
Parallel Graph Decompositions Using Random Shifts
Gary L. Miller, Richard Peng, and Shen Chen

Presentation by Eeshan Tripathii



The Problem



“Decomposing an undirected unweighted graph into small diameter pieces”



Background Information



● Decomposing
○ Breaking a graph into smaller pieces such that the two sub-graphs share no edges

● Undirected 
○ None of the edges in the graph have directions

● Unweighted
○ None of the edges in the graph have weights (all have weight 1)

● Diameter
○ The length of the shortest path between the farthest nodes

“Decomposing an undirected unweighted graph into small diameter pieces”



● Decomposing
○ Breaking a graph into smaller pieces such that the two sub-graphs share no edges

● Undirected 
○ None of the edges in the graph have directions

● Unweighted
○ None of the edges in the graph have weights (all have weight 1)

● Diameter
○ The length of the shortest path between the farthest nodes

“Decomposing an undirected unweighted graph into small diameter pieces”



● Decomposing
○ Breaking a graph into smaller pieces such that the two sub-graphs share no edges

● Undirected 
○ None of the edges in the graph have directions

● Unweighted
○ None of the edges in the graph have weights (all have weight 1)

● Diameter
○ The length of the shortest path between the farthest nodes

“Decomposing an undirected unweighted graph into small diameter pieces”



“Decomposing an undirected unweighted graph into small diameter pieces”

● Why use diameter as a parameter?
○ A variety of other measures are used
○ More intricate measures such as conductance have proven to be more 

useful in many applications
○ However, even algorithms that use conductance, as well as many others, 

use simpler low diameter decompositions as a subroutine



“Decomposing an undirected unweighted graph into small diameter pieces”

● How to compute the diameter of a graph?
○ Strong diameter 

■ Restricts the shortest path between two vertices in S to only use 
vertices S (S being the sub-graph)

■ Parallelized with nearly-linear work

○ Weak diameter
■ Allows for shortcuts through vertices outside of S 
■ Parallelized with quadratic work in the optimal tree metric embedding 

algorithm



“Decomposing an undirected unweighted graph into small diameter pieces”

● How to compute the diameter of a graph?
○ Strong diameter 

■ Restricts the shortest path between two vertices in S to only use 
vertices S (S being the sub-graph)

■ Parallelized with nearly-linear work

○ Weak diameter
■ Allows for shortcuts through vertices outside of S 
■ Parallelized with quadratic work in the optimal tree metric embedding 

algorithm



“Decomposing an undirected unweighted graph into 

small diameter pieces”



“Decomposing in Parallel an undirected unweighted graph into

small diameter pieces”



Why?



Applications

● Generally
○ Decompositions form critical subroutines in a number of graph algorithms.

● Low Diameter Decompositions
○ Approximations to sparsest cut
○ Construction of spanners
○ Parallel approximations of shortest path in undirected graphs
○ Generating low-stretch embedding of graphs into trees
○ Construction of low-stretch spanning trees
○ Computing separators in minor-free graphs
○ Nearly linear work parallel solvers for SDD linear systems



Applications

● Generally
○ Decompositions form critical subroutines in a number of graph algorithms.

● Low Diameter Decompositions
○ Approximations to sparsest cut
○ Construction of spanners
○ Parallel approximations of shortest path in undirected graphs
○ Generating low-stretch embedding of graphs into trees
○ Construction of low-stretch spanning trees
○ Computing separators in minor-free graphs
○ Nearly linear work parallel solvers for SDD linear systems



● Low diameter graph decompositions using strong diameter as a measure are 
particularly useful for solving symmetric diagonally dominant linear systems

● Computing maximum flow and negative length shortest paths
● Used in many applications

○ Symmetric matrix where one where 

SDD Linear Systems



● Low diameter graph decompositions using strong diameter as a measure are 
particularly useful for solving symmetric diagonally dominant linear systems

● Computing maximum flow and negative length shortest paths
● Used in many applications

○ Symmetric matrix where one where 

SDD Linear Systems



SDD Linear Systems

Algorithms solving symmetric diagonally dominant linear systems created by 
authors of this paper

https://dl.acm.org/doi/pdf/10.1145/2
591796.2591832

https://www.cs.cmu.edu/~glmiller/Publicatio
ns/Papers/CKMPPRX14.pdf

https://dl.acm.org/doi/pdf/10.1145/2591796.2591832
https://dl.acm.org/doi/pdf/10.1145/2591796.2591832
https://www.cs.cmu.edu/~glmiller/Publications/Papers/CKMPPRX14.pdf
https://www.cs.cmu.edu/~glmiller/Publications/Papers/CKMPPRX14.pdf


Previous Approaches



Relevant Research

● Previous algorithms based upon conductance rather than diameters have 
studied
○ This algorithm could be used as a subroutine for them

● Others have used diameters but their work was either serial or measuring 
diameters weakly

● Shifted shortest path approach introduced in [Blelloch, Gupta, Koutis, Miller, 
Peng, Tangwongsan, SPAA 2011]
○ This algorithm is largely based on this work and mainly seeks to simply it while 

maintaining the same asymptotic runtimes



Overview of Algorithm



Ball Growing



Internal Edges vs External Edges

Consider the subgraph in blue



Internal Nodes vs External Nodes

These are the internal edges



Internal Nodes vs External Nodes

These are the external edges



 the number of external edges
 the number of internal edgesConstriction is defined as  =



Starts with a single vertex, and repeatedly adds the 
neighbors similarly to BFS. 

It terminates when the constriction is less than β.







External edges: 2
Internal edges: 0
Constriction: 2/0





External edges: 5
Internal edges: 2
Constriction: 5/2





7

External edges: 3
Internal edges: 7
Constriction: 3/7 < 1/2



Ball Growing
● Diameter of a piece is bounded by 
● Easy to run serially

○ Find the second subgraph after we are done finding 
the first

● However, if we parallelize then we get problems 
with overlapping

















Shifting



Dealing with Overlaps

Decompose(V):
  cilk_for(u in V):
    ball_growing(u, rand_time(node))

ball_growing(u, start_time):
  if time == start_time:
    if !u.cluster:
      u.cluster = u
      BFS(u)

BFS(u):
  cilk_for(v in u.neighbors):
    if !v.cluster: 
      v.cluster = u.cluster
      BFS(v)
      



Distances not Times







1000x1000 grid



Impact and Analysis

● By picking shifts uniformly from a sufficiently large range, a (β,O( logc n β )) 
decomposition can be obtained.

● A common algorithmic routine is to partition a graph into O(log n) blocks such 
that each connected piece in a block has diameter O(log n)
○ This can be obtained using this algorithm by running a (1/2, O(log n)) low diameter 

decomposition O(log n) times as the number of edges not in a block decreases by 
a factor of 2 per iteration

● As a sequential algorithm, it can also lead to similar guarantees on weighted graphs to 
Bartal’s decomposition scheme as well as generalizations needed for improved low 
stretch spanning tree algorithms

● Parallel performance with weighted graph has not been analyzed



Future Steps

● Obtaining similar parallel guarantees in the weighted setting
● Showing clustering-based properties


