes.
Our index expression representation is a natural form in which to
perform these transformations.

GPU Code Generation. Code generation for GPU targets is
performed as an alternative code generation step specified by the
user. Making use of Nvidia’s NVVM framework lets us generate
code from a very similar LLVM structure as the CPU-targeted code
generation. Because CUDA kernels are inherently parallel, a GPU-
specific lowering pass is performed to translate loops over global
sets into parallel kernel structures. Broadly, to convert global for-
loops into parallel structures, reduction operations are turned into
atomic operations and the loop variable is replaced with the CUDA
thread ID. Following this, we perform a GPU-specific analysis to
fuse these parallel loops wherever possible to reduce kernel launch
overhead and increase parallelism. Using a very similar pipeline for
CPU and GPU code generation helps us ensure that behavior on the
GPU and CPU is identical for the code structures we generate.

ACM Transactions on Graphics, Vol. XXXX, No. XXXX, Article XXXX, Publication date: XXXX 2015.



12 • F. Kjolstad et al.

8. RESULTS

To evaluate Simit, we implemented three realistic simulation applica-
tions, Implicit Springs, Neo-Hookean FEM and Elastic Shells, using
Simit, Matlab and Eigen. In addition, we implemented Neo-Hookean
FEM using SOFA and Vega, two hand-optimized state-of-the-art
real-time physics engines, and we also implemented Implicit Springs
using SOFA. Note that Vega did not support Implicit Springs, and
neither Vega nor SOFA supported Elastic Shells.

We then conducted five experiments that show that:

(1) Using the traditional approaches we evaluate you get better
performance by writing more code. With Simit you can get both
performance and productivity. (Section 8.3)

(2) Simit programs can be compiled to GPUs with no change to the
source code to get 4-20× more performance. (Section 8.4)

(3) Simit programs that use solvers are memory bound. (Sec-
tion 8.5)

(4) Simit programs scale well with increased dataset sizes. (Sec-
tion 8.6)

(5) A CG Solver written in Simit is competitive with many opti-
mized iterative solvers written in C++. (Section 8.7)

We also implemented two additional FEM variants: a Hexahedral
Corotational FEM and a Tetrahedral Laplace FEM. We used the
former to compare against the hand-optimized Hexahedral Corota-
tional FEM implementation of Dick et al. [2011] (Section 8.8), and
the latter to compare against one of the tutorial applications of the
FreeFem++ PDE FEM Language (Section 8.9).

All CPU timings are taken on an Intel Xeon E5-2695 v2 at
2.40GHz with 128 GB of memory running Linux. All CPU mea-
surements except AMGCL are single-threaded—none of the other
libraries we compare to support multi-threaded CPU execution, nor
does the current Simit compiler, though parallelization will be added
in the future. The Simit and cuSPARSE GPU timings in Section 8.4
are taken on an Nvidia Titan GK210, while the Simit and Dick et al.
GPU timings in Section 8.8 are taken on an Nvidia Geforce Titan Z.

8.1 Applications

We implemented three simulation applications with different edge
topologies and computational structure, and paired each with a
suitable data set (bunny, dragon and cloth).

For Implicit Springs and Neo-Hookean FEM we chose to im-
plement the CG solver in Simit instead of using an external solver
library. The reason for this is that Simit offers automatic portability
to GPUs, natively compiles SpMV operations to be blocked with a
dense inner loop (see Section 9), and because it avoids data transla-
tion going from Simit to the external solver library. To evaluate the
performance benefit of the Simit CG, we ran an experiment where
Simit instead used Eigen to perform the CG solve. This resulted in
a 30% slowdown, due to data translation and because Eigen does
not take advantage of block structure (see Section 8.7 for details).

8.1.1 Implicit Springs. Our first example is a volumetric elastic-
ity simulation using implicit springs. We tetrahedralized the Stanford
bunny to produce 37K vertices and 220K springs, and passed this to
Simit as a vertex set connected by an edge set. Our implementation
uses two assembly maps—one on the vertex set to compute the
mass and damping matrices, and one on the edge set to compute the
stiffness matrix. To solve for new vertex velocities, we implement
a linearly-implicit time stepper and use the method of conjugate
gradients (CG) as our linear solver. Per common practice, when

Fig. 11: Still from an Implicit Springs simulation of the Stanford bunny.

The bunny consists of 36,976 vertices and 220,147 springs, which can be

simulated by Simit on a GPU at 12 frames per second. Only surface vertices

and springs are shown. The Simit code is only 93 lines, which includes a

conjugate gradient solver implementation.

Fig. 12: Still from a Tetrahedral FEM (Finite Element Method) simulation of

a dragon with 46,779 vertices and 160,743 elements, using the Neo-Hookean

material model. Simit performs the simulation at 11 frames per second with

only 154 non-comment lines of code shown in Appendix A. This includes

15 lines for global definitions, 14 lines for utility functions, 69 lines for local

operations, 23 lines to implement CG and 13 lines for the global linearly-

implicit timestepper procedure to implement the simulation, as well as 20

lines to precompute tet shape functions.

implementing a performance-sensitive implicit solver, we limit the
maximum number of conjugate gradients iterations (we choose 50).

8.1.2 Tetrahedral Neo-Hookean FEM. Our second example
is one of the most common methods for animating deformable
objects, tetrahedral finite elements with linear shape functions. We
chose tetrahedral meshes here because they are easy to conform to
geometry, which makes accurate treatment of boundary conditions
simpler, but we also evaluate hexahedral meshes in Section 8.1.4.
We use the non-linear Neo-Hookean material model [Mooney 1940],
as it is one of the standard models for animation and engineering,
and we set the stiffness and density of the model to realistic physical
values. The Simit implementation uses three maps, one to compute
forces on each element, one to build the stiffness matrix and one
to assemble the mass matrix, and then solves for velocities. We
then use the conjugate gradient method to solve for the equations of
motion, again relying on an implementation in pure Simit.

8.1.3 Elastic Shells. For our third example, we implemented
an elastic shell code and used it to simulate the classic example of
a rectangular sheet of cloth draping over a rigid, immobile sphere.

ACM Transactions on Graphics, Vol. XXXX, No. XXXX, Article XXXX, Publication date: XXXX 2015.



Simit: A Language for Physical Simulation • 13

Fig. 13: Still from an Elastic Shells simulation of a cloth with 499,864

vertices, 997,012 triangle faces and 1,495,518 hinges. Elastic shells require

two hyperedge sets: one for the triangle faces and one for the hinges. The

Simit implementation ran at 15 frames per second on a GPU.

The input geometry is a triangle mesh with 997,012 faces con-
necting 499,864 vertices, and is encoded as a hypergraph using
one vertex set (the mesh vertices) and two hyperedge sets: one for
the triangle faces, which are the stencil for a constant-strain Saint
Venant-Kirchhoff stretching force; and one for pairs of triangles
meeting at a hinge, the stencil for the Discrete Shells bending force
of Grinspun et al [Grinspun et al. 2003]. The bending force is a
good example of the benefit of specifying force computation as
a function mapped over an edge set: finding the two neighboring
triangles and their vertices given their common edge, in the correct
orientation, typically involves an intricate and bug-prone series of
mesh traversals. Simit provides the bending kernel with the correct
local stencil automatically. The Simit implementation uses a total of
five map operations over the three sets to calculate forces and the
mass matrix before updating velocities and positions for each vertex
using explicit Velocity Verlet integration.

8.1.4 Hexahedral Corotational FEM. We implemented a Hexa-
hedral Corotational finite element method to simulate deformable
solids with arbitrary non-linear hyperelastic materials. Our imple-
mentation follows the implementation of Dick et al. [2011] as closely
as possible. We precompute and store a 24× 24 standard stiffness
matrix for an input mesh given its element size and Poisson’s ratio.
During simulation, we compute a 3× 3 rotation matrix for each ele-
ment. The main difference between our implementation and theirs
is the linear solver; we use a CG solver instead of multigrid, since
we do not yet support multigrid in Simit. The Simit implementation
required 133 lines of Simit code, plus 24 lines for the CG solver.

8.1.5 Tetrahedral Laplace FEM. We also investigated the per-
formance of Simit on less complicated partial differential equations.
Specifically, we implemented a tetrahedral finite element method
for solving the Laplace equation, requiring only a single map to
compute the system matrix. The resulting discretized linear system
is solved using our native Simit CG solver. We use this to examine
the steady state heat distribution inside of arbitrary 3D domains in
the presence of Dirichlet boundary conditions.

8.2 Languages and Libraries

We implemented each application in Matlab and in C++ using the
Eigen high-performance linear algebra library. In addition, we used
the SOFA simulation framework to implement Implicit Springs
and Neo-Hookean FEM, and the Vega FEM simulator library to
implement Neo-Hookean FEM.

8.2.1 Matlab. Matlab is a high-level language that was devel-
oped to make it easy to program with vectors and matrices [MAT-
LAB 2014]. Matlab can be seen as a scripting language on top
of high-performance linear algebra operations implemented in C
and Fortran. Even though Matlab’s linear algebra operations are
individually very fast, they don’t typically compose into fast sim-
ulations. The main reasons for this is Matlab’s high interpretation
overhead, and the fact that individually optimized linear algebra
foregoes opportunities for fusing operations (see Sections 7 and 9).

8.2.2 Eigen. Eigen is an optimized and vectorized linear alge-
bra library written in C++ [Guennebaud et al. 2010]. To get high
performance it is uses template meta-programming to produce spe-
cialized and vectorized code for common operations, such as 3× 3
matrix-vector multiply. Furthermore, Eigen defers execution through
its object system, so that it can fuse certain linear algebra operations
such as element-wise addition of dense vectors and matrices.

8.2.3 SOFA. SOFA is an open source framework, originally de-
signed for interactive, biomechanical simulation of soft tissue [Faure
et al. 2007]. SOFA’s design is optimized for use with iterative solvers.
It uses a scene graph to model the interacting objects in a simulation
and, during each solver iteration, visits each one in turn, aggregating
information such as applied forces. Using this traversal SOFA avoids
forming global sparse matrices which is the key to its performance.

8.2.4 Vega. Vega is a graphics-centric, high-performance finite
element simulation package [Sin et al. 2013]. Vega eschews special
scene management structures in favor of a general architecture that
can be used with iterative or direct solvers. It achieves high perfor-
mance using optimized data-structures and clever rearrangement of
material model computations to reduce operation count.

8.3 Simit Productivity and Performance

The general trend in the traditional systems we evaluate is that you
get more performance by writing more code. Table I shows this for
the three applications from Section 8.1. For each application and
each language/library we report the performance (milliseconds per
frame, where each frame is one time step), source lines and memory
consumption. For two applications we vectorized the Matlab code
to remove all loops (Matlab Vec). This made the Matlab code about
one order of magnitude faster, but took 9 and 16 hours of additional
development time for domain experts who are proficient with Matlab,
and made the code very hard to read (see supplemental material).

For example, the Eigen Implicit Springs implementation is more
than twice the code of the Matlab implementation, but runs 15 times
faster. In our experiments higher performance meant more code had
to be written in a lower-level language. Simit, however, breaks this
tradeoff and gives high performance with few lines of code. With
one exception, the Simit implementation is faster than the fastest
alternative we found, while being fewer lines of code than Matlab.
For example, Simit performs better than Vega, an optimized FEM
library (Section 8.2.4), with 7× fewer lines of code, and compiles
to GPUs for 4-20× more performance (Section 8.4). Furthermore,
we plan to vectorize and multi-thread Simit in the future, which will
further increase its performance.

For Elastic Shells, Simit is 19% slower than Eigen. This is due to
the application’s explicit method to simulate cloth, which benefits
from Eigen’s vectorized dense vector routines. Simit does not yet
support vectorization. However, by using a GPU Simit can drasti-
cally increase performance on this code (see Section 8.4) with no
change to the source code which is half the size of the Eigen CPU
implementation.

ACM Transactions on Graphics, Vol. XXXX, No. XXXX, Article XXXX, Publication date: XXXX 2015.



14 • F. Kjolstad et al.

Table I. : Comparison of three applications implemented with Matlab, Vectorized Matlab, Eigen, hand-optimized C++ (SOFA and Vega) and
Simit, showing the productivity and performance of Simit. For example, the Simit Neo-Hookean FEM is just 154 lines of code (includes
CG solver), but simulates a frame with 160,743 tetrahedral elements in just 0.9 seconds using a single non-vectorized CPU thread. For each
implementation we report non-comment source lines of code, milliseconds per frame and peak memory in megabytes (10242 bytes), as well
as the size of each number relative to Simit. The trend is that users get better performance by writing more code, however, Simit provides
both good performance and productivity. For example, the Simit Implicit Springs is the shortest implementation at 93 lines of code, yet runs
fastest at 0.48 seconds per frame. Matlab ran out of memory running the cloth simulation. The applications were run on the bunny, dragon and
cloth data sets respectively with double precision floating point on an Intel Xeon E5-2695 v2 running at 2.40GHz with 128 GB of memory.
Applications that use CG were run with 50 CG iterations per frame.

ms per frame Source lines Memory (MB)

Implicit Springs

Matlab 13,576 28.2× 142 1.5× 1,059 6.5×
Matlab Vec 2,155 4.5× 230 2.5× 1,297 8.0×
Eigen 898 1.9× 314 3.4× 339 2.1×

SOFA 490 1.0× 1,404 15.1× 94 0.6×
Simit 481 1.0× 93 1.0× 163 1.0×

Neo-Hookean FEM

Matlab 213,797 237.2× 234 1.5× 1,564 10.3×
Matlab Vec 16,080 17.8× 293 1.9× 53,949 354.9×

Eigen 2,268 2.5× 363 2.3× 626 4.1×

SOFA 1,315 1.5× 1,541 10.0× 324 2.1×
Vega 1,025 1.1× 1,080 7.0× 614 4.0×
Simit 901 1.0× 154 1.0× 152 1.0×

Elastic Shells

Matlab 203 1.1× OOM

Simit 598 1.0× 190 1.0× 623 1.0×
Eigen 482 0.8× 453 2.4× 354 0.6×

8.3.1 Memory Usage. The last two columns of Table I shows
the peak total memory usage of each application as reported by the
Valgrind massif tool. While Matlab enables productive experimen-
tation, its memory usage relative to Eigen and Simit is quite large;
in some cases, Matlab uses an order of magnitude more memory.
Vectorizing the Matlab code can drastically increase memory usage,
as in the case of the Neo-Hookean FEM example, where memory
usage increased by 35×. In two applications, Simit is much more
memory-efficient than Eigen due to its single representation for both
the graph and matrices.

In the Elastic Shells application on the cloth, Simit uses 80% more
peak memory than Eigen. The reasons for this are temporary data
structures that Simit generates during neighbor index construction.
These are deleted after the neighbor indices are constructed causing
memory usage to drop to 333 MB during computation, which is
slightly less than Eigen.

The SOFA Neo-Hookean FEM implementation uses 2.1× more
memory than the Simit implementation, while the SOFA Implicit
Springs uses only 60% of the memory that the Simit implementation
uses. The reason for this discrepancy is differences in how SOFA
represents the global system matrix used in the CG solve in these
two applications. In both cases, SOFA takes advantage of the fact
that the system matrix is only ever used to compute matrix-vector
products to not instantiate a full sparse matrix data structure. In
the Implicit Springs SOFA simply does not store any part of the
system matrix, but instead computes the local blocks on demand
each time the matrix is multiplied by a vector in the CG solve loop.
In the Neo-Hookean FEM SOFA precomputes and stores the system
matrix blocks for each element, presumably because these would be
too expensive to recompute every CG iteration. When the system
matrix is multiplied by a vector in the CG solve, the system matrix
blocks that affect a vertex are fetched, summed, and multiplied by
the relevant input vector values. Note that this strategy effectively
stores the system matrix in unreduced form, that is, prior to adding
the system matrix blocks that impact the same pair of vertices.

Simit, on the other hand, stores the system matrix on the vertices,
that is, in reduced form. This requires more memory than not storing

Table II. : Compilation and initialization times for Simit applications, in

milliseconds. Simit code is compiled prior to the first timestep. Initialization

must also be done prior to the first timestep, as well as between timesteps

if arguments are rebound or the graph topology changes. Initialization time

measures how long it takes to bind arguments and to create neighbor in-

dices. The applications were run on the bunny, dragon and cloth data sets

respectively with double precision floating point on an Intel Xeon E5-2695

v2 running at 2.40GHz with 128 GB of memory.

Compilation (ms) Initialization (ms)

Implicit Springs 37 263

Neo-Hookean FEM 52 48

Elastic Shells 38 31

the matrix (as SOFA does for Implicit Springs), but less memory
than storing the matrix blocks in unreduced form on the elements
(as SOFA does for Neo-Hookean FEM). However, it means that no
additional work has to be done to compute or sum blocks when the
matrix is multiplied with a vector.

8.3.2 Compilation and Initialization. The Simit library exposes
separate compile and initialization phases. The compile phase com-
piles Simit programs and can be invoked after the Simit source
code has been provided. The initialization phase builds indices and
compiles additional harness code to bind arguments to a Simit exe-
cutable function. It can be invoked after all the bindable arguments
and externs have been provided. Table II shows compilation and
initialization times for the three applications in Table I. Initialization
times only include the time to build indices and bind arguments,
and do not include the time it takes in user code to construct graphs.
In all three applications, compiling and initializing Simit programs
takes a fraction of a second—much less than the time it takes to
execute a single frame as reported in Table I.

8.4 Simit GPU Execution

Simit programs compile to GPUs with no change to the source code.
We compiled all three applications to run on an Nvidia GPU, and the

ACM Transactions on Graphics, Vol. XXXX, No. XXXX, Article XXXX, Publication date: XXXX 2015.





16 • F. Kjolstad et al.

the CG solver from the Eigen library or one of several algebraic
multigrid solver variants from the AMGCL library [Demidov 2015].

We do not have a multigrid implementation in Simit, but through
support for external solvers Simit applications can use this algorithm.
Further, since Simit is not yet parallelized or vectorized, external
solvers let applications call code that takes advantage of these hard-
ware resources. However, because Simit optimizes and fuses linear
algebra using knowledge of the blocked structure of the matrices,
it is not obvious which approach yields the fastest time to solution
in practice. To test this, we added code to the Simit runtime that
converts matrices into standard compressed sparse row (CSR) for-
mat and calls an external solver library. We compare against both
AMGCL and Eigen as the external solver, since AMGCL contains
both an asymptotically better algorithm (multigrid) and a parallel
implementation, while Eigen contains a standard vectorized CG
used by many applications.

Table IV shows the results of replacing Simit’s CG in the Neo-
Hookean FEM with calls to external solvers. We exclude the time
spent converting matrices from BCSR to CSR (the format used by
Eigen and AMGCL), which averaged 350ms for the Dragon mesh,
and run the solvers until the error is less than 10−6. Compared to
Simit, AMGCL converges to the answer in fewer timesteps, as we
expect, though the time to solution is 2.2× slower in serial and only
53% faster in parallel. This is because Simit’s cost per timestep is
very low versus AMGCL. Per timestep, Simit’s CG is 9ms, while
AMGCL’s is 13ms in parallel (54ms for serial); each timestep in
AMGCL does more work due to the multigrid algorithm.

AMGCL also supports a blocked representation similar to Simit’s
internal BCSR representation. However, the time to solution using
AMGCL’s blocked backend is slower than both AMGCL’s built-
in (CSR) backend and Simit. This is because AMGCL’s interface
only accepts CSR, which is then transformed to BCSR. This shows
that blocking is not the sole reason for Simit’s performance, but
rather the combination of native matrix assembly, which allows the
compiler to emit code that directly assembles BCSR, and efficient
code generated for the blocked operations. The CG implementation
in Eigen is 3.4× slower than Simit, because it requires more itera-
tions than the Simit CG to converge to a solution and because each
iteration is slower.

Overall, this comparison shows that a CG implemented in Simit
is efficient and can outperform hand-written external solves even
though it is written in a higher-level language, due to the combi-
nation of Simit’s efficient code generation and internal blocked
representation. In addition, a solver written in Simit enjoys the
portability that Simit provides and can be compiled to GPU code.

8.8 Comparison with a Hand-Optimized Hexahedral

FEM Implementation

In this section we compare a Hexahedral Corotational FEM applica-
tion written in Simit to a state-of-the-art hand-optimized implemen-
tation by Dick et al. [2011]. The Dick et al. implementation uses a
geometric multigrid solver and custom problem-specific data struc-
tures to achieve impressive performance. This comparison shows the
performance that can be achieved by choosing the right solver and
by optimizing for discretizations with regular structure. However,
the programmer must write a lot of optimized code in low level
languages like C++ and CUDA to obtain this performance.

Dick and colleagues implement a hexahedral corotational finite
element model, using a geometric multigrid. They exploit the reg-
ular topology of hexahedral grids to lay out data and to organize
computation in a manner that avoids thread divergence, enables load
coalescing on GPUs, and makes it possible to compute locations

Table V. : Comparison of a Hexahedral Corotational FEM application with

a CUDA implementation by Dick et al. The comparison is run with single

floating-point precision. We run the comparison on a voxelized Stanford

bunny with 94k and 269k elements. To account for the different solvers, we

run the multigrid solver in Dick et al. for a fixed number of iterations and

ensure the Simit CG runs until it achieves the same error as the multigrid

solver. Both CPU and GPU timings in seconds are shown, as are the time

used by Simit relative to Dick et al. For each data set and architecture, we

show the total time used for each time step during simulation and time used

to assemble the linear systems.

Dick et al. Simit

94k

CPU

Assembly 0.16 0.79 4.8×
Timestep 1.08 5.65 5.3×

Lines of code 753 159 0.2×

GPU

Assembly 0.02 0.04 1.9×
Timestep 0.08 0.90 11.0×
Additional code 1289 0 0.1×

269k

CPU
Assembly 0.45 2.29 5.1×
Timestep 2.95 23.63 8.0×

GPU
Assembly 0.05 0.09 1.8×
Timestep 0.18 3.31 18.2×

of neighbors instead of loading them from an index. The regular
memory layout also makes it efficient to generate levels of the multi-
grid hierarchy at different resolutions. In order to compare code
generated by Simit to the work of Dick et al., we implemented the
Hexahedral Corotational FEM application in Simit (Section 8.1.4).
However, we used a CG solver since we do not have a geometric
multigrid implementation in the Simit language.

As shown in Table V, the Simit implementation of Hexahedral
Corotational FEM required 155 lines of Simit code, which includes
the CG solver, and it took one person one day to implement it. We
sliced out the code in Dick et al. that does the same work as the Simit
program, excluding code that loads data structures and generates
multigrid levels. This gave us 753 lines of C++ code for their CPU
version, and an additional 637 lines of CUDA code and 652 lines
of C++ to launch CUDA kernels for their GPU version—a total of
2042 lines of code. This shows the cost of writing a hand-optimized
simulation application; programmers have to write a lot of low level
code, and if they want to execute on a different architecture, such
as GPUs, they must write additional code in something like CUDA.
With Simit programmers write an order of magnitude less code using
linear algebra and intuitive assembly constructs, and get portability
for free.

Table V shows the benefit of using a multigrid solver and writing
a hand-optimized hexahedral corotational FEM application. The
implementation of Dick et al. outperforms Simit in all cases on the
Stanford bunny at 94k and 269k hexahedral elements. The exper-
iments were run with single precision floating point on an Nvidia
Geforce Titan Z GPU; to account for the different solvers, we ran the
multigrid solver from Dick et al. for a fixed a number of iterations
and then ran Simit’s CG until the same error is achieved. The main
reason for their impressive performance is the use of an asymptoti-
cally superior O(n) geometric multigrid solver. This solver causes
their implementation to scale better as the dataset increases, which
can be seen from the increase in relative performance as the dataset
increases. We expect this trend would continue for larger datasets.

To get a sense of the performance impact of the Dick et al. opti-
mizations to take advantage of the regular hexahedral discretization,
we measured the time taken in assembly since this is unaffected by
the difference in solver algorithms. On the GPU, Simit performs
within a factor of two of the Dick et al. implementation, while

ACM Transactions on Graphics, Vol. XXXX, No. XXXX, Article XXXX, Publication date: XXXX 2015.



Simit: A Language for Physical Simulation • 17

Simit’s single-threaded CPU assembly is 5× slower. We believe the
higher performance achieved by Dick et al. on assembly is due to
two factors. First, while Simit performs assembly by scattering data
from each element to its vertices, Dick et al. gathers data from each
element for each vertex. This results in better memory performance
on the CPU, while on the GPU it removes the need for parallel
synchronization. Simit uses a scatter assembly because gather as-
semblies often results in redundantly computed data. However, this
is not a problem for this application since every element has the
same stiffness matrix. Second, Dick et al. exploits the hexahedral
discretization to lay out memory in a way that improves locality and
reduces GPU thread divergence.

Dick et al. have done a very good job of optimizing this applica-
tion, and hand-optimized code will always have a place where peak
performance is needed. However, we have a very general system
that has a single general method for producing code that works
reasonably well for everything our language supports. In the future,
we believe we can build many of the optimizations that Dick et al.
present into our compiler, due to the data independence offered by
the Simit programming model (see Section 10). We also plan to add
the necessary features to implement multigrid in the Simit language.

8.9 Comparison with the FreeFem++ PDE Language

In this section we compare two tetrahedral FEM codes implemented
in Simit to equivalent codes implemented in the FreeFem++ PDE
FEM Language. In recent years it has become popular again to de-
velop problem-specific languages that make it very easy to develop
fast applications for a class of problems. FreeFem++ is a language
used in the scientific computing community for solving partial dif-
ferential equations using the Finite Element Method (FEM). We
implemented the Neo-Hookean FEM application from Section 8.1.2
in FreeFem++. In addition, we implemented a Laplace FEM code
taken from the FreeFem++ tutorial in both Simit and Eigen.

The Laplace FEM application shows the strengths of problem-
specific languages. It is very easy to implement problems that fit
in the language’s domain model. It takes just 8 lines of FreeFem++
code to write the Laplace FEM application and performance is
decent; it runs in 2.50 seconds on the Dragon mesh. Eigen requires
125 lines of code and completes in 0.17 second, while Simit requires
61 lines of code and completes in 0.13 seconds.

The Neo-Hookean FEM application shows the limitation of
problem-specific languages. Since they tend to use problem-specific
abstractions you are more likely to paint yourself into a corner. That
is, if you need to implement something the designers did not con-
sider you must either find another language or contort the problem
to fit. In addition, too often a problem involves more than one prob-
lem domain, and languages with too specific abstractions tend to
be incompatible [Hamming 2003]. It took 681 lines of FreeFem++
code to write the Neo-Hookean FEM application and it got poor
performance; one time step took 4 hours (14,425 seconds). The
Eigen implementation at 364 lines of code completed in 2.3 seconds
and the Simit implementation at 154 lines completed in 0.9 seconds
(16,000 times faster). We contacted the FreeFem++ developers who
confirmed that this is a known problem, due to the size of expres-
sions built from their macro generation [Hecht 2015]. Although this
FEM problem did not hit the FreeFem++ optimization path, we be-
lieve problem-specific language have a place and can provide good
performance with very little code. However, a more general lan-
guage like Simit, built around more general abstractions like graphs
and matrices instead of more specific abstractions like meshes and
PDE equations, is useful since it more readily generalizes to multiple
domains.

9. REASONS FOR PERFORMANCE

Simit’s performance comes from its design and is made possible
by the careful choice of abstract data structures (hypergraphs and
blocked tensors), and the choice of collection-oriented operations
on these (stencils, tensor assemblies and index expressions). Little
effort has so far gone into low-level performance engineering. For
example, Simit does not currently emit vector instructions, nor does
it optimize memory layout or run in parallel on multi-core machines,
but we plan to add this in the future. Specifically, there are three
keys to the performance of Simit presented in this article:

In-place Computation. The tensor assembly construct unifies the
hypergraph with computations expressed as index expressions on
system tensors. This lets the compiler reason about where tensors
come from, and thus how their non-empty values are distributed
relative to the graph. Simit uses this information to pin every value
in a system tensor to a graph node or edge, which lets it schedule
computation in-place on the graph. In-place computation allows
efficient matrix assembly, since the graph itself becomes the sparse
index structure of matrices and matrix values can be stored directly
into their final location with no sparse index construction stage.
Traditional sparse matrix libraries require separate insertion and
compression steps; in Simit, these are replaced by the map con-
struct, and compression disappears. It is even possible to completely
remove matrix assembly by fusing it with computations that use it.

Furthermore, knowledge about matrix assembly lets the com-
piler optimize sparse matrix operations where the matrices have the
same sparsity structure. For example, adding two sparse matrices
assembled from the same graph becomes as efficient as dense vector
addition. These kinds of static optimizations on sparse matrices have
not been possible before, as explained by Vuduc et al.: “while sparse
compilers could be used to provide the underlying implementations
of sparse primitives, they do not explicitly make use of matrix struc-
tural information available, in general, only at run-time.” [Vuduc
et al. 2005]. The knowledge of matrix assembly provided by Simit’s
tensor assembly breaks the assumptions underlying this assertion
and opens up the possibility of powerful static sparse optimizations.

Finally, in-place computation makes efficient parallel computa-
tion on massively parallel GPUs straightforward by assigning graph
nodes and edges to parallel threads and computing using the owner-
computes rule. This works well because given an assignment, Simit
also knows how to parallelize system vector and matrix operations.
Furthermore, these are parallelized in a way that matches the paral-
lelization of previous stages, thereby reducing synchronization and
communication. Without the in-place representation, parallel code
generation would not be as effective.

Index Expression Fusion. Tensor index expressions are a pow-
erful internal representation of computation that simplify program
transformation. Index expressions are at once simpler and more
general than linear algebra. Their power and uniformity makes it
easy for the compiler to perform transformations like tensor opera-
tion fusion to remove tensor temporaries and the resulting memory
bandwidth costs. Moreover, it can do these optimizations without
the need to build in the many rules of linear algebra.

Dense Block Computation. Natively blocked tensors and hier-
archical indexing not only simplify the programmer’s code, they
also make it trivial for the compiler to use blocked representations.
Blocked matrix representations result in efficient dense or unrolled
inner loops within sparse computations such as SpMV. This greatly
reduces the need to look up values through an index.

ACM Transactions on Graphics, Vol. XXXX, No. XXXX, Article XXXX, Publication date: XXXX 2015.



18 • F. Kjolstad et al.

10. DISCUSSION

As we argue in the introduction, the most natural way to reason
about physical systems is as, simultaneously, a set of local formulas
and global (configurational) operations. Programmer productivity
is maximized when they are allowed to write code the way they
want to write it: using either the local or global view of the system,
without worrying about explicitly switching between the two or
incurring huge performance penalties. Simit’s design choices are
tailored towards this goal: tensor assemblies switch between local
hypergraph views and global matrix views, and index expressions
together with global matrices perform global operations. Together,
these operations let users write code that does not specify data layout
or data access order, which greatly simplifies the code while simul-
taneously letting the programming system optimize for different
platforms [Codd 1970]. The main alternative we considered for com-
putation was a model with only local operators, or update functions,
that apply to and update every vertex of a graph and that can read
(and optionally write) to neighbors [Low et al. 2010; Pingali et al.
2011]. However, we think they are too low level, make it difficult to
write complex programs, force the programmer to decide the loca-
tion of certain values such as element stiffness matrices, and make
it hard for compilers to optimize globally. The main alternatives to
our hypergraphs with hierarchical edges were meshes and normal
graphs. However, we believe meshes are too problem-specific while
normal graphs require programmers to build non-binary and topo-
logical relationships into application code, which simultaneously
complicates it and reduces the compiler’s ability to optimize.

11. CONCLUSIONS

A key insight of this work is that the best abstraction for describing
a system’s structure is different from the best abstraction for de-
scribing its behavior. Sparse systems are naturally graph-structured,
while behavior is often best described using linear algebra over the
whole system. Simit is a new programming model that takes advan-
tage of this duality, using tensor assembly maps to bridge between
the abstractions. Using information about system sparsity, combined
with operations expressed as index expressions, Simit compiles to
fast code while retaining the expressibility of high-level languages
like Matlab. With the ability to run programs on CPUs and GPUs,
Simit attains an unprecedented level of performance portability.

We believe Simit has the potential to obtain higher performance
while retaining its expressibility. So far, our implementation has only
scratched the surface of what kinds of optimizations are possible
with assemblies and index expressions. Future work will extend our
optimization strategy for index expressions resulting from linear
algebra operations. Furthermore, we have not yet implemented par-
allelization or vectorization of CPU code, which can provide further
factors of speedup. Finally, distributed and hybrid code generation
is possible given the Simit abstractions and will further improve
performance.

Simit lets programmers write code at a high level and get the
performance of optimized low-level code. Simit enables Matlab-
like productivity with the performance of manually optimized C++
code.

ACKNOWLEDGMENTS

This material is based on work supported by the DOE awards DE-
SC0005288 and DE-SC0008923, NSF DMS-1304211 and XPS-
1533753, DARPA SIMPLEX, DARPA agreement FA8750-14-2-
0009, and the Stanford Pervasive Parallelism Lab.

APPENDIX

A. NEO-HOOKEAN FINITE ELEMENT METHOD

We show a complete implementation of a finite element method
with linear tetrahedral elements. Our implementation includes the
constitutive model, the assembly stage of forces and stiffness ma-
trices, and a linearly-implicit dynamics integrator. We implement
the Neo-Hookean material model, but other material models can be
plugged in by changing the stress and stress differential functions.
Our assembly code defines how to compute local stiffness and forces
for a single element, and Simit handles the global assembly. We also
show an implementation of a linearly-implicit time integrator with a
conjugate gradient linear solver. The time stepper is written in terms
of linear algebra, and since it is agnostic of the underlying finite
element structures it can be applied to different element types.

const grav = [0.0, -10.0, 0.0];

element Vert
x : tensor[3](float);
v : tensor[3](float);
c : int;
m : float;

end

element Tet
u : float;
l : float;
W : float;
B : tensor[3,3](float);

end

extern verts : set{Vert};
extern tets : set{Tet}(verts, verts, verts, verts);

% precompute volume and shape function gradient for tets
func precomputeTetMat(inout t : Tet, v : (Vert*4))

-> (m:tensor[verts](float))
var M:tensor[3,3](float);
for ii in 0:3
for jj in 0:3
M(jj,ii) = v(ii).x(jj) - v(3).x(jj);

end
end
t.B = inv(M);
vol = -(1.0/6.0) * det(M);
t.W = vol;

rho = 1000.0;
for ii in 0:4
m(v(ii))=0.25*rho*vol;

end
end

export func initializeTet
m = map precomputeTetMat to tets;
verts.m = m;

end

% first Piola-Kirchoff stress
func PK1(u : float, l : float, F : tensor[3,3](float))

-> (P : tensor[3,3](float))
J = log(det(F));
Finv = inv(F)’;
P = u*(F-Finv) + l*J*Finv;

end

% gradient of first Piola-Kirchoff stress
func dPdF(u : float, l : float, F : tensor[3,3](float),

dF : tensor[3,3](float))
-> (dP : tensor[3,3](float))

J = log(det(F));
Fi = inv(F);

ACM Transactions on Graphics, Vol. XXXX, No. XXXX, Article XXXX, Publication date: XXXX 2015.



Simit: A Language for Physical Simulation • 19

FidF = Fi*dF;
dP = u*dF + (u-l*J) * Fi’ * FidF’ + l*trace(FidF)*Fi’;

end

% assemble lumped mass matrix and gravitional force
func compute_mass(v : Vert)

-> (M : tensor[verts, verts](tensor[3,3](float)),
fg : tensor[verts](tensor[3](float)))

M(v,v) = v.m * I;
if(v.c <= 0)
fg(v) = v.m * grav;

end
end

% assemble internal forces, fixed vertices contribute
% no force
func compute_force(e : Tet, v : (Vert*4))

-> (f : tensor[verts](tensor[3](float)))
var Ds : tensor[3,3](float);
for ii in 0:3
for jj in 0:3
Ds(jj,ii) = v(ii).x(jj) - v(3).x(jj);

end
end
F = Ds*e.B;

P = PK1(e.u, e.l, F);
H = -e.W * P * e.B’;

for ii in 0:3
fi = H(:,ii);

if (v(ii).c <= 0)
f(v(ii)) = fi ;

end

if (v(3).c <= 0)
f(v(3)) = -fi;

end
end

end

% assemble stiffness matrix, fixed vertices contribute
% nothing to stiffness matrix
func compute_stiffness(e : Tet, v : (Vert*4))

-> (K : tensor[verts,verts](tensor[3,3](float)))
var Ds : tensor[3,3](float);
var dFRow : tensor[4,3](float);
m = 0.01;

for ii in 0:3
for jj in 0:3
Ds(jj,ii) = v(ii).x(jj)-v(3).x(jj);

end
end

F = Ds*e.B;
for ii in 0:3
for ll in 0:3
dFRow(ii,ll) = e.B(ii,ll);

end
dFRow(3, ii) = -(e.B(0, ii)+e.B(1, ii)+e.B(2, ii));

end

for row in 0:4
var Kb : tensor[4,3,3](float) = 0.0;
for kk in 0:3
var dF : tensor[3,3](float) = 0.0;
for ll in 0:3
dF(kk, ll) = dFRow(row, ll);

end
dP = dPdF(e.u, e.l, F, dF);
dH = -e.W * dP * e.B’;

for ii in 0:3
for ll in 0:3
Kb(ii,ll, kk) = dH(ll, ii);

end

Kb(3, ii, kk) = -(dH(ii, 0)+dH(ii, 1)+dH(ii, 2));
end

end

for jj in 0:4
if(v(jj).c <= 0) and (v(row).c <= 0)
K(v(jj), v(row)) = Kb(:,:,jj);

end
end

end
end

% conjugate gradient with no preconditioning.
func CG(A : tensor[verts,verts](tensor[3,3](float)),

b : tensor[verts](tensor[3](float)),
x0 : tensor[verts](tensor[3](float)),
tol : float, maxIter : int)

-> (x : tensor[verts](tensor[3](float)))
r = b - (A*x0);
p = r;
iter = 0;
x = x0;
normr2 = dot(r, r);
while (normr2 > tol) and (iter < maxiters)
Ap = A * p;
denom = dot(p, Ap);
alpha = normr2 / denom;
x = x + alpha * p;
normr2old = normr2;
r = r - alpha * Ap;
normr2 = dot(r, r);
beta = normr2 / normr2old;
p = r + beta * p;
iter = iter + 1;

end
end

% linearly-implicit time stepper with CG solver
export func main
h = 0.01;
tol = 1e-12;
maxiters = 50;

M,fg = map compute_mass to verts reduce +;
f = map compute_force to tets reduce +;
K = map compute_stiffness to tets reduce +;

A = M - (h*h) * K;
b = M*verts.v + h*(f+fg);

x0 = verts.v;
verts.v = CG(A, b, x0, tol, maxIter);
verts.x = h * verts.v + verts.x;

end

REFERENCES

Bruce G. Baumgart. 1972. Winged Edge Polyhedron Representation. Tech-

nical Report. Stanford University.

Nathan Bell and Michael Garland. 2008. Efficient sparse matrix-vector

multiplication on CUDA. Technical Report. Nvidia Technical Report

NVR-2008-004, Nvidia Corporation.

Guy E Blelloch. 1990. Vector models for data-parallel computing. Vol. 356.

MIT press Cambridge.

David Blythe. 2006. The Direct3D 10 system. ACM Transactions on

Graphics 25, 3 (July 2006), 724–734.

Mario Botsch, David Bommes, and Leif Kobbelt. 2005. Efficient linear

system solvers for mesh processing. In Mathematics of Surfaces XI.

Springer, 62–83.

M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt. 2002. OpenMesh – a

generic and efficient polygon mesh data structure. (2002).

CGAL. 2015. Computational Geometry Algorithms Library. http://www.

cgal.org. (2015). Accessed: 2015-09-24.

ACM Transactions on Graphics, Vol. XXXX, No. XXXX, Article XXXX, Publication date: XXXX 2015.



20 • F. Kjolstad et al.

Edgar F Codd. 1970. A relational model of data for large shared data banks.

Commun. ACM 13, 6 (1970), 377–387.

AB Comsol. 2005. COMSOL multiphysics users guide. Version: September

(2005).

Erwin Coumans and others. 2006. Bullet physics library. Open source:

bulletphysics. org 4, 6 (2006).

Denis Demidov. 2015. AMGCL. http://ddemidov.github.io/amgcl. (2015).

Accessed: 2015-09-24.

Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montser-

rat Medina, Mike Barrientos, Erich Elsen, Frank Ham, Alex Aiken, Karthik

Duraisamy, Eric Darve, Juan Alonso, and Pat Hanrahan. 2011. Liszt: A Do-

main Specific Language for Building Portable Mesh-based PDE Solvers.

In Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis (SC ’11). ACM, New York,

NY, USA, Article 9, 12 pages.

Christian Dick, Joachim Georgii, and Rüdiger Westermann. 2011. A real-

time multigrid finite hexahedra method for elasticity simulation using

CUDA. Simulation Modelling Practice and Theory 19, 2 (2011), 801–

816.

Pradeep Dubey, Pat Hanrahan, Ronald Fedkiw, Michael Lentine, and Craig

Schroeder. 2011. PhysBAM: Physically Based Simulation. In ACM SIG-

GRAPH 2011 Courses (SIGGRAPH ’11). ACM, New York, NY, USA,

Article 10, 22 pages.

C.M. Eastman and S.F. Weiss. 1982. Tree structures for high dimensionality

nearest neighbor searching. Information Systems 7, 2 (1982), 115–122.

Albert. Einstein. 1916. The Foundation of the General Theory of Relativity.

Annalen der Physik 354 (1916), 769–822.

C. Elliott. 2001. Functional Image Synthesis. In Proceedings of Bridges.

François Faure, Jérémie Allard, Stéphane Cotin, Paul Neumann, Pierre-Jean

Bensoussan, Christian Duriez, Hervé Delingette, and Laurent Grisoni.

2007. SOFA: A modular yet efficient simulation framework. In Surgetica

2007 - Computer-Aided Medical Interventions: tools and applications

(Surgetica 2007, Gestes médicaux chirurgicaux assistés par ordinateur),

Philippe Merloz and Jocelyne Troccaz (Eds.). Chambéry, France, 101–

108.

Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schröder.

2003. Discrete Shells. In Proceedings of the 2003 ACM SIGGRAPH/Eu-

rographics Symposium on Computer Animation (SCA ’03). Eurograph-

ics Association, Aire-la-Ville, Switzerland, Switzerland, 62–67. http:

//dl.acm.org/citation.cfm?id=846276.846284

Gaël Guennebaud, Benoı̂t Jacob, and others. 2010. Eigen v3.

http://eigen.tuxfamily.org. (2010).

Brian Guenter and Sung-Hee Lee. 2009. Symbolic Dynamics and Geometry.

AK Peters.

Leonidas Guibas and Jorge Stolfi. 1985. Primitives for the Manipulation of

General Subdivisions and the Computation of Voronoi Diagrams. ACM

Trans. Graph. 4, 2 (1985), 74–123.

Richard Hamming. 2003. History of Computer—Software. In Art of Doing

Science and Engineering: Learning to Learn. CRC Press.

Pat Hanrahan and Jim Lawson. 1990. A Language for Shading and Lighting

Calculations. In Computer Graphics (Proceedings of SIGGRAPH 90).

289–298.

F. Hecht. 2015. private communication. (May 2015).

Hibbett, Karlsson, and Sorensen. 1998. ABAQUS/standard: User’s Manual.

Vol. 1. Hibbitt, Karlsson & Sorensen.

G. Holzmann. 1988. Beyond Photography. Prentice Hall.

Monica S. Lam Jiwon Seo, Stephen Guo. 2013. SociaLite: Datalog Exten-

sions for Efficient Social Network Analysis. In IEEE 29th International

Conference on Data Engineering.

David R. Kincaid, Thomas C. Oppe, and David M. Young. 1989. ITPACKV

2D User’s Guide.

Peter Kohnke. 1999. ANSYS theory reference. Ansys.

Karen Liu. 2014. Dynamic Animation and Robotics Toolkit. (2014).

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos

Guestrin, and Joseph M Hellerstein. 2010. GraphLab: A New Paral-

lel Framework for Machine Learning. In Conference on Uncertainty in

Artificial Intelligence.

William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard.

2003. Cg: A System for Programming Graphics Hardware in a C-like

Language. ACM Transactions on Graphics 22, 3 (July 2003), 896–907.

MATLAB. 2014. version 8.3.0 (R2014a). The MathWorks Inc., Natick,

Massachusetts.

Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus

Tamstorf, Joseph Teran, and Eftychios Sifakis. 2011. Efficient elasticity

for character skinning with contact and collisions. In ACM Transactions

on Graphics (TOG), Vol. 30. ACM, 37.

M Mooney. 1940. A theory of large elastic deformation. Journal of applied

physics 11, 9 (1940), 582–592.

Steven G Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared

Hoberock, David Luebke, David McAllister, Morgan McGuire, Keith

Morley, Austin Robison, and others. 2010. Optix: a general purpose ray

tracing engine. ACM Transactions on Graphics (TOG) 29, 4 (2010), 66.

Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M. Am-

ber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman

Manevich, Mario Méndez-Lojo, Dimitrios Prountzos, and Xin Sui. 2011.

The Tao of Parallelism in Algorithms. In Proceedings of the 32Nd ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI ’11). ACM, New York, NY, USA, 12–25.

J Pommier and Y Renard. 2005. Getfem++, an open source generic C++

library for finite element methods. (2005).

Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy,

Saman Amarasinghe, and Frédo Durand. 2012. Decoupling algo-

rithms from schedules for easy optimization of image processing

pipelines. ACM Trans. Graph. 31, 4, Article 32 (July 2012), 12 pages.

DOI:http://dx.doi.org/10.1145/2185520.2185528

Gregorio Ricci-Curbastro and Tullio Levi-Civita. 1901. Mthodes de calcul

diffrentiel absolu et leurs applications. Math. Ann. 54 (1901), 125–201.

http://eudml.org/doc/157997

Mark Segal and Kurt Akeley. 1994. The OpenGL graphics system: a specifi-

cation.

Fun Shing Sin, Daniel Schroeder, and J Barbič. 2013. Vega: Non-Linear

FEM Deformable Object Simulator. In Computer Graphics Forum, Vol. 32.

36–48.

Russell Smith and others. 2005. Open dynamics engine. (2005).

Eric Sedlar Sungpack Hong, Hassan Chafi and Kunle Olukotun. 2012. Green-

Marl: A DSL for Easy and Efficient Graph Analysis. In 17th International

Conference on Architectural Support for Programming Languages and

Operating Systems.

Kiril Vidimče, Szu-Po Wang, Jonathan Ragan-Kelley, and Wojciech Matusik.

2013. Openfab: A programmable pipeline for multi-material fabrication.

ACM Transactions on Graphics (TOG) 32, 4 (2013), 136.

Richard Vuduc, James W. Demmel, and Katherine A. Yelick. 2005.

OSKI: A library of automatically tuned sparse matrix kernels.

In Proc. SciDAC, J. Physics: Conf. Ser., Vol. 16. 521–530.

DOI:http://dx.doi.org/10.1088/1742-6596/16/1/071

Daniel Weber, Jan Bender, Markus Schnoes, Andre Stork, and Dieter Fell-

ner. 2013. Efficient GPU data structures and methods to solve sparse

linear systems in dynamics applications. Computer Graphics Forum 32, 1

(2013).

Received May 22; accepted August 27

ACM Transactions on Graphics, Vol. XXXX, No. XXXX, Article XXXX, Publication date: XXXX 2015.


