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Definition: Graph-Coloring

● Definition: Vertex Coloring
○ Assignment of a color to each vertex of an 

undirected graph G = (V, E), such that for every 
edge (u, v) in E, u.color != v.color

● Find optimal vertex coloring (fewest colors)
● NP-complete problem
● In practice, approximation algorithms are 

sufficient



Motivation

● Scheduling data graph computations
○ Sequence of update on vertices of a graph
○ New value of a vertex depends on value of vertex and adjacent vertex values
○ Vertices of same color can be update in parallel
○ Fewer colors ⇔ more parallelism

● Other real world applications:
○ Register allocation via Graph Coloring



Properties of Good Parallel Ordering

● Quality ordering
● Scalable
● Work Efficient



Greedy Algorithm

ρ- priority function

What is the required work?
Is this procedure parallelizable?

● Colors a graph with degree Δ 
in at most Δ + 1 colors
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Definitions: Ordering Heuristics (ρ(v)) 

● FF: First fit
● R: Random
● LF: Largest degree first
● SL: Smallest degree last

○ Remove all lowest degree vertices and recursively color graph
● ID: Incidence-degree

○ “Color degree”
● SD: Saturation degree

○ “Distinct color degree” 
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Quality vs. Serial Runtime



Parallel Greedy Coloring
Jones and Plassmann [35]

Line 17:
● JOIN(u.counter) checks if 

u’s predecessors have been 
colored
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Analysis

● Linear work in size of the graph
● Traditional heuristics vulnerable to adversarial inputs causing worst case Ω(V) 

span
○ Why?



Adversarial Input for JP-LF



LLF Ordering Heuristics

● Largest-log-degree-first
●  ρ(v) = <⌈log(deg(v))⌉, ρR(v)>
●  ρR is a random priority function



Clique-Chain with JP-LFF



SLL Ordering Heuristic



Analysis

● JP-R, JP-LLF, JP-SLL work efficient
● Span bounds:

○ JP-R: O(lgV + lg∆ · min{ √ E,∆ + lg∆lgV/lglgV})
○ JP-LLF: O(lg∆lgV +lg∆(min{√E,∆}+lg2∆lgV/lglgV))
○ JP-SLL: O(lg∆lgV +lg∆(min{ √ E,∆}+lg2∆lgV/lglgV))



Empirical Evaluation
Benchmark suite: 8 real-world graphs and 10 synthetic graphs.  

Color Ratio: Ratio of the number of colors used by the parallel heuristic to the serial heuristic.

Efficiency: Ratio of serial heuristic running time to the parallel heuristic run on a single core.

Speedup: The 12-core speedup of the parallel heuristic.

Serial Heuristic Parallel Heuristic Color Ratio Efficiency Speedup
FF R 1.011 0.417 7.039
LF LLF 1.021 1.058 7.980
SL SLL 1.037 1.092 6.082



“Coarse Hierarchy” In Coloring Quality

FF < R < LLF < LF < SLL < SL



Implementation Techniques

● Join trees for reducing memory contention 
on atomic counters

○ (Line 17)
● Bit vectors for assigning colors

○ (Line 19) Word containing adjacent colors, 
maintained during joins

● Software prefetching
○ (Line 16)



“Coarse Hierarchy” In Coloring Quality

FF < R < LLF < LF < SLL < SL < SD?



Bonus: Saturation Degree

● “Saturation Table” Q



Bonus: Saturation Degree

● “Saturation Table” Q

● Ordering is determined during serial 
coloring. How to parallelize?
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Results

● Overall, JP-LLF obtains a geometric-mean speedup — the ratio of the runtime 
on 1 core to the runtime on 12 cores — of 7.83 on the eight real-world graphs 
and 8.08 on the ten synthetic graphs.

● Similarly, JP-SLL obtains a geometric-mean speedup of 5.36 and 7.02 on the 
real-world and synthetic graphs, respectively.



Incidence Degree

● Iteratively colors an uncolored vertex with the largest number of colored 
neighbors



Smallest Degree Last

● First remove all lowest degree vertices
● Recursively color the new graph
● Add the removed vertices back and color



Saturation Degree

● Color an uncolored vertex whose colored neighbors use the largest number of 
distinct colors



Lemma 1

The helper routine GET-COLOR, shown in Figure 2, can be implemented so that 
during the execution of JP on a graph G = (V,E,ρ), a call to GET-COLOR(v) for a 
vertex v ∈ V costs Θ(k) work and Θ(lgk) span, where k = |v.pred|.

Proof:

● Represent set of colors as an array
● Use sentinels to represent removed elements

○ Lines 20-21 require Θ(k) work and Θ(lgk) span
● Implement min as a parallel reduction

○ Θ(k) work and Θ(lgk) span
● QED



Theorem 2

Given a ∆-degree graph G = (V,E,ρ) for some priority function ρ, let Gρ be the 
priority dag induced on G by ρ, and let L be the depth of Gρ . Then JP(G) runs in 
Θ(V +E) work and O(Llg∆+lgV) span



Lemma 3

The number of length-k simple paths in any ∆- degree graph G = (V,E) is at most 
|V| · min{∆ k−1 ,(2|E|/(k − 1))k−1}.



Lemma 4

Define the function g(α,β) for α,β > 1.

Then for all β ≥ e 2 , α ≥ 2, and β ≥ α, we have g(α,β) ≥ 1.



Theorem 5

Let G = (V,E) be a ∆-degree graph, let n = |V| and m = |E|, and let Gρ be a priority 
dag induced on G by a random priority function ρ ∈ R. For any constant ε > 0 and 
sufficiently large n, with probability at most n−ε , there exists a directed path of 
length e2 · min{∆, √ m} + (1 + ε)min{e 2 ln∆lnn/lnlnn,lnn} in Gρ .



Corollary 6



Theorem 8



Theorem 9



Corollary 10



Corollary 12



Definition: Vertex-Coloring

● Assignment of a color to each vertex of an undirected graph G = (V, E), such 
that for every edge (u, v) in E, u.color != v.color


